| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fsumrelem | Unicode version | ||
| Description: Lemma for fsumre 11816, fsumim 11817, and fsumcj 11818. (Contributed by Mario Carneiro, 25-Jul-2014.) (Revised by Mario Carneiro, 27-Dec-2014.) |
| Ref | Expression |
|---|---|
| fsumre.1 |
|
| fsumre.2 |
|
| fsumrelem.3 |
|
| fsumrelem.4 |
|
| Ref | Expression |
|---|---|
| fsumrelem |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sumeq1 11699 |
. . . 4
| |
| 2 | 1 | fveq2d 5582 |
. . 3
|
| 3 | sumeq1 11699 |
. . 3
| |
| 4 | 2, 3 | eqeq12d 2220 |
. 2
|
| 5 | sumeq1 11699 |
. . . 4
| |
| 6 | 5 | fveq2d 5582 |
. . 3
|
| 7 | sumeq1 11699 |
. . 3
| |
| 8 | 6, 7 | eqeq12d 2220 |
. 2
|
| 9 | sumeq1 11699 |
. . . 4
| |
| 10 | 9 | fveq2d 5582 |
. . 3
|
| 11 | sumeq1 11699 |
. . 3
| |
| 12 | 10, 11 | eqeq12d 2220 |
. 2
|
| 13 | sumeq1 11699 |
. . . 4
| |
| 14 | 13 | fveq2d 5582 |
. . 3
|
| 15 | sumeq1 11699 |
. . 3
| |
| 16 | 14, 15 | eqeq12d 2220 |
. 2
|
| 17 | 0cn 8066 |
. . . . . . . 8
| |
| 18 | fsumrelem.3 |
. . . . . . . . 9
| |
| 19 | 18 | ffvelcdmi 5716 |
. . . . . . . 8
|
| 20 | 17, 19 | ax-mp 5 |
. . . . . . 7
|
| 21 | 20 | addridi 8216 |
. . . . . 6
|
| 22 | fvoveq1 5969 |
. . . . . . . . 9
| |
| 23 | fveq2 5578 |
. . . . . . . . . 10
| |
| 24 | 23 | oveq1d 5961 |
. . . . . . . . 9
|
| 25 | 22, 24 | eqeq12d 2220 |
. . . . . . . 8
|
| 26 | oveq2 5954 |
. . . . . . . . . . 11
| |
| 27 | 00id 8215 |
. . . . . . . . . . 11
| |
| 28 | 26, 27 | eqtrdi 2254 |
. . . . . . . . . 10
|
| 29 | 28 | fveq2d 5582 |
. . . . . . . . 9
|
| 30 | fveq2 5578 |
. . . . . . . . . 10
| |
| 31 | 30 | oveq2d 5962 |
. . . . . . . . 9
|
| 32 | 29, 31 | eqeq12d 2220 |
. . . . . . . 8
|
| 33 | fsumrelem.4 |
. . . . . . . 8
| |
| 34 | 25, 32, 33 | vtocl2ga 2841 |
. . . . . . 7
|
| 35 | 17, 17, 34 | mp2an 426 |
. . . . . 6
|
| 36 | 21, 35 | eqtr2i 2227 |
. . . . 5
|
| 37 | 20, 20, 17 | addcani 8256 |
. . . . 5
|
| 38 | 36, 37 | mpbi 145 |
. . . 4
|
| 39 | sum0 11732 |
. . . . 5
| |
| 40 | 39 | fveq2i 5581 |
. . . 4
|
| 41 | sum0 11732 |
. . . 4
| |
| 42 | 38, 40, 41 | 3eqtr4i 2236 |
. . 3
|
| 43 | 42 | a1i 9 |
. 2
|
| 44 | nfv 1551 |
. . . . . . . 8
| |
| 45 | nfcsb1v 3126 |
. . . . . . . 8
| |
| 46 | simplr 528 |
. . . . . . . 8
| |
| 47 | vex 2775 |
. . . . . . . . 9
| |
| 48 | 47 | a1i 9 |
. . . . . . . 8
|
| 49 | simprr 531 |
. . . . . . . . 9
| |
| 50 | 49 | eldifbd 3178 |
. . . . . . . 8
|
| 51 | simplll 533 |
. . . . . . . . 9
| |
| 52 | simprl 529 |
. . . . . . . . . 10
| |
| 53 | 52 | sselda 3193 |
. . . . . . . . 9
|
| 54 | fsumre.2 |
. . . . . . . . 9
| |
| 55 | 51, 53, 54 | syl2anc 411 |
. . . . . . . 8
|
| 56 | csbeq1a 3102 |
. . . . . . . 8
| |
| 57 | 49 | eldifad 3177 |
. . . . . . . . 9
|
| 58 | 54 | ralrimiva 2579 |
. . . . . . . . . 10
|
| 59 | 58 | ad2antrr 488 |
. . . . . . . . 9
|
| 60 | 45 | nfel1 2359 |
. . . . . . . . . 10
|
| 61 | 56 | eleq1d 2274 |
. . . . . . . . . 10
|
| 62 | 60, 61 | rspc 2871 |
. . . . . . . . 9
|
| 63 | 57, 59, 62 | sylc 62 |
. . . . . . . 8
|
| 64 | 44, 45, 46, 48, 50, 55, 56, 63 | fsumsplitsn 11754 |
. . . . . . 7
|
| 65 | 64 | adantr 276 |
. . . . . 6
|
| 66 | 65 | fveq2d 5582 |
. . . . 5
|
| 67 | 46, 55 | fsumcl 11744 |
. . . . . . 7
|
| 68 | 67 | adantr 276 |
. . . . . 6
|
| 69 | 63 | adantr 276 |
. . . . . 6
|
| 70 | fvoveq1 5969 |
. . . . . . . 8
| |
| 71 | fveq2 5578 |
. . . . . . . . 9
| |
| 72 | 71 | oveq1d 5961 |
. . . . . . . 8
|
| 73 | 70, 72 | eqeq12d 2220 |
. . . . . . 7
|
| 74 | oveq2 5954 |
. . . . . . . . 9
| |
| 75 | 74 | fveq2d 5582 |
. . . . . . . 8
|
| 76 | fveq2 5578 |
. . . . . . . . 9
| |
| 77 | 76 | oveq2d 5962 |
. . . . . . . 8
|
| 78 | 75, 77 | eqeq12d 2220 |
. . . . . . 7
|
| 79 | 73, 78, 33 | vtocl2ga 2841 |
. . . . . 6
|
| 80 | 68, 69, 79 | syl2anc 411 |
. . . . 5
|
| 81 | simpr 110 |
. . . . . 6
| |
| 82 | 81 | oveq1d 5961 |
. . . . 5
|
| 83 | 66, 80, 82 | 3eqtrd 2242 |
. . . 4
|
| 84 | nfcv 2348 |
. . . . . . 7
| |
| 85 | 84, 45 | nffv 5588 |
. . . . . 6
|
| 86 | 18 | a1i 9 |
. . . . . . 7
|
| 87 | 86, 55 | ffvelcdmd 5718 |
. . . . . 6
|
| 88 | 56 | fveq2d 5582 |
. . . . . 6
|
| 89 | 18 | a1i 9 |
. . . . . . 7
|
| 90 | 89, 63 | ffvelcdmd 5718 |
. . . . . 6
|
| 91 | 44, 85, 46, 48, 50, 87, 88, 90 | fsumsplitsn 11754 |
. . . . 5
|
| 92 | 91 | adantr 276 |
. . . 4
|
| 93 | 83, 92 | eqtr4d 2241 |
. . 3
|
| 94 | 93 | ex 115 |
. 2
|
| 95 | fsumre.1 |
. 2
| |
| 96 | 4, 8, 12, 16, 43, 94, 95 | findcard2sd 6991 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-coll 4160 ax-sep 4163 ax-nul 4171 ax-pow 4219 ax-pr 4254 ax-un 4481 ax-setind 4586 ax-iinf 4637 ax-cnex 8018 ax-resscn 8019 ax-1cn 8020 ax-1re 8021 ax-icn 8022 ax-addcl 8023 ax-addrcl 8024 ax-mulcl 8025 ax-mulrcl 8026 ax-addcom 8027 ax-mulcom 8028 ax-addass 8029 ax-mulass 8030 ax-distr 8031 ax-i2m1 8032 ax-0lt1 8033 ax-1rid 8034 ax-0id 8035 ax-rnegex 8036 ax-precex 8037 ax-cnre 8038 ax-pre-ltirr 8039 ax-pre-ltwlin 8040 ax-pre-lttrn 8041 ax-pre-apti 8042 ax-pre-ltadd 8043 ax-pre-mulgt0 8044 ax-pre-mulext 8045 ax-arch 8046 ax-caucvg 8047 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-nel 2472 df-ral 2489 df-rex 2490 df-reu 2491 df-rmo 2492 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-if 3572 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-iun 3929 df-br 4046 df-opab 4107 df-mpt 4108 df-tr 4144 df-id 4341 df-po 4344 df-iso 4345 df-iord 4414 df-on 4416 df-ilim 4417 df-suc 4419 df-iom 4640 df-xp 4682 df-rel 4683 df-cnv 4684 df-co 4685 df-dm 4686 df-rn 4687 df-res 4688 df-ima 4689 df-iota 5233 df-fun 5274 df-fn 5275 df-f 5276 df-f1 5277 df-fo 5278 df-f1o 5279 df-fv 5280 df-isom 5281 df-riota 5901 df-ov 5949 df-oprab 5950 df-mpo 5951 df-1st 6228 df-2nd 6229 df-recs 6393 df-irdg 6458 df-frec 6479 df-1o 6504 df-oadd 6508 df-er 6622 df-en 6830 df-dom 6831 df-fin 6832 df-pnf 8111 df-mnf 8112 df-xr 8113 df-ltxr 8114 df-le 8115 df-sub 8247 df-neg 8248 df-reap 8650 df-ap 8657 df-div 8748 df-inn 9039 df-2 9097 df-3 9098 df-4 9099 df-n0 9298 df-z 9375 df-uz 9651 df-q 9743 df-rp 9778 df-fz 10133 df-fzo 10267 df-seqfrec 10595 df-exp 10686 df-ihash 10923 df-cj 11186 df-re 11187 df-im 11188 df-rsqrt 11342 df-abs 11343 df-clim 11623 df-sumdc 11698 |
| This theorem is referenced by: fsumre 11816 fsumim 11817 fsumcj 11818 |
| Copyright terms: Public domain | W3C validator |