Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > genipv | Unicode version |
Description: Value of general operation (addition or multiplication) on positive reals. (Contributed by Jim Kingon, 3-Oct-2019.) |
Ref | Expression |
---|---|
genp.1 | |
genp.2 |
Ref | Expression |
---|---|
genipv |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq1 5849 | . . . 4 | |
2 | fveq2 5486 | . . . . . . 7 | |
3 | 2 | rexeqdv 2668 | . . . . . 6 |
4 | 3 | rabbidv 2715 | . . . . 5 |
5 | fveq2 5486 | . . . . . . 7 | |
6 | 5 | rexeqdv 2668 | . . . . . 6 |
7 | 6 | rabbidv 2715 | . . . . 5 |
8 | 4, 7 | opeq12d 3766 | . . . 4 |
9 | 1, 8 | eqeq12d 2180 | . . 3 |
10 | oveq2 5850 | . . . 4 | |
11 | fveq2 5486 | . . . . . . . 8 | |
12 | 11 | rexeqdv 2668 | . . . . . . 7 |
13 | 12 | rexbidv 2467 | . . . . . 6 |
14 | 13 | rabbidv 2715 | . . . . 5 |
15 | fveq2 5486 | . . . . . . . 8 | |
16 | 15 | rexeqdv 2668 | . . . . . . 7 |
17 | 16 | rexbidv 2467 | . . . . . 6 |
18 | 17 | rabbidv 2715 | . . . . 5 |
19 | 14, 18 | opeq12d 3766 | . . . 4 |
20 | 10, 19 | eqeq12d 2180 | . . 3 |
21 | nqex 7304 | . . . . . . 7 | |
22 | 21 | a1i 9 | . . . . . 6 |
23 | rabssab 3230 | . . . . . . 7 | |
24 | prop 7416 | . . . . . . . . . . . 12 | |
25 | elprnql 7422 | . . . . . . . . . . . 12 | |
26 | 24, 25 | sylan 281 | . . . . . . . . . . 11 |
27 | prop 7416 | . . . . . . . . . . . 12 | |
28 | elprnql 7422 | . . . . . . . . . . . 12 | |
29 | 27, 28 | sylan 281 | . . . . . . . . . . 11 |
30 | genp.2 | . . . . . . . . . . . 12 | |
31 | eleq1 2229 | . . . . . . . . . . . 12 | |
32 | 30, 31 | syl5ibrcom 156 | . . . . . . . . . . 11 |
33 | 26, 29, 32 | syl2an 287 | . . . . . . . . . 10 |
34 | 33 | an4s 578 | . . . . . . . . 9 |
35 | 34 | rexlimdvva 2591 | . . . . . . . 8 |
36 | 35 | abssdv 3216 | . . . . . . 7 |
37 | 23, 36 | sstrid 3153 | . . . . . 6 |
38 | 22, 37 | ssexd 4122 | . . . . 5 |
39 | rabssab 3230 | . . . . . . 7 | |
40 | elprnqu 7423 | . . . . . . . . . . . 12 | |
41 | 24, 40 | sylan 281 | . . . . . . . . . . 11 |
42 | elprnqu 7423 | . . . . . . . . . . . 12 | |
43 | 27, 42 | sylan 281 | . . . . . . . . . . 11 |
44 | 41, 43, 32 | syl2an 287 | . . . . . . . . . 10 |
45 | 44 | an4s 578 | . . . . . . . . 9 |
46 | 45 | rexlimdvva 2591 | . . . . . . . 8 |
47 | 46 | abssdv 3216 | . . . . . . 7 |
48 | 39, 47 | sstrid 3153 | . . . . . 6 |
49 | 22, 48 | ssexd 4122 | . . . . 5 |
50 | opelxp 4634 | . . . . 5 | |
51 | 38, 49, 50 | sylanbrc 414 | . . . 4 |
52 | fveq2 5486 | . . . . . . . 8 | |
53 | 52 | rexeqdv 2668 | . . . . . . 7 |
54 | 53 | rabbidv 2715 | . . . . . 6 |
55 | fveq2 5486 | . . . . . . . 8 | |
56 | 55 | rexeqdv 2668 | . . . . . . 7 |
57 | 56 | rabbidv 2715 | . . . . . 6 |
58 | 54, 57 | opeq12d 3766 | . . . . 5 |
59 | fveq2 5486 | . . . . . . . . 9 | |
60 | 59 | rexeqdv 2668 | . . . . . . . 8 |
61 | 60 | rexbidv 2467 | . . . . . . 7 |
62 | 61 | rabbidv 2715 | . . . . . 6 |
63 | fveq2 5486 | . . . . . . . . 9 | |
64 | 63 | rexeqdv 2668 | . . . . . . . 8 |
65 | 64 | rexbidv 2467 | . . . . . . 7 |
66 | 65 | rabbidv 2715 | . . . . . 6 |
67 | 62, 66 | opeq12d 3766 | . . . . 5 |
68 | genp.1 | . . . . . 6 | |
69 | 68 | genpdf 7449 | . . . . 5 |
70 | 58, 67, 69 | ovmpog 5976 | . . . 4 |
71 | 51, 70 | mpd3an3 1328 | . . 3 |
72 | 9, 20, 71 | vtocl2ga 2794 | . 2 |
73 | eqeq1 2172 | . . . . . 6 | |
74 | 73 | 2rexbidv 2491 | . . . . 5 |
75 | oveq1 5849 | . . . . . . 7 | |
76 | 75 | eqeq2d 2177 | . . . . . 6 |
77 | oveq2 5850 | . . . . . . 7 | |
78 | 77 | eqeq2d 2177 | . . . . . 6 |
79 | 76, 78 | cbvrex2v 2706 | . . . . 5 |
80 | 74, 79 | bitrdi 195 | . . . 4 |
81 | 80 | cbvrabv 2725 | . . 3 |
82 | 73 | 2rexbidv 2491 | . . . . 5 |
83 | 76, 78 | cbvrex2v 2706 | . . . . 5 |
84 | 82, 83 | bitrdi 195 | . . . 4 |
85 | 84 | cbvrabv 2725 | . . 3 |
86 | 81, 85 | opeq12i 3763 | . 2 |
87 | 72, 86 | eqtrdi 2215 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 w3a 968 wceq 1343 wcel 2136 cab 2151 wrex 2445 crab 2448 cvv 2726 cop 3579 cxp 4602 cfv 5188 (class class class)co 5842 cmpo 5844 c1st 6106 c2nd 6107 cnq 7221 cnp 7232 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-coll 4097 ax-sep 4100 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-iinf 4565 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-id 4271 df-iom 4568 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-ov 5845 df-oprab 5846 df-mpo 5847 df-1st 6108 df-2nd 6109 df-qs 6507 df-ni 7245 df-nqqs 7289 df-inp 7407 |
This theorem is referenced by: genpelvl 7453 genpelvu 7454 plpvlu 7479 mpvlu 7480 |
Copyright terms: Public domain | W3C validator |