ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  undifexmid Unicode version

Theorem undifexmid 4245
Description: Union of complementary parts producing the whole and excluded middle. Although special cases such as undifss 3545 and undifdcss 7035 are provable, the full statement implies excluded middle as shown here. (Contributed by Jim Kingdon, 16-Jun-2022.)
Hypothesis
Ref Expression
undifexmid.1  |-  ( x 
C_  y  <->  ( x  u.  ( y  \  x
) )  =  y )
Assertion
Ref Expression
undifexmid  |-  ( ph  \/  -.  ph )
Distinct variable group:    ph, x, y

Proof of Theorem undifexmid
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 0ex 4179 . . . . 5  |-  (/)  e.  _V
21snid 3669 . . . 4  |-  (/)  e.  { (/)
}
3 ssrab2 3282 . . . . 5  |-  { z  e.  { (/) }  |  ph }  C_  { (/) }
4 p0ex 4240 . . . . . . 7  |-  { (/) }  e.  _V
54rabex 4196 . . . . . 6  |-  { z  e.  { (/) }  |  ph }  e.  _V
6 sseq12 3222 . . . . . . 7  |-  ( ( x  =  { z  e.  { (/) }  |  ph }  /\  y  =  { (/) } )  -> 
( x  C_  y  <->  { z  e.  { (/) }  |  ph }  C_  {
(/) } ) )
7 simpl 109 . . . . . . . . 9  |-  ( ( x  =  { z  e.  { (/) }  |  ph }  /\  y  =  { (/) } )  ->  x  =  { z  e.  { (/) }  |  ph } )
8 simpr 110 . . . . . . . . . 10  |-  ( ( x  =  { z  e.  { (/) }  |  ph }  /\  y  =  { (/) } )  -> 
y  =  { (/) } )
98, 7difeq12d 3296 . . . . . . . . 9  |-  ( ( x  =  { z  e.  { (/) }  |  ph }  /\  y  =  { (/) } )  -> 
( y  \  x
)  =  ( {
(/) }  \  { z  e.  { (/) }  |  ph } ) )
107, 9uneq12d 3332 . . . . . . . 8  |-  ( ( x  =  { z  e.  { (/) }  |  ph }  /\  y  =  { (/) } )  -> 
( x  u.  (
y  \  x )
)  =  ( { z  e.  { (/) }  |  ph }  u.  ( { (/) }  \  {
z  e.  { (/) }  |  ph } ) ) )
1110, 8eqeq12d 2221 . . . . . . 7  |-  ( ( x  =  { z  e.  { (/) }  |  ph }  /\  y  =  { (/) } )  -> 
( ( x  u.  ( y  \  x
) )  =  y  <-> 
( { z  e. 
{ (/) }  |  ph }  u.  ( { (/)
}  \  { z  e.  { (/) }  |  ph } ) )  =  { (/) } ) )
126, 11bibi12d 235 . . . . . 6  |-  ( ( x  =  { z  e.  { (/) }  |  ph }  /\  y  =  { (/) } )  -> 
( ( x  C_  y 
<->  ( x  u.  (
y  \  x )
)  =  y )  <-> 
( { z  e. 
{ (/) }  |  ph }  C_  { (/) }  <->  ( {
z  e.  { (/) }  |  ph }  u.  ( { (/) }  \  {
z  e.  { (/) }  |  ph } ) )  =  { (/) } ) ) )
13 undifexmid.1 . . . . . 6  |-  ( x 
C_  y  <->  ( x  u.  ( y  \  x
) )  =  y )
145, 4, 12, 13vtocl2 2830 . . . . 5  |-  ( { z  e.  { (/) }  |  ph }  C_  {
(/) }  <->  ( { z  e.  { (/) }  |  ph }  u.  ( {
(/) }  \  { z  e.  { (/) }  |  ph } ) )  =  { (/) } )
153, 14mpbi 145 . . . 4  |-  ( { z  e.  { (/) }  |  ph }  u.  ( { (/) }  \  {
z  e.  { (/) }  |  ph } ) )  =  { (/) }
162, 15eleqtrri 2282 . . 3  |-  (/)  e.  ( { z  e.  { (/)
}  |  ph }  u.  ( { (/) }  \  { z  e.  { (/)
}  |  ph }
) )
17 elun 3318 . . 3  |-  ( (/)  e.  ( { z  e. 
{ (/) }  |  ph }  u.  ( { (/)
}  \  { z  e.  { (/) }  |  ph } ) )  <->  ( (/)  e.  {
z  e.  { (/) }  |  ph }  \/  (/) 
e.  ( { (/) } 
\  { z  e. 
{ (/) }  |  ph } ) ) )
1816, 17mpbi 145 . 2  |-  ( (/)  e.  { z  e.  { (/)
}  |  ph }  \/  (/)  e.  ( {
(/) }  \  { z  e.  { (/) }  |  ph } ) )
19 biidd 172 . . . . . 6  |-  ( z  =  (/)  ->  ( ph  <->  ph ) )
2019elrab3 2934 . . . . 5  |-  ( (/)  e.  { (/) }  ->  ( (/) 
e.  { z  e. 
{ (/) }  |  ph } 
<-> 
ph ) )
212, 20ax-mp 5 . . . 4  |-  ( (/)  e.  { z  e.  { (/)
}  |  ph }  <->  ph )
2221biimpi 120 . . 3  |-  ( (/)  e.  { z  e.  { (/)
}  |  ph }  ->  ph )
23 eldifn 3300 . . . 4  |-  ( (/)  e.  ( { (/) }  \  { z  e.  { (/)
}  |  ph }
)  ->  -.  (/)  e.  {
z  e.  { (/) }  |  ph } )
2423, 21sylnib 678 . . 3  |-  ( (/)  e.  ( { (/) }  \  { z  e.  { (/)
}  |  ph }
)  ->  -.  ph )
2522, 24orim12i 761 . 2  |-  ( (
(/)  e.  { z  e.  { (/) }  |  ph }  \/  (/)  e.  ( { (/) }  \  {
z  e.  { (/) }  |  ph } ) )  ->  ( ph  \/  -.  ph ) )
2618, 25ax-mp 5 1  |-  ( ph  \/  -.  ph )
Colors of variables: wff set class
Syntax hints:   -. wn 3    /\ wa 104    <-> wb 105    \/ wo 710    = wceq 1373    e. wcel 2177   {crab 2489    \ cdif 3167    u. cun 3168    C_ wss 3170   (/)c0 3464   {csn 3638
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2180  ax-ext 2188  ax-sep 4170  ax-nul 4178  ax-pow 4226
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rab 2494  df-v 2775  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-pw 3623  df-sn 3644
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator