Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > undifexmid | Unicode version |
Description: Union of complementary parts producing the whole and excluded middle. Although special cases such as undifss 3495 and undifdcss 6900 are provable, the full statement implies excluded middle as shown here. (Contributed by Jim Kingdon, 16-Jun-2022.) |
Ref | Expression |
---|---|
undifexmid.1 |
Ref | Expression |
---|---|
undifexmid |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ex 4116 | . . . . 5 | |
2 | 1 | snid 3614 | . . . 4 |
3 | ssrab2 3232 | . . . . 5 | |
4 | p0ex 4174 | . . . . . . 7 | |
5 | 4 | rabex 4133 | . . . . . 6 |
6 | sseq12 3172 | . . . . . . 7 | |
7 | simpl 108 | . . . . . . . . 9 | |
8 | simpr 109 | . . . . . . . . . 10 | |
9 | 8, 7 | difeq12d 3246 | . . . . . . . . 9 |
10 | 7, 9 | uneq12d 3282 | . . . . . . . 8 |
11 | 10, 8 | eqeq12d 2185 | . . . . . . 7 |
12 | 6, 11 | bibi12d 234 | . . . . . 6 |
13 | undifexmid.1 | . . . . . 6 | |
14 | 5, 4, 12, 13 | vtocl2 2785 | . . . . 5 |
15 | 3, 14 | mpbi 144 | . . . 4 |
16 | 2, 15 | eleqtrri 2246 | . . 3 |
17 | elun 3268 | . . 3 | |
18 | 16, 17 | mpbi 144 | . 2 |
19 | biidd 171 | . . . . . 6 | |
20 | 19 | elrab3 2887 | . . . . 5 |
21 | 2, 20 | ax-mp 5 | . . . 4 |
22 | 21 | biimpi 119 | . . 3 |
23 | eldifn 3250 | . . . 4 | |
24 | 23, 21 | sylnib 671 | . . 3 |
25 | 22, 24 | orim12i 754 | . 2 |
26 | 18, 25 | ax-mp 5 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wa 103 wb 104 wo 703 wceq 1348 wcel 2141 crab 2452 cdif 3118 cun 3119 wss 3121 c0 3414 csn 3583 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-nul 4115 ax-pow 4160 |
This theorem depends on definitions: df-bi 116 df-tru 1351 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rab 2457 df-v 2732 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3568 df-sn 3589 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |