ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  undifexmid Unicode version

Theorem undifexmid 4223
Description: Union of complementary parts producing the whole and excluded middle. Although special cases such as undifss 3528 and undifdcss 6981 are provable, the full statement implies excluded middle as shown here. (Contributed by Jim Kingdon, 16-Jun-2022.)
Hypothesis
Ref Expression
undifexmid.1  |-  ( x 
C_  y  <->  ( x  u.  ( y  \  x
) )  =  y )
Assertion
Ref Expression
undifexmid  |-  ( ph  \/  -.  ph )
Distinct variable group:    ph, x, y

Proof of Theorem undifexmid
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 0ex 4157 . . . . 5  |-  (/)  e.  _V
21snid 3650 . . . 4  |-  (/)  e.  { (/)
}
3 ssrab2 3265 . . . . 5  |-  { z  e.  { (/) }  |  ph }  C_  { (/) }
4 p0ex 4218 . . . . . . 7  |-  { (/) }  e.  _V
54rabex 4174 . . . . . 6  |-  { z  e.  { (/) }  |  ph }  e.  _V
6 sseq12 3205 . . . . . . 7  |-  ( ( x  =  { z  e.  { (/) }  |  ph }  /\  y  =  { (/) } )  -> 
( x  C_  y  <->  { z  e.  { (/) }  |  ph }  C_  {
(/) } ) )
7 simpl 109 . . . . . . . . 9  |-  ( ( x  =  { z  e.  { (/) }  |  ph }  /\  y  =  { (/) } )  ->  x  =  { z  e.  { (/) }  |  ph } )
8 simpr 110 . . . . . . . . . 10  |-  ( ( x  =  { z  e.  { (/) }  |  ph }  /\  y  =  { (/) } )  -> 
y  =  { (/) } )
98, 7difeq12d 3279 . . . . . . . . 9  |-  ( ( x  =  { z  e.  { (/) }  |  ph }  /\  y  =  { (/) } )  -> 
( y  \  x
)  =  ( {
(/) }  \  { z  e.  { (/) }  |  ph } ) )
107, 9uneq12d 3315 . . . . . . . 8  |-  ( ( x  =  { z  e.  { (/) }  |  ph }  /\  y  =  { (/) } )  -> 
( x  u.  (
y  \  x )
)  =  ( { z  e.  { (/) }  |  ph }  u.  ( { (/) }  \  {
z  e.  { (/) }  |  ph } ) ) )
1110, 8eqeq12d 2208 . . . . . . 7  |-  ( ( x  =  { z  e.  { (/) }  |  ph }  /\  y  =  { (/) } )  -> 
( ( x  u.  ( y  \  x
) )  =  y  <-> 
( { z  e. 
{ (/) }  |  ph }  u.  ( { (/)
}  \  { z  e.  { (/) }  |  ph } ) )  =  { (/) } ) )
126, 11bibi12d 235 . . . . . 6  |-  ( ( x  =  { z  e.  { (/) }  |  ph }  /\  y  =  { (/) } )  -> 
( ( x  C_  y 
<->  ( x  u.  (
y  \  x )
)  =  y )  <-> 
( { z  e. 
{ (/) }  |  ph }  C_  { (/) }  <->  ( {
z  e.  { (/) }  |  ph }  u.  ( { (/) }  \  {
z  e.  { (/) }  |  ph } ) )  =  { (/) } ) ) )
13 undifexmid.1 . . . . . 6  |-  ( x 
C_  y  <->  ( x  u.  ( y  \  x
) )  =  y )
145, 4, 12, 13vtocl2 2816 . . . . 5  |-  ( { z  e.  { (/) }  |  ph }  C_  {
(/) }  <->  ( { z  e.  { (/) }  |  ph }  u.  ( {
(/) }  \  { z  e.  { (/) }  |  ph } ) )  =  { (/) } )
153, 14mpbi 145 . . . 4  |-  ( { z  e.  { (/) }  |  ph }  u.  ( { (/) }  \  {
z  e.  { (/) }  |  ph } ) )  =  { (/) }
162, 15eleqtrri 2269 . . 3  |-  (/)  e.  ( { z  e.  { (/)
}  |  ph }  u.  ( { (/) }  \  { z  e.  { (/)
}  |  ph }
) )
17 elun 3301 . . 3  |-  ( (/)  e.  ( { z  e. 
{ (/) }  |  ph }  u.  ( { (/)
}  \  { z  e.  { (/) }  |  ph } ) )  <->  ( (/)  e.  {
z  e.  { (/) }  |  ph }  \/  (/) 
e.  ( { (/) } 
\  { z  e. 
{ (/) }  |  ph } ) ) )
1816, 17mpbi 145 . 2  |-  ( (/)  e.  { z  e.  { (/)
}  |  ph }  \/  (/)  e.  ( {
(/) }  \  { z  e.  { (/) }  |  ph } ) )
19 biidd 172 . . . . . 6  |-  ( z  =  (/)  ->  ( ph  <->  ph ) )
2019elrab3 2918 . . . . 5  |-  ( (/)  e.  { (/) }  ->  ( (/) 
e.  { z  e. 
{ (/) }  |  ph } 
<-> 
ph ) )
212, 20ax-mp 5 . . . 4  |-  ( (/)  e.  { z  e.  { (/)
}  |  ph }  <->  ph )
2221biimpi 120 . . 3  |-  ( (/)  e.  { z  e.  { (/)
}  |  ph }  ->  ph )
23 eldifn 3283 . . . 4  |-  ( (/)  e.  ( { (/) }  \  { z  e.  { (/)
}  |  ph }
)  ->  -.  (/)  e.  {
z  e.  { (/) }  |  ph } )
2423, 21sylnib 677 . . 3  |-  ( (/)  e.  ( { (/) }  \  { z  e.  { (/)
}  |  ph }
)  ->  -.  ph )
2522, 24orim12i 760 . 2  |-  ( (
(/)  e.  { z  e.  { (/) }  |  ph }  \/  (/)  e.  ( { (/) }  \  {
z  e.  { (/) }  |  ph } ) )  ->  ( ph  \/  -.  ph ) )
2618, 25ax-mp 5 1  |-  ( ph  \/  -.  ph )
Colors of variables: wff set class
Syntax hints:   -. wn 3    /\ wa 104    <-> wb 105    \/ wo 709    = wceq 1364    e. wcel 2164   {crab 2476    \ cdif 3151    u. cun 3152    C_ wss 3154   (/)c0 3447   {csn 3619
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4148  ax-nul 4156  ax-pow 4204
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rab 2481  df-v 2762  df-dif 3156  df-un 3158  df-in 3160  df-ss 3167  df-nul 3448  df-pw 3604  df-sn 3625
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator