| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > genipv | Unicode version | ||
| Description: Value of general operation (addition or multiplication) on positive reals. (Contributed by Jim Kingon, 3-Oct-2019.) |
| Ref | Expression |
|---|---|
| genp.1 |
|
| genp.2 |
|
| Ref | Expression |
|---|---|
| genipv |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq1 5969 |
. . . 4
| |
| 2 | fveq2 5594 |
. . . . . . 7
| |
| 3 | 2 | rexeqdv 2710 |
. . . . . 6
|
| 4 | 3 | rabbidv 2762 |
. . . . 5
|
| 5 | fveq2 5594 |
. . . . . . 7
| |
| 6 | 5 | rexeqdv 2710 |
. . . . . 6
|
| 7 | 6 | rabbidv 2762 |
. . . . 5
|
| 8 | 4, 7 | opeq12d 3836 |
. . . 4
|
| 9 | 1, 8 | eqeq12d 2221 |
. . 3
|
| 10 | oveq2 5970 |
. . . 4
| |
| 11 | fveq2 5594 |
. . . . . . . 8
| |
| 12 | 11 | rexeqdv 2710 |
. . . . . . 7
|
| 13 | 12 | rexbidv 2508 |
. . . . . 6
|
| 14 | 13 | rabbidv 2762 |
. . . . 5
|
| 15 | fveq2 5594 |
. . . . . . . 8
| |
| 16 | 15 | rexeqdv 2710 |
. . . . . . 7
|
| 17 | 16 | rexbidv 2508 |
. . . . . 6
|
| 18 | 17 | rabbidv 2762 |
. . . . 5
|
| 19 | 14, 18 | opeq12d 3836 |
. . . 4
|
| 20 | 10, 19 | eqeq12d 2221 |
. . 3
|
| 21 | nqex 7506 |
. . . . . . 7
| |
| 22 | 21 | a1i 9 |
. . . . . 6
|
| 23 | rabssab 3285 |
. . . . . . 7
| |
| 24 | prop 7618 |
. . . . . . . . . . . 12
| |
| 25 | elprnql 7624 |
. . . . . . . . . . . 12
| |
| 26 | 24, 25 | sylan 283 |
. . . . . . . . . . 11
|
| 27 | prop 7618 |
. . . . . . . . . . . 12
| |
| 28 | elprnql 7624 |
. . . . . . . . . . . 12
| |
| 29 | 27, 28 | sylan 283 |
. . . . . . . . . . 11
|
| 30 | genp.2 |
. . . . . . . . . . . 12
| |
| 31 | eleq1 2269 |
. . . . . . . . . . . 12
| |
| 32 | 30, 31 | syl5ibrcom 157 |
. . . . . . . . . . 11
|
| 33 | 26, 29, 32 | syl2an 289 |
. . . . . . . . . 10
|
| 34 | 33 | an4s 588 |
. . . . . . . . 9
|
| 35 | 34 | rexlimdvva 2632 |
. . . . . . . 8
|
| 36 | 35 | abssdv 3271 |
. . . . . . 7
|
| 37 | 23, 36 | sstrid 3208 |
. . . . . 6
|
| 38 | 22, 37 | ssexd 4195 |
. . . . 5
|
| 39 | rabssab 3285 |
. . . . . . 7
| |
| 40 | elprnqu 7625 |
. . . . . . . . . . . 12
| |
| 41 | 24, 40 | sylan 283 |
. . . . . . . . . . 11
|
| 42 | elprnqu 7625 |
. . . . . . . . . . . 12
| |
| 43 | 27, 42 | sylan 283 |
. . . . . . . . . . 11
|
| 44 | 41, 43, 32 | syl2an 289 |
. . . . . . . . . 10
|
| 45 | 44 | an4s 588 |
. . . . . . . . 9
|
| 46 | 45 | rexlimdvva 2632 |
. . . . . . . 8
|
| 47 | 46 | abssdv 3271 |
. . . . . . 7
|
| 48 | 39, 47 | sstrid 3208 |
. . . . . 6
|
| 49 | 22, 48 | ssexd 4195 |
. . . . 5
|
| 50 | opelxp 4718 |
. . . . 5
| |
| 51 | 38, 49, 50 | sylanbrc 417 |
. . . 4
|
| 52 | fveq2 5594 |
. . . . . . . 8
| |
| 53 | 52 | rexeqdv 2710 |
. . . . . . 7
|
| 54 | 53 | rabbidv 2762 |
. . . . . 6
|
| 55 | fveq2 5594 |
. . . . . . . 8
| |
| 56 | 55 | rexeqdv 2710 |
. . . . . . 7
|
| 57 | 56 | rabbidv 2762 |
. . . . . 6
|
| 58 | 54, 57 | opeq12d 3836 |
. . . . 5
|
| 59 | fveq2 5594 |
. . . . . . . . 9
| |
| 60 | 59 | rexeqdv 2710 |
. . . . . . . 8
|
| 61 | 60 | rexbidv 2508 |
. . . . . . 7
|
| 62 | 61 | rabbidv 2762 |
. . . . . 6
|
| 63 | fveq2 5594 |
. . . . . . . . 9
| |
| 64 | 63 | rexeqdv 2710 |
. . . . . . . 8
|
| 65 | 64 | rexbidv 2508 |
. . . . . . 7
|
| 66 | 65 | rabbidv 2762 |
. . . . . 6
|
| 67 | 62, 66 | opeq12d 3836 |
. . . . 5
|
| 68 | genp.1 |
. . . . . 6
| |
| 69 | 68 | genpdf 7651 |
. . . . 5
|
| 70 | 58, 67, 69 | ovmpog 6098 |
. . . 4
|
| 71 | 51, 70 | mpd3an3 1351 |
. . 3
|
| 72 | 9, 20, 71 | vtocl2ga 2843 |
. 2
|
| 73 | eqeq1 2213 |
. . . . . 6
| |
| 74 | 73 | 2rexbidv 2532 |
. . . . 5
|
| 75 | oveq1 5969 |
. . . . . . 7
| |
| 76 | 75 | eqeq2d 2218 |
. . . . . 6
|
| 77 | oveq2 5970 |
. . . . . . 7
| |
| 78 | 77 | eqeq2d 2218 |
. . . . . 6
|
| 79 | 76, 78 | cbvrex2v 2753 |
. . . . 5
|
| 80 | 74, 79 | bitrdi 196 |
. . . 4
|
| 81 | 80 | cbvrabv 2772 |
. . 3
|
| 82 | 73 | 2rexbidv 2532 |
. . . . 5
|
| 83 | 76, 78 | cbvrex2v 2753 |
. . . . 5
|
| 84 | 82, 83 | bitrdi 196 |
. . . 4
|
| 85 | 84 | cbvrabv 2772 |
. . 3
|
| 86 | 81, 85 | opeq12i 3833 |
. 2
|
| 87 | 72, 86 | eqtrdi 2255 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4170 ax-sep 4173 ax-pow 4229 ax-pr 4264 ax-un 4493 ax-setind 4598 ax-iinf 4649 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-ral 2490 df-rex 2491 df-reu 2492 df-rab 2494 df-v 2775 df-sbc 3003 df-csb 3098 df-dif 3172 df-un 3174 df-in 3176 df-ss 3183 df-pw 3623 df-sn 3644 df-pr 3645 df-op 3647 df-uni 3860 df-int 3895 df-iun 3938 df-br 4055 df-opab 4117 df-mpt 4118 df-id 4353 df-iom 4652 df-xp 4694 df-rel 4695 df-cnv 4696 df-co 4697 df-dm 4698 df-rn 4699 df-res 4700 df-ima 4701 df-iota 5246 df-fun 5287 df-fn 5288 df-f 5289 df-f1 5290 df-fo 5291 df-f1o 5292 df-fv 5293 df-ov 5965 df-oprab 5966 df-mpo 5967 df-1st 6244 df-2nd 6245 df-qs 6644 df-ni 7447 df-nqqs 7491 df-inp 7609 |
| This theorem is referenced by: genpelvl 7655 genpelvu 7656 plpvlu 7681 mpvlu 7682 |
| Copyright terms: Public domain | W3C validator |