| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > undifexmid | Unicode version | ||
| Description: Union of complementary parts producing the whole and excluded middle. Although special cases such as undifss 3531 and undifdcss 6984 are provable, the full statement implies excluded middle as shown here. (Contributed by Jim Kingdon, 16-Jun-2022.) |
| Ref | Expression |
|---|---|
| undifexmid.1 |
|
| Ref | Expression |
|---|---|
| undifexmid |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ex 4160 |
. . . . 5
| |
| 2 | 1 | snid 3653 |
. . . 4
|
| 3 | ssrab2 3268 |
. . . . 5
| |
| 4 | p0ex 4221 |
. . . . . . 7
| |
| 5 | 4 | rabex 4177 |
. . . . . 6
|
| 6 | sseq12 3208 |
. . . . . . 7
| |
| 7 | simpl 109 |
. . . . . . . . 9
| |
| 8 | simpr 110 |
. . . . . . . . . 10
| |
| 9 | 8, 7 | difeq12d 3282 |
. . . . . . . . 9
|
| 10 | 7, 9 | uneq12d 3318 |
. . . . . . . 8
|
| 11 | 10, 8 | eqeq12d 2211 |
. . . . . . 7
|
| 12 | 6, 11 | bibi12d 235 |
. . . . . 6
|
| 13 | undifexmid.1 |
. . . . . 6
| |
| 14 | 5, 4, 12, 13 | vtocl2 2819 |
. . . . 5
|
| 15 | 3, 14 | mpbi 145 |
. . . 4
|
| 16 | 2, 15 | eleqtrri 2272 |
. . 3
|
| 17 | elun 3304 |
. . 3
| |
| 18 | 16, 17 | mpbi 145 |
. 2
|
| 19 | biidd 172 |
. . . . . 6
| |
| 20 | 19 | elrab3 2921 |
. . . . 5
|
| 21 | 2, 20 | ax-mp 5 |
. . . 4
|
| 22 | 21 | biimpi 120 |
. . 3
|
| 23 | eldifn 3286 |
. . . 4
| |
| 24 | 23, 21 | sylnib 677 |
. . 3
|
| 25 | 22, 24 | orim12i 760 |
. 2
|
| 26 | 18, 25 | ax-mp 5 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-nul 4159 ax-pow 4207 |
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rab 2484 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3451 df-pw 3607 df-sn 3628 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |