ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  undifexmid Unicode version

Theorem undifexmid 4112
Description: Union of complementary parts producing the whole and excluded middle. Although special cases such as undifss 3438 and undifdcss 6804 are provable, the full statement implies excluded middle as shown here. (Contributed by Jim Kingdon, 16-Jun-2022.)
Hypothesis
Ref Expression
undifexmid.1  |-  ( x 
C_  y  <->  ( x  u.  ( y  \  x
) )  =  y )
Assertion
Ref Expression
undifexmid  |-  ( ph  \/  -.  ph )
Distinct variable group:    ph, x, y

Proof of Theorem undifexmid
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 0ex 4050 . . . . 5  |-  (/)  e.  _V
21snid 3551 . . . 4  |-  (/)  e.  { (/)
}
3 ssrab2 3177 . . . . 5  |-  { z  e.  { (/) }  |  ph }  C_  { (/) }
4 p0ex 4107 . . . . . . 7  |-  { (/) }  e.  _V
54rabex 4067 . . . . . 6  |-  { z  e.  { (/) }  |  ph }  e.  _V
6 sseq12 3117 . . . . . . 7  |-  ( ( x  =  { z  e.  { (/) }  |  ph }  /\  y  =  { (/) } )  -> 
( x  C_  y  <->  { z  e.  { (/) }  |  ph }  C_  {
(/) } ) )
7 simpl 108 . . . . . . . . 9  |-  ( ( x  =  { z  e.  { (/) }  |  ph }  /\  y  =  { (/) } )  ->  x  =  { z  e.  { (/) }  |  ph } )
8 simpr 109 . . . . . . . . . 10  |-  ( ( x  =  { z  e.  { (/) }  |  ph }  /\  y  =  { (/) } )  -> 
y  =  { (/) } )
98, 7difeq12d 3190 . . . . . . . . 9  |-  ( ( x  =  { z  e.  { (/) }  |  ph }  /\  y  =  { (/) } )  -> 
( y  \  x
)  =  ( {
(/) }  \  { z  e.  { (/) }  |  ph } ) )
107, 9uneq12d 3226 . . . . . . . 8  |-  ( ( x  =  { z  e.  { (/) }  |  ph }  /\  y  =  { (/) } )  -> 
( x  u.  (
y  \  x )
)  =  ( { z  e.  { (/) }  |  ph }  u.  ( { (/) }  \  {
z  e.  { (/) }  |  ph } ) ) )
1110, 8eqeq12d 2152 . . . . . . 7  |-  ( ( x  =  { z  e.  { (/) }  |  ph }  /\  y  =  { (/) } )  -> 
( ( x  u.  ( y  \  x
) )  =  y  <-> 
( { z  e. 
{ (/) }  |  ph }  u.  ( { (/)
}  \  { z  e.  { (/) }  |  ph } ) )  =  { (/) } ) )
126, 11bibi12d 234 . . . . . 6  |-  ( ( x  =  { z  e.  { (/) }  |  ph }  /\  y  =  { (/) } )  -> 
( ( x  C_  y 
<->  ( x  u.  (
y  \  x )
)  =  y )  <-> 
( { z  e. 
{ (/) }  |  ph }  C_  { (/) }  <->  ( {
z  e.  { (/) }  |  ph }  u.  ( { (/) }  \  {
z  e.  { (/) }  |  ph } ) )  =  { (/) } ) ) )
13 undifexmid.1 . . . . . 6  |-  ( x 
C_  y  <->  ( x  u.  ( y  \  x
) )  =  y )
145, 4, 12, 13vtocl2 2736 . . . . 5  |-  ( { z  e.  { (/) }  |  ph }  C_  {
(/) }  <->  ( { z  e.  { (/) }  |  ph }  u.  ( {
(/) }  \  { z  e.  { (/) }  |  ph } ) )  =  { (/) } )
153, 14mpbi 144 . . . 4  |-  ( { z  e.  { (/) }  |  ph }  u.  ( { (/) }  \  {
z  e.  { (/) }  |  ph } ) )  =  { (/) }
162, 15eleqtrri 2213 . . 3  |-  (/)  e.  ( { z  e.  { (/)
}  |  ph }  u.  ( { (/) }  \  { z  e.  { (/)
}  |  ph }
) )
17 elun 3212 . . 3  |-  ( (/)  e.  ( { z  e. 
{ (/) }  |  ph }  u.  ( { (/)
}  \  { z  e.  { (/) }  |  ph } ) )  <->  ( (/)  e.  {
z  e.  { (/) }  |  ph }  \/  (/) 
e.  ( { (/) } 
\  { z  e. 
{ (/) }  |  ph } ) ) )
1816, 17mpbi 144 . 2  |-  ( (/)  e.  { z  e.  { (/)
}  |  ph }  \/  (/)  e.  ( {
(/) }  \  { z  e.  { (/) }  |  ph } ) )
19 biidd 171 . . . . . 6  |-  ( z  =  (/)  ->  ( ph  <->  ph ) )
2019elrab3 2836 . . . . 5  |-  ( (/)  e.  { (/) }  ->  ( (/) 
e.  { z  e. 
{ (/) }  |  ph } 
<-> 
ph ) )
212, 20ax-mp 5 . . . 4  |-  ( (/)  e.  { z  e.  { (/)
}  |  ph }  <->  ph )
2221biimpi 119 . . 3  |-  ( (/)  e.  { z  e.  { (/)
}  |  ph }  ->  ph )
23 eldifn 3194 . . . 4  |-  ( (/)  e.  ( { (/) }  \  { z  e.  { (/)
}  |  ph }
)  ->  -.  (/)  e.  {
z  e.  { (/) }  |  ph } )
2423, 21sylnib 665 . . 3  |-  ( (/)  e.  ( { (/) }  \  { z  e.  { (/)
}  |  ph }
)  ->  -.  ph )
2522, 24orim12i 748 . 2  |-  ( (
(/)  e.  { z  e.  { (/) }  |  ph }  \/  (/)  e.  ( { (/) }  \  {
z  e.  { (/) }  |  ph } ) )  ->  ( ph  \/  -.  ph ) )
2618, 25ax-mp 5 1  |-  ( ph  \/  -.  ph )
Colors of variables: wff set class
Syntax hints:   -. wn 3    /\ wa 103    <-> wb 104    \/ wo 697    = wceq 1331    e. wcel 1480   {crab 2418    \ cdif 3063    u. cun 3064    C_ wss 3066   (/)c0 3358   {csn 3522
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-sep 4041  ax-nul 4049  ax-pow 4093
This theorem depends on definitions:  df-bi 116  df-tru 1334  df-nf 1437  df-sb 1736  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ral 2419  df-rab 2423  df-v 2683  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-nul 3359  df-pw 3507  df-sn 3528
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator