![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > vtocl2ga | GIF version |
Description: Implicit substitution of 2 classes for 2 setvar variables. (Contributed by NM, 20-Aug-1995.) |
Ref | Expression |
---|---|
vtocl2ga.1 | ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) |
vtocl2ga.2 | ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) |
vtocl2ga.3 | ⊢ ((𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷) → 𝜑) |
Ref | Expression |
---|---|
vtocl2ga | ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2329 | . 2 ⊢ Ⅎ𝑥𝐴 | |
2 | nfcv 2329 | . 2 ⊢ Ⅎ𝑦𝐴 | |
3 | nfcv 2329 | . 2 ⊢ Ⅎ𝑦𝐵 | |
4 | nfv 1538 | . 2 ⊢ Ⅎ𝑥𝜓 | |
5 | nfv 1538 | . 2 ⊢ Ⅎ𝑦𝜒 | |
6 | vtocl2ga.1 | . 2 ⊢ (𝑥 = 𝐴 → (𝜑 ↔ 𝜓)) | |
7 | vtocl2ga.2 | . 2 ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) | |
8 | vtocl2ga.3 | . 2 ⊢ ((𝑥 ∈ 𝐶 ∧ 𝑦 ∈ 𝐷) → 𝜑) | |
9 | 1, 2, 3, 4, 5, 6, 7, 8 | vtocl2gaf 2816 | 1 ⊢ ((𝐴 ∈ 𝐶 ∧ 𝐵 ∈ 𝐷) → 𝜒) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1363 ∈ wcel 2158 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1457 ax-7 1458 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-8 1514 ax-10 1515 ax-11 1516 ax-i12 1517 ax-bndl 1519 ax-4 1520 ax-17 1536 ax-i9 1540 ax-ial 1544 ax-i5r 1545 ax-ext 2169 |
This theorem depends on definitions: df-bi 117 df-tru 1366 df-nf 1471 df-sb 1773 df-clab 2174 df-cleq 2180 df-clel 2183 df-nfc 2318 df-v 2751 |
This theorem is referenced by: caovcan 6052 genipv 7521 fsumrelem 11492 |
Copyright terms: Public domain | W3C validator |