ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  vtocl2ga GIF version

Theorem vtocl2ga 2841
Description: Implicit substitution of 2 classes for 2 setvar variables. (Contributed by NM, 20-Aug-1995.)
Hypotheses
Ref Expression
vtocl2ga.1 (𝑥 = 𝐴 → (𝜑𝜓))
vtocl2ga.2 (𝑦 = 𝐵 → (𝜓𝜒))
vtocl2ga.3 ((𝑥𝐶𝑦𝐷) → 𝜑)
Assertion
Ref Expression
vtocl2ga ((𝐴𝐶𝐵𝐷) → 𝜒)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑦,𝐵   𝑥,𝐶,𝑦   𝑥,𝐷,𝑦   𝜓,𝑥   𝜒,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑦)   𝜒(𝑥)   𝐵(𝑥)

Proof of Theorem vtocl2ga
StepHypRef Expression
1 nfcv 2348 . 2 𝑥𝐴
2 nfcv 2348 . 2 𝑦𝐴
3 nfcv 2348 . 2 𝑦𝐵
4 nfv 1551 . 2 𝑥𝜓
5 nfv 1551 . 2 𝑦𝜒
6 vtocl2ga.1 . 2 (𝑥 = 𝐴 → (𝜑𝜓))
7 vtocl2ga.2 . 2 (𝑦 = 𝐵 → (𝜓𝜒))
8 vtocl2ga.3 . 2 ((𝑥𝐶𝑦𝐷) → 𝜑)
91, 2, 3, 4, 5, 6, 7, 8vtocl2gaf 2840 1 ((𝐴𝐶𝐵𝐷) → 𝜒)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1373  wcel 2176
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-v 2774
This theorem is referenced by:  caovcan  6111  genipv  7622  fsumrelem  11782
  Copyright terms: Public domain W3C validator