Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > undifexmid | Unicode version |
Description: Union of complementary parts producing the whole and excluded middle. Although special cases such as undifss 3489 and undifdcss 6888 are provable, the full statement implies excluded middle as shown here. (Contributed by Jim Kingdon, 16-Jun-2022.) |
Ref | Expression |
---|---|
undifexmid.1 |
Ref | Expression |
---|---|
undifexmid |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ex 4109 | . . . . 5 | |
2 | 1 | snid 3607 | . . . 4 |
3 | ssrab2 3227 | . . . . 5 | |
4 | p0ex 4167 | . . . . . . 7 | |
5 | 4 | rabex 4126 | . . . . . 6 |
6 | sseq12 3167 | . . . . . . 7 | |
7 | simpl 108 | . . . . . . . . 9 | |
8 | simpr 109 | . . . . . . . . . 10 | |
9 | 8, 7 | difeq12d 3241 | . . . . . . . . 9 |
10 | 7, 9 | uneq12d 3277 | . . . . . . . 8 |
11 | 10, 8 | eqeq12d 2180 | . . . . . . 7 |
12 | 6, 11 | bibi12d 234 | . . . . . 6 |
13 | undifexmid.1 | . . . . . 6 | |
14 | 5, 4, 12, 13 | vtocl2 2781 | . . . . 5 |
15 | 3, 14 | mpbi 144 | . . . 4 |
16 | 2, 15 | eleqtrri 2242 | . . 3 |
17 | elun 3263 | . . 3 | |
18 | 16, 17 | mpbi 144 | . 2 |
19 | biidd 171 | . . . . . 6 | |
20 | 19 | elrab3 2883 | . . . . 5 |
21 | 2, 20 | ax-mp 5 | . . . 4 |
22 | 21 | biimpi 119 | . . 3 |
23 | eldifn 3245 | . . . 4 | |
24 | 23, 21 | sylnib 666 | . . 3 |
25 | 22, 24 | orim12i 749 | . 2 |
26 | 18, 25 | ax-mp 5 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wa 103 wb 104 wo 698 wceq 1343 wcel 2136 crab 2448 cdif 3113 cun 3114 wss 3116 c0 3409 csn 3576 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-nul 4108 ax-pow 4153 |
This theorem depends on definitions: df-bi 116 df-tru 1346 df-nf 1449 df-sb 1751 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rab 2453 df-v 2728 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |