ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  undifexmid Unicode version

Theorem undifexmid 4276
Description: Union of complementary parts producing the whole and excluded middle. Although special cases such as undifss 3572 and undifdcss 7081 are provable, the full statement implies excluded middle as shown here. (Contributed by Jim Kingdon, 16-Jun-2022.)
Hypothesis
Ref Expression
undifexmid.1  |-  ( x 
C_  y  <->  ( x  u.  ( y  \  x
) )  =  y )
Assertion
Ref Expression
undifexmid  |-  ( ph  \/  -.  ph )
Distinct variable group:    ph, x, y

Proof of Theorem undifexmid
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 0ex 4210 . . . . 5  |-  (/)  e.  _V
21snid 3697 . . . 4  |-  (/)  e.  { (/)
}
3 ssrab2 3309 . . . . 5  |-  { z  e.  { (/) }  |  ph }  C_  { (/) }
4 p0ex 4271 . . . . . . 7  |-  { (/) }  e.  _V
54rabex 4227 . . . . . 6  |-  { z  e.  { (/) }  |  ph }  e.  _V
6 sseq12 3249 . . . . . . 7  |-  ( ( x  =  { z  e.  { (/) }  |  ph }  /\  y  =  { (/) } )  -> 
( x  C_  y  <->  { z  e.  { (/) }  |  ph }  C_  {
(/) } ) )
7 simpl 109 . . . . . . . . 9  |-  ( ( x  =  { z  e.  { (/) }  |  ph }  /\  y  =  { (/) } )  ->  x  =  { z  e.  { (/) }  |  ph } )
8 simpr 110 . . . . . . . . . 10  |-  ( ( x  =  { z  e.  { (/) }  |  ph }  /\  y  =  { (/) } )  -> 
y  =  { (/) } )
98, 7difeq12d 3323 . . . . . . . . 9  |-  ( ( x  =  { z  e.  { (/) }  |  ph }  /\  y  =  { (/) } )  -> 
( y  \  x
)  =  ( {
(/) }  \  { z  e.  { (/) }  |  ph } ) )
107, 9uneq12d 3359 . . . . . . . 8  |-  ( ( x  =  { z  e.  { (/) }  |  ph }  /\  y  =  { (/) } )  -> 
( x  u.  (
y  \  x )
)  =  ( { z  e.  { (/) }  |  ph }  u.  ( { (/) }  \  {
z  e.  { (/) }  |  ph } ) ) )
1110, 8eqeq12d 2244 . . . . . . 7  |-  ( ( x  =  { z  e.  { (/) }  |  ph }  /\  y  =  { (/) } )  -> 
( ( x  u.  ( y  \  x
) )  =  y  <-> 
( { z  e. 
{ (/) }  |  ph }  u.  ( { (/)
}  \  { z  e.  { (/) }  |  ph } ) )  =  { (/) } ) )
126, 11bibi12d 235 . . . . . 6  |-  ( ( x  =  { z  e.  { (/) }  |  ph }  /\  y  =  { (/) } )  -> 
( ( x  C_  y 
<->  ( x  u.  (
y  \  x )
)  =  y )  <-> 
( { z  e. 
{ (/) }  |  ph }  C_  { (/) }  <->  ( {
z  e.  { (/) }  |  ph }  u.  ( { (/) }  \  {
z  e.  { (/) }  |  ph } ) )  =  { (/) } ) ) )
13 undifexmid.1 . . . . . 6  |-  ( x 
C_  y  <->  ( x  u.  ( y  \  x
) )  =  y )
145, 4, 12, 13vtocl2 2856 . . . . 5  |-  ( { z  e.  { (/) }  |  ph }  C_  {
(/) }  <->  ( { z  e.  { (/) }  |  ph }  u.  ( {
(/) }  \  { z  e.  { (/) }  |  ph } ) )  =  { (/) } )
153, 14mpbi 145 . . . 4  |-  ( { z  e.  { (/) }  |  ph }  u.  ( { (/) }  \  {
z  e.  { (/) }  |  ph } ) )  =  { (/) }
162, 15eleqtrri 2305 . . 3  |-  (/)  e.  ( { z  e.  { (/)
}  |  ph }  u.  ( { (/) }  \  { z  e.  { (/)
}  |  ph }
) )
17 elun 3345 . . 3  |-  ( (/)  e.  ( { z  e. 
{ (/) }  |  ph }  u.  ( { (/)
}  \  { z  e.  { (/) }  |  ph } ) )  <->  ( (/)  e.  {
z  e.  { (/) }  |  ph }  \/  (/) 
e.  ( { (/) } 
\  { z  e. 
{ (/) }  |  ph } ) ) )
1816, 17mpbi 145 . 2  |-  ( (/)  e.  { z  e.  { (/)
}  |  ph }  \/  (/)  e.  ( {
(/) }  \  { z  e.  { (/) }  |  ph } ) )
19 biidd 172 . . . . . 6  |-  ( z  =  (/)  ->  ( ph  <->  ph ) )
2019elrab3 2960 . . . . 5  |-  ( (/)  e.  { (/) }  ->  ( (/) 
e.  { z  e. 
{ (/) }  |  ph } 
<-> 
ph ) )
212, 20ax-mp 5 . . . 4  |-  ( (/)  e.  { z  e.  { (/)
}  |  ph }  <->  ph )
2221biimpi 120 . . 3  |-  ( (/)  e.  { z  e.  { (/)
}  |  ph }  ->  ph )
23 eldifn 3327 . . . 4  |-  ( (/)  e.  ( { (/) }  \  { z  e.  { (/)
}  |  ph }
)  ->  -.  (/)  e.  {
z  e.  { (/) }  |  ph } )
2423, 21sylnib 680 . . 3  |-  ( (/)  e.  ( { (/) }  \  { z  e.  { (/)
}  |  ph }
)  ->  -.  ph )
2522, 24orim12i 764 . 2  |-  ( (
(/)  e.  { z  e.  { (/) }  |  ph }  \/  (/)  e.  ( { (/) }  \  {
z  e.  { (/) }  |  ph } ) )  ->  ( ph  \/  -.  ph ) )
2618, 25ax-mp 5 1  |-  ( ph  \/  -.  ph )
Colors of variables: wff set class
Syntax hints:   -. wn 3    /\ wa 104    <-> wb 105    \/ wo 713    = wceq 1395    e. wcel 2200   {crab 2512    \ cdif 3194    u. cun 3195    C_ wss 3197   (/)c0 3491   {csn 3666
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-nul 4209  ax-pow 4257
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-rab 2517  df-v 2801  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator