Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > undifexmid | Unicode version |
Description: Union of complementary parts producing the whole and excluded middle. Although special cases such as undifss 3474 and undifdcss 6864 are provable, the full statement implies excluded middle as shown here. (Contributed by Jim Kingdon, 16-Jun-2022.) |
Ref | Expression |
---|---|
undifexmid.1 |
Ref | Expression |
---|---|
undifexmid |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ex 4091 | . . . . 5 | |
2 | 1 | snid 3591 | . . . 4 |
3 | ssrab2 3213 | . . . . 5 | |
4 | p0ex 4149 | . . . . . . 7 | |
5 | 4 | rabex 4108 | . . . . . 6 |
6 | sseq12 3153 | . . . . . . 7 | |
7 | simpl 108 | . . . . . . . . 9 | |
8 | simpr 109 | . . . . . . . . . 10 | |
9 | 8, 7 | difeq12d 3226 | . . . . . . . . 9 |
10 | 7, 9 | uneq12d 3262 | . . . . . . . 8 |
11 | 10, 8 | eqeq12d 2172 | . . . . . . 7 |
12 | 6, 11 | bibi12d 234 | . . . . . 6 |
13 | undifexmid.1 | . . . . . 6 | |
14 | 5, 4, 12, 13 | vtocl2 2767 | . . . . 5 |
15 | 3, 14 | mpbi 144 | . . . 4 |
16 | 2, 15 | eleqtrri 2233 | . . 3 |
17 | elun 3248 | . . 3 | |
18 | 16, 17 | mpbi 144 | . 2 |
19 | biidd 171 | . . . . . 6 | |
20 | 19 | elrab3 2869 | . . . . 5 |
21 | 2, 20 | ax-mp 5 | . . . 4 |
22 | 21 | biimpi 119 | . . 3 |
23 | eldifn 3230 | . . . 4 | |
24 | 23, 21 | sylnib 666 | . . 3 |
25 | 22, 24 | orim12i 749 | . 2 |
26 | 18, 25 | ax-mp 5 | 1 |
Colors of variables: wff set class |
Syntax hints: wn 3 wa 103 wb 104 wo 698 wceq 1335 wcel 2128 crab 2439 cdif 3099 cun 3100 wss 3102 c0 3394 csn 3560 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-14 2131 ax-ext 2139 ax-sep 4082 ax-nul 4090 ax-pow 4135 |
This theorem depends on definitions: df-bi 116 df-tru 1338 df-nf 1441 df-sb 1743 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ral 2440 df-rab 2444 df-v 2714 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-nul 3395 df-pw 3545 df-sn 3566 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |