| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > genipv | Unicode version | ||
| Description: Value of general operation (addition or multiplication) on positive reals. (Contributed by Jim Kingon, 3-Oct-2019.) |
| Ref | Expression |
|---|---|
| genp.1 |
|
| genp.2 |
|
| Ref | Expression |
|---|---|
| genipv |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq1 5932 |
. . . 4
| |
| 2 | fveq2 5561 |
. . . . . . 7
| |
| 3 | 2 | rexeqdv 2700 |
. . . . . 6
|
| 4 | 3 | rabbidv 2752 |
. . . . 5
|
| 5 | fveq2 5561 |
. . . . . . 7
| |
| 6 | 5 | rexeqdv 2700 |
. . . . . 6
|
| 7 | 6 | rabbidv 2752 |
. . . . 5
|
| 8 | 4, 7 | opeq12d 3817 |
. . . 4
|
| 9 | 1, 8 | eqeq12d 2211 |
. . 3
|
| 10 | oveq2 5933 |
. . . 4
| |
| 11 | fveq2 5561 |
. . . . . . . 8
| |
| 12 | 11 | rexeqdv 2700 |
. . . . . . 7
|
| 13 | 12 | rexbidv 2498 |
. . . . . 6
|
| 14 | 13 | rabbidv 2752 |
. . . . 5
|
| 15 | fveq2 5561 |
. . . . . . . 8
| |
| 16 | 15 | rexeqdv 2700 |
. . . . . . 7
|
| 17 | 16 | rexbidv 2498 |
. . . . . 6
|
| 18 | 17 | rabbidv 2752 |
. . . . 5
|
| 19 | 14, 18 | opeq12d 3817 |
. . . 4
|
| 20 | 10, 19 | eqeq12d 2211 |
. . 3
|
| 21 | nqex 7447 |
. . . . . . 7
| |
| 22 | 21 | a1i 9 |
. . . . . 6
|
| 23 | rabssab 3272 |
. . . . . . 7
| |
| 24 | prop 7559 |
. . . . . . . . . . . 12
| |
| 25 | elprnql 7565 |
. . . . . . . . . . . 12
| |
| 26 | 24, 25 | sylan 283 |
. . . . . . . . . . 11
|
| 27 | prop 7559 |
. . . . . . . . . . . 12
| |
| 28 | elprnql 7565 |
. . . . . . . . . . . 12
| |
| 29 | 27, 28 | sylan 283 |
. . . . . . . . . . 11
|
| 30 | genp.2 |
. . . . . . . . . . . 12
| |
| 31 | eleq1 2259 |
. . . . . . . . . . . 12
| |
| 32 | 30, 31 | syl5ibrcom 157 |
. . . . . . . . . . 11
|
| 33 | 26, 29, 32 | syl2an 289 |
. . . . . . . . . 10
|
| 34 | 33 | an4s 588 |
. . . . . . . . 9
|
| 35 | 34 | rexlimdvva 2622 |
. . . . . . . 8
|
| 36 | 35 | abssdv 3258 |
. . . . . . 7
|
| 37 | 23, 36 | sstrid 3195 |
. . . . . 6
|
| 38 | 22, 37 | ssexd 4174 |
. . . . 5
|
| 39 | rabssab 3272 |
. . . . . . 7
| |
| 40 | elprnqu 7566 |
. . . . . . . . . . . 12
| |
| 41 | 24, 40 | sylan 283 |
. . . . . . . . . . 11
|
| 42 | elprnqu 7566 |
. . . . . . . . . . . 12
| |
| 43 | 27, 42 | sylan 283 |
. . . . . . . . . . 11
|
| 44 | 41, 43, 32 | syl2an 289 |
. . . . . . . . . 10
|
| 45 | 44 | an4s 588 |
. . . . . . . . 9
|
| 46 | 45 | rexlimdvva 2622 |
. . . . . . . 8
|
| 47 | 46 | abssdv 3258 |
. . . . . . 7
|
| 48 | 39, 47 | sstrid 3195 |
. . . . . 6
|
| 49 | 22, 48 | ssexd 4174 |
. . . . 5
|
| 50 | opelxp 4694 |
. . . . 5
| |
| 51 | 38, 49, 50 | sylanbrc 417 |
. . . 4
|
| 52 | fveq2 5561 |
. . . . . . . 8
| |
| 53 | 52 | rexeqdv 2700 |
. . . . . . 7
|
| 54 | 53 | rabbidv 2752 |
. . . . . 6
|
| 55 | fveq2 5561 |
. . . . . . . 8
| |
| 56 | 55 | rexeqdv 2700 |
. . . . . . 7
|
| 57 | 56 | rabbidv 2752 |
. . . . . 6
|
| 58 | 54, 57 | opeq12d 3817 |
. . . . 5
|
| 59 | fveq2 5561 |
. . . . . . . . 9
| |
| 60 | 59 | rexeqdv 2700 |
. . . . . . . 8
|
| 61 | 60 | rexbidv 2498 |
. . . . . . 7
|
| 62 | 61 | rabbidv 2752 |
. . . . . 6
|
| 63 | fveq2 5561 |
. . . . . . . . 9
| |
| 64 | 63 | rexeqdv 2700 |
. . . . . . . 8
|
| 65 | 64 | rexbidv 2498 |
. . . . . . 7
|
| 66 | 65 | rabbidv 2752 |
. . . . . 6
|
| 67 | 62, 66 | opeq12d 3817 |
. . . . 5
|
| 68 | genp.1 |
. . . . . 6
| |
| 69 | 68 | genpdf 7592 |
. . . . 5
|
| 70 | 58, 67, 69 | ovmpog 6061 |
. . . 4
|
| 71 | 51, 70 | mpd3an3 1349 |
. . 3
|
| 72 | 9, 20, 71 | vtocl2ga 2832 |
. 2
|
| 73 | eqeq1 2203 |
. . . . . 6
| |
| 74 | 73 | 2rexbidv 2522 |
. . . . 5
|
| 75 | oveq1 5932 |
. . . . . . 7
| |
| 76 | 75 | eqeq2d 2208 |
. . . . . 6
|
| 77 | oveq2 5933 |
. . . . . . 7
| |
| 78 | 77 | eqeq2d 2208 |
. . . . . 6
|
| 79 | 76, 78 | cbvrex2v 2743 |
. . . . 5
|
| 80 | 74, 79 | bitrdi 196 |
. . . 4
|
| 81 | 80 | cbvrabv 2762 |
. . 3
|
| 82 | 73 | 2rexbidv 2522 |
. . . . 5
|
| 83 | 76, 78 | cbvrex2v 2743 |
. . . . 5
|
| 84 | 82, 83 | bitrdi 196 |
. . . 4
|
| 85 | 84 | cbvrabv 2762 |
. . 3
|
| 86 | 81, 85 | opeq12i 3814 |
. 2
|
| 87 | 72, 86 | eqtrdi 2245 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4149 ax-sep 4152 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-iinf 4625 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-id 4329 df-iom 4628 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-ov 5928 df-oprab 5929 df-mpo 5930 df-1st 6207 df-2nd 6208 df-qs 6607 df-ni 7388 df-nqqs 7432 df-inp 7550 |
| This theorem is referenced by: genpelvl 7596 genpelvu 7597 plpvlu 7622 mpvlu 7623 |
| Copyright terms: Public domain | W3C validator |