| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > genipv | Unicode version | ||
| Description: Value of general operation (addition or multiplication) on positive reals. (Contributed by Jim Kingon, 3-Oct-2019.) | 
| Ref | Expression | 
|---|---|
| genp.1 | 
 | 
| genp.2 | 
 | 
| Ref | Expression | 
|---|---|
| genipv | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | oveq1 5929 | 
. . . 4
 | |
| 2 | fveq2 5558 | 
. . . . . . 7
 | |
| 3 | 2 | rexeqdv 2700 | 
. . . . . 6
 | 
| 4 | 3 | rabbidv 2752 | 
. . . . 5
 | 
| 5 | fveq2 5558 | 
. . . . . . 7
 | |
| 6 | 5 | rexeqdv 2700 | 
. . . . . 6
 | 
| 7 | 6 | rabbidv 2752 | 
. . . . 5
 | 
| 8 | 4, 7 | opeq12d 3816 | 
. . . 4
 | 
| 9 | 1, 8 | eqeq12d 2211 | 
. . 3
 | 
| 10 | oveq2 5930 | 
. . . 4
 | |
| 11 | fveq2 5558 | 
. . . . . . . 8
 | |
| 12 | 11 | rexeqdv 2700 | 
. . . . . . 7
 | 
| 13 | 12 | rexbidv 2498 | 
. . . . . 6
 | 
| 14 | 13 | rabbidv 2752 | 
. . . . 5
 | 
| 15 | fveq2 5558 | 
. . . . . . . 8
 | |
| 16 | 15 | rexeqdv 2700 | 
. . . . . . 7
 | 
| 17 | 16 | rexbidv 2498 | 
. . . . . 6
 | 
| 18 | 17 | rabbidv 2752 | 
. . . . 5
 | 
| 19 | 14, 18 | opeq12d 3816 | 
. . . 4
 | 
| 20 | 10, 19 | eqeq12d 2211 | 
. . 3
 | 
| 21 | nqex 7430 | 
. . . . . . 7
 | |
| 22 | 21 | a1i 9 | 
. . . . . 6
 | 
| 23 | rabssab 3271 | 
. . . . . . 7
 | |
| 24 | prop 7542 | 
. . . . . . . . . . . 12
 | |
| 25 | elprnql 7548 | 
. . . . . . . . . . . 12
 | |
| 26 | 24, 25 | sylan 283 | 
. . . . . . . . . . 11
 | 
| 27 | prop 7542 | 
. . . . . . . . . . . 12
 | |
| 28 | elprnql 7548 | 
. . . . . . . . . . . 12
 | |
| 29 | 27, 28 | sylan 283 | 
. . . . . . . . . . 11
 | 
| 30 | genp.2 | 
. . . . . . . . . . . 12
 | |
| 31 | eleq1 2259 | 
. . . . . . . . . . . 12
 | |
| 32 | 30, 31 | syl5ibrcom 157 | 
. . . . . . . . . . 11
 | 
| 33 | 26, 29, 32 | syl2an 289 | 
. . . . . . . . . 10
 | 
| 34 | 33 | an4s 588 | 
. . . . . . . . 9
 | 
| 35 | 34 | rexlimdvva 2622 | 
. . . . . . . 8
 | 
| 36 | 35 | abssdv 3257 | 
. . . . . . 7
 | 
| 37 | 23, 36 | sstrid 3194 | 
. . . . . 6
 | 
| 38 | 22, 37 | ssexd 4173 | 
. . . . 5
 | 
| 39 | rabssab 3271 | 
. . . . . . 7
 | |
| 40 | elprnqu 7549 | 
. . . . . . . . . . . 12
 | |
| 41 | 24, 40 | sylan 283 | 
. . . . . . . . . . 11
 | 
| 42 | elprnqu 7549 | 
. . . . . . . . . . . 12
 | |
| 43 | 27, 42 | sylan 283 | 
. . . . . . . . . . 11
 | 
| 44 | 41, 43, 32 | syl2an 289 | 
. . . . . . . . . 10
 | 
| 45 | 44 | an4s 588 | 
. . . . . . . . 9
 | 
| 46 | 45 | rexlimdvva 2622 | 
. . . . . . . 8
 | 
| 47 | 46 | abssdv 3257 | 
. . . . . . 7
 | 
| 48 | 39, 47 | sstrid 3194 | 
. . . . . 6
 | 
| 49 | 22, 48 | ssexd 4173 | 
. . . . 5
 | 
| 50 | opelxp 4693 | 
. . . . 5
 | |
| 51 | 38, 49, 50 | sylanbrc 417 | 
. . . 4
 | 
| 52 | fveq2 5558 | 
. . . . . . . 8
 | |
| 53 | 52 | rexeqdv 2700 | 
. . . . . . 7
 | 
| 54 | 53 | rabbidv 2752 | 
. . . . . 6
 | 
| 55 | fveq2 5558 | 
. . . . . . . 8
 | |
| 56 | 55 | rexeqdv 2700 | 
. . . . . . 7
 | 
| 57 | 56 | rabbidv 2752 | 
. . . . . 6
 | 
| 58 | 54, 57 | opeq12d 3816 | 
. . . . 5
 | 
| 59 | fveq2 5558 | 
. . . . . . . . 9
 | |
| 60 | 59 | rexeqdv 2700 | 
. . . . . . . 8
 | 
| 61 | 60 | rexbidv 2498 | 
. . . . . . 7
 | 
| 62 | 61 | rabbidv 2752 | 
. . . . . 6
 | 
| 63 | fveq2 5558 | 
. . . . . . . . 9
 | |
| 64 | 63 | rexeqdv 2700 | 
. . . . . . . 8
 | 
| 65 | 64 | rexbidv 2498 | 
. . . . . . 7
 | 
| 66 | 65 | rabbidv 2752 | 
. . . . . 6
 | 
| 67 | 62, 66 | opeq12d 3816 | 
. . . . 5
 | 
| 68 | genp.1 | 
. . . . . 6
 | |
| 69 | 68 | genpdf 7575 | 
. . . . 5
 | 
| 70 | 58, 67, 69 | ovmpog 6057 | 
. . . 4
 | 
| 71 | 51, 70 | mpd3an3 1349 | 
. . 3
 | 
| 72 | 9, 20, 71 | vtocl2ga 2832 | 
. 2
 | 
| 73 | eqeq1 2203 | 
. . . . . 6
 | |
| 74 | 73 | 2rexbidv 2522 | 
. . . . 5
 | 
| 75 | oveq1 5929 | 
. . . . . . 7
 | |
| 76 | 75 | eqeq2d 2208 | 
. . . . . 6
 | 
| 77 | oveq2 5930 | 
. . . . . . 7
 | |
| 78 | 77 | eqeq2d 2208 | 
. . . . . 6
 | 
| 79 | 76, 78 | cbvrex2v 2743 | 
. . . . 5
 | 
| 80 | 74, 79 | bitrdi 196 | 
. . . 4
 | 
| 81 | 80 | cbvrabv 2762 | 
. . 3
 | 
| 82 | 73 | 2rexbidv 2522 | 
. . . . 5
 | 
| 83 | 76, 78 | cbvrex2v 2743 | 
. . . . 5
 | 
| 84 | 82, 83 | bitrdi 196 | 
. . . 4
 | 
| 85 | 84 | cbvrabv 2762 | 
. . 3
 | 
| 86 | 81, 85 | opeq12i 3813 | 
. 2
 | 
| 87 | 72, 86 | eqtrdi 2245 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4148 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-iinf 4624 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-iun 3918 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-iom 4627 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-ov 5925 df-oprab 5926 df-mpo 5927 df-1st 6198 df-2nd 6199 df-qs 6598 df-ni 7371 df-nqqs 7415 df-inp 7533 | 
| This theorem is referenced by: genpelvl 7579 genpelvu 7580 plpvlu 7605 mpvlu 7606 | 
| Copyright terms: Public domain | W3C validator |