| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > undifexmid | Unicode version | ||
| Description: Union of complementary parts producing the whole and excluded middle. Although special cases such as undifss 3545 and undifdcss 7035 are provable, the full statement implies excluded middle as shown here. (Contributed by Jim Kingdon, 16-Jun-2022.) |
| Ref | Expression |
|---|---|
| undifexmid.1 |
|
| Ref | Expression |
|---|---|
| undifexmid |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ex 4179 |
. . . . 5
| |
| 2 | 1 | snid 3669 |
. . . 4
|
| 3 | ssrab2 3282 |
. . . . 5
| |
| 4 | p0ex 4240 |
. . . . . . 7
| |
| 5 | 4 | rabex 4196 |
. . . . . 6
|
| 6 | sseq12 3222 |
. . . . . . 7
| |
| 7 | simpl 109 |
. . . . . . . . 9
| |
| 8 | simpr 110 |
. . . . . . . . . 10
| |
| 9 | 8, 7 | difeq12d 3296 |
. . . . . . . . 9
|
| 10 | 7, 9 | uneq12d 3332 |
. . . . . . . 8
|
| 11 | 10, 8 | eqeq12d 2221 |
. . . . . . 7
|
| 12 | 6, 11 | bibi12d 235 |
. . . . . 6
|
| 13 | undifexmid.1 |
. . . . . 6
| |
| 14 | 5, 4, 12, 13 | vtocl2 2830 |
. . . . 5
|
| 15 | 3, 14 | mpbi 145 |
. . . 4
|
| 16 | 2, 15 | eleqtrri 2282 |
. . 3
|
| 17 | elun 3318 |
. . 3
| |
| 18 | 16, 17 | mpbi 145 |
. 2
|
| 19 | biidd 172 |
. . . . . 6
| |
| 20 | 19 | elrab3 2934 |
. . . . 5
|
| 21 | 2, 20 | ax-mp 5 |
. . . 4
|
| 22 | 21 | biimpi 120 |
. . 3
|
| 23 | eldifn 3300 |
. . . 4
| |
| 24 | 23, 21 | sylnib 678 |
. . 3
|
| 25 | 22, 24 | orim12i 761 |
. 2
|
| 26 | 18, 25 | ax-mp 5 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-14 2180 ax-ext 2188 ax-sep 4170 ax-nul 4178 ax-pow 4226 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ral 2490 df-rab 2494 df-v 2775 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-nul 3465 df-pw 3623 df-sn 3644 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |