ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  vtocl2gaf Unicode version

Theorem vtocl2gaf 2840
Description: Implicit substitution of 2 classes for 2 setvar variables. (Contributed by NM, 10-Aug-2013.)
Hypotheses
Ref Expression
vtocl2gaf.a  |-  F/_ x A
vtocl2gaf.b  |-  F/_ y A
vtocl2gaf.c  |-  F/_ y B
vtocl2gaf.1  |-  F/ x ps
vtocl2gaf.2  |-  F/ y ch
vtocl2gaf.3  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
vtocl2gaf.4  |-  ( y  =  B  ->  ( ps 
<->  ch ) )
vtocl2gaf.5  |-  ( ( x  e.  C  /\  y  e.  D )  ->  ph )
Assertion
Ref Expression
vtocl2gaf  |-  ( ( A  e.  C  /\  B  e.  D )  ->  ch )
Distinct variable groups:    x, y, C   
x, D, y
Allowed substitution hints:    ph( x, y)    ps( x, y)    ch( x, y)    A( x, y)    B( x, y)

Proof of Theorem vtocl2gaf
StepHypRef Expression
1 vtocl2gaf.a . . 3  |-  F/_ x A
2 vtocl2gaf.b . . 3  |-  F/_ y A
3 vtocl2gaf.c . . 3  |-  F/_ y B
41nfel1 2359 . . . . 5  |-  F/ x  A  e.  C
5 nfv 1551 . . . . 5  |-  F/ x  y  e.  D
64, 5nfan 1588 . . . 4  |-  F/ x
( A  e.  C  /\  y  e.  D
)
7 vtocl2gaf.1 . . . 4  |-  F/ x ps
86, 7nfim 1595 . . 3  |-  F/ x
( ( A  e.  C  /\  y  e.  D )  ->  ps )
92nfel1 2359 . . . . 5  |-  F/ y  A  e.  C
103nfel1 2359 . . . . 5  |-  F/ y  B  e.  D
119, 10nfan 1588 . . . 4  |-  F/ y ( A  e.  C  /\  B  e.  D
)
12 vtocl2gaf.2 . . . 4  |-  F/ y ch
1311, 12nfim 1595 . . 3  |-  F/ y ( ( A  e.  C  /\  B  e.  D )  ->  ch )
14 eleq1 2268 . . . . 5  |-  ( x  =  A  ->  (
x  e.  C  <->  A  e.  C ) )
1514anbi1d 465 . . . 4  |-  ( x  =  A  ->  (
( x  e.  C  /\  y  e.  D
)  <->  ( A  e.  C  /\  y  e.  D ) ) )
16 vtocl2gaf.3 . . . 4  |-  ( x  =  A  ->  ( ph 
<->  ps ) )
1715, 16imbi12d 234 . . 3  |-  ( x  =  A  ->  (
( ( x  e.  C  /\  y  e.  D )  ->  ph )  <->  ( ( A  e.  C  /\  y  e.  D
)  ->  ps )
) )
18 eleq1 2268 . . . . 5  |-  ( y  =  B  ->  (
y  e.  D  <->  B  e.  D ) )
1918anbi2d 464 . . . 4  |-  ( y  =  B  ->  (
( A  e.  C  /\  y  e.  D
)  <->  ( A  e.  C  /\  B  e.  D ) ) )
20 vtocl2gaf.4 . . . 4  |-  ( y  =  B  ->  ( ps 
<->  ch ) )
2119, 20imbi12d 234 . . 3  |-  ( y  =  B  ->  (
( ( A  e.  C  /\  y  e.  D )  ->  ps ) 
<->  ( ( A  e.  C  /\  B  e.  D )  ->  ch ) ) )
22 vtocl2gaf.5 . . 3  |-  ( ( x  e.  C  /\  y  e.  D )  ->  ph )
231, 2, 3, 8, 13, 17, 21, 22vtocl2gf 2835 . 2  |-  ( ( A  e.  C  /\  B  e.  D )  ->  ( ( A  e.  C  /\  B  e.  D )  ->  ch ) )
2423pm2.43i 49 1  |-  ( ( A  e.  C  /\  B  e.  D )  ->  ch )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373   F/wnf 1483    e. wcel 2176   F/_wnfc 2335
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-v 2774
This theorem is referenced by:  vtocl2ga  2841  ovmpos  6069  ov2gf  6070  ovi3  6083  cnmptcom  14770
  Copyright terms: Public domain W3C validator