ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  vtocl2ga GIF version

Theorem vtocl2ga 2869
Description: Implicit substitution of 2 classes for 2 setvar variables. (Contributed by NM, 20-Aug-1995.)
Hypotheses
Ref Expression
vtocl2ga.1 (𝑥 = 𝐴 → (𝜑𝜓))
vtocl2ga.2 (𝑦 = 𝐵 → (𝜓𝜒))
vtocl2ga.3 ((𝑥𝐶𝑦𝐷) → 𝜑)
Assertion
Ref Expression
vtocl2ga ((𝐴𝐶𝐵𝐷) → 𝜒)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑦,𝐵   𝑥,𝐶,𝑦   𝑥,𝐷,𝑦   𝜓,𝑥   𝜒,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝜓(𝑦)   𝜒(𝑥)   𝐵(𝑥)

Proof of Theorem vtocl2ga
StepHypRef Expression
1 nfcv 2372 . 2 𝑥𝐴
2 nfcv 2372 . 2 𝑦𝐴
3 nfcv 2372 . 2 𝑦𝐵
4 nfv 1574 . 2 𝑥𝜓
5 nfv 1574 . 2 𝑦𝜒
6 vtocl2ga.1 . 2 (𝑥 = 𝐴 → (𝜑𝜓))
7 vtocl2ga.2 . 2 (𝑦 = 𝐵 → (𝜓𝜒))
8 vtocl2ga.3 . 2 ((𝑥𝐶𝑦𝐷) → 𝜑)
91, 2, 3, 4, 5, 6, 7, 8vtocl2gaf 2868 1 ((𝐴𝐶𝐵𝐷) → 𝜒)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1395  wcel 2200
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801
This theorem is referenced by:  vtocl4ga  2873  caovcan  6170  genipv  7696  wrdind  11254  fsumrelem  11982
  Copyright terms: Public domain W3C validator