| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > undifexmid | Unicode version | ||
| Description: Union of complementary parts producing the whole and excluded middle. Although special cases such as undifss 3572 and undifdcss 7081 are provable, the full statement implies excluded middle as shown here. (Contributed by Jim Kingdon, 16-Jun-2022.) |
| Ref | Expression |
|---|---|
| undifexmid.1 |
|
| Ref | Expression |
|---|---|
| undifexmid |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ex 4210 |
. . . . 5
| |
| 2 | 1 | snid 3697 |
. . . 4
|
| 3 | ssrab2 3309 |
. . . . 5
| |
| 4 | p0ex 4271 |
. . . . . . 7
| |
| 5 | 4 | rabex 4227 |
. . . . . 6
|
| 6 | sseq12 3249 |
. . . . . . 7
| |
| 7 | simpl 109 |
. . . . . . . . 9
| |
| 8 | simpr 110 |
. . . . . . . . . 10
| |
| 9 | 8, 7 | difeq12d 3323 |
. . . . . . . . 9
|
| 10 | 7, 9 | uneq12d 3359 |
. . . . . . . 8
|
| 11 | 10, 8 | eqeq12d 2244 |
. . . . . . 7
|
| 12 | 6, 11 | bibi12d 235 |
. . . . . 6
|
| 13 | undifexmid.1 |
. . . . . 6
| |
| 14 | 5, 4, 12, 13 | vtocl2 2856 |
. . . . 5
|
| 15 | 3, 14 | mpbi 145 |
. . . 4
|
| 16 | 2, 15 | eleqtrri 2305 |
. . 3
|
| 17 | elun 3345 |
. . 3
| |
| 18 | 16, 17 | mpbi 145 |
. 2
|
| 19 | biidd 172 |
. . . . . 6
| |
| 20 | 19 | elrab3 2960 |
. . . . 5
|
| 21 | 2, 20 | ax-mp 5 |
. . . 4
|
| 22 | 21 | biimpi 120 |
. . 3
|
| 23 | eldifn 3327 |
. . . 4
| |
| 24 | 23, 21 | sylnib 680 |
. . 3
|
| 25 | 22, 24 | orim12i 764 |
. 2
|
| 26 | 18, 25 | ax-mp 5 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-nul 4209 ax-pow 4257 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ral 2513 df-rab 2517 df-v 2801 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |