| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fsumrelem | Unicode version | ||
| Description: Lemma for fsumre 11983, fsumim 11984, and fsumcj 11985. (Contributed by Mario Carneiro, 25-Jul-2014.) (Revised by Mario Carneiro, 27-Dec-2014.) |
| Ref | Expression |
|---|---|
| fsumre.1 |
|
| fsumre.2 |
|
| fsumrelem.3 |
|
| fsumrelem.4 |
|
| Ref | Expression |
|---|---|
| fsumrelem |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sumeq1 11866 |
. . . 4
| |
| 2 | 1 | fveq2d 5631 |
. . 3
|
| 3 | sumeq1 11866 |
. . 3
| |
| 4 | 2, 3 | eqeq12d 2244 |
. 2
|
| 5 | sumeq1 11866 |
. . . 4
| |
| 6 | 5 | fveq2d 5631 |
. . 3
|
| 7 | sumeq1 11866 |
. . 3
| |
| 8 | 6, 7 | eqeq12d 2244 |
. 2
|
| 9 | sumeq1 11866 |
. . . 4
| |
| 10 | 9 | fveq2d 5631 |
. . 3
|
| 11 | sumeq1 11866 |
. . 3
| |
| 12 | 10, 11 | eqeq12d 2244 |
. 2
|
| 13 | sumeq1 11866 |
. . . 4
| |
| 14 | 13 | fveq2d 5631 |
. . 3
|
| 15 | sumeq1 11866 |
. . 3
| |
| 16 | 14, 15 | eqeq12d 2244 |
. 2
|
| 17 | 0cn 8138 |
. . . . . . . 8
| |
| 18 | fsumrelem.3 |
. . . . . . . . 9
| |
| 19 | 18 | ffvelcdmi 5769 |
. . . . . . . 8
|
| 20 | 17, 19 | ax-mp 5 |
. . . . . . 7
|
| 21 | 20 | addridi 8288 |
. . . . . 6
|
| 22 | fvoveq1 6024 |
. . . . . . . . 9
| |
| 23 | fveq2 5627 |
. . . . . . . . . 10
| |
| 24 | 23 | oveq1d 6016 |
. . . . . . . . 9
|
| 25 | 22, 24 | eqeq12d 2244 |
. . . . . . . 8
|
| 26 | oveq2 6009 |
. . . . . . . . . . 11
| |
| 27 | 00id 8287 |
. . . . . . . . . . 11
| |
| 28 | 26, 27 | eqtrdi 2278 |
. . . . . . . . . 10
|
| 29 | 28 | fveq2d 5631 |
. . . . . . . . 9
|
| 30 | fveq2 5627 |
. . . . . . . . . 10
| |
| 31 | 30 | oveq2d 6017 |
. . . . . . . . 9
|
| 32 | 29, 31 | eqeq12d 2244 |
. . . . . . . 8
|
| 33 | fsumrelem.4 |
. . . . . . . 8
| |
| 34 | 25, 32, 33 | vtocl2ga 2869 |
. . . . . . 7
|
| 35 | 17, 17, 34 | mp2an 426 |
. . . . . 6
|
| 36 | 21, 35 | eqtr2i 2251 |
. . . . 5
|
| 37 | 20, 20, 17 | addcani 8328 |
. . . . 5
|
| 38 | 36, 37 | mpbi 145 |
. . . 4
|
| 39 | sum0 11899 |
. . . . 5
| |
| 40 | 39 | fveq2i 5630 |
. . . 4
|
| 41 | sum0 11899 |
. . . 4
| |
| 42 | 38, 40, 41 | 3eqtr4i 2260 |
. . 3
|
| 43 | 42 | a1i 9 |
. 2
|
| 44 | nfv 1574 |
. . . . . . . 8
| |
| 45 | nfcsb1v 3157 |
. . . . . . . 8
| |
| 46 | simplr 528 |
. . . . . . . 8
| |
| 47 | vex 2802 |
. . . . . . . . 9
| |
| 48 | 47 | a1i 9 |
. . . . . . . 8
|
| 49 | simprr 531 |
. . . . . . . . 9
| |
| 50 | 49 | eldifbd 3209 |
. . . . . . . 8
|
| 51 | simplll 533 |
. . . . . . . . 9
| |
| 52 | simprl 529 |
. . . . . . . . . 10
| |
| 53 | 52 | sselda 3224 |
. . . . . . . . 9
|
| 54 | fsumre.2 |
. . . . . . . . 9
| |
| 55 | 51, 53, 54 | syl2anc 411 |
. . . . . . . 8
|
| 56 | csbeq1a 3133 |
. . . . . . . 8
| |
| 57 | 49 | eldifad 3208 |
. . . . . . . . 9
|
| 58 | 54 | ralrimiva 2603 |
. . . . . . . . . 10
|
| 59 | 58 | ad2antrr 488 |
. . . . . . . . 9
|
| 60 | 45 | nfel1 2383 |
. . . . . . . . . 10
|
| 61 | 56 | eleq1d 2298 |
. . . . . . . . . 10
|
| 62 | 60, 61 | rspc 2901 |
. . . . . . . . 9
|
| 63 | 57, 59, 62 | sylc 62 |
. . . . . . . 8
|
| 64 | 44, 45, 46, 48, 50, 55, 56, 63 | fsumsplitsn 11921 |
. . . . . . 7
|
| 65 | 64 | adantr 276 |
. . . . . 6
|
| 66 | 65 | fveq2d 5631 |
. . . . 5
|
| 67 | 46, 55 | fsumcl 11911 |
. . . . . . 7
|
| 68 | 67 | adantr 276 |
. . . . . 6
|
| 69 | 63 | adantr 276 |
. . . . . 6
|
| 70 | fvoveq1 6024 |
. . . . . . . 8
| |
| 71 | fveq2 5627 |
. . . . . . . . 9
| |
| 72 | 71 | oveq1d 6016 |
. . . . . . . 8
|
| 73 | 70, 72 | eqeq12d 2244 |
. . . . . . 7
|
| 74 | oveq2 6009 |
. . . . . . . . 9
| |
| 75 | 74 | fveq2d 5631 |
. . . . . . . 8
|
| 76 | fveq2 5627 |
. . . . . . . . 9
| |
| 77 | 76 | oveq2d 6017 |
. . . . . . . 8
|
| 78 | 75, 77 | eqeq12d 2244 |
. . . . . . 7
|
| 79 | 73, 78, 33 | vtocl2ga 2869 |
. . . . . 6
|
| 80 | 68, 69, 79 | syl2anc 411 |
. . . . 5
|
| 81 | simpr 110 |
. . . . . 6
| |
| 82 | 81 | oveq1d 6016 |
. . . . 5
|
| 83 | 66, 80, 82 | 3eqtrd 2266 |
. . . 4
|
| 84 | nfcv 2372 |
. . . . . . 7
| |
| 85 | 84, 45 | nffv 5637 |
. . . . . 6
|
| 86 | 18 | a1i 9 |
. . . . . . 7
|
| 87 | 86, 55 | ffvelcdmd 5771 |
. . . . . 6
|
| 88 | 56 | fveq2d 5631 |
. . . . . 6
|
| 89 | 18 | a1i 9 |
. . . . . . 7
|
| 90 | 89, 63 | ffvelcdmd 5771 |
. . . . . 6
|
| 91 | 44, 85, 46, 48, 50, 87, 88, 90 | fsumsplitsn 11921 |
. . . . 5
|
| 92 | 91 | adantr 276 |
. . . 4
|
| 93 | 83, 92 | eqtr4d 2265 |
. . 3
|
| 94 | 93 | ex 115 |
. 2
|
| 95 | fsumre.1 |
. 2
| |
| 96 | 4, 8, 12, 16, 43, 94, 95 | findcard2sd 7054 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 ax-un 4524 ax-setind 4629 ax-iinf 4680 ax-cnex 8090 ax-resscn 8091 ax-1cn 8092 ax-1re 8093 ax-icn 8094 ax-addcl 8095 ax-addrcl 8096 ax-mulcl 8097 ax-mulrcl 8098 ax-addcom 8099 ax-mulcom 8100 ax-addass 8101 ax-mulass 8102 ax-distr 8103 ax-i2m1 8104 ax-0lt1 8105 ax-1rid 8106 ax-0id 8107 ax-rnegex 8108 ax-precex 8109 ax-cnre 8110 ax-pre-ltirr 8111 ax-pre-ltwlin 8112 ax-pre-lttrn 8113 ax-pre-apti 8114 ax-pre-ltadd 8115 ax-pre-mulgt0 8116 ax-pre-mulext 8117 ax-arch 8118 ax-caucvg 8119 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-tr 4183 df-id 4384 df-po 4387 df-iso 4388 df-iord 4457 df-on 4459 df-ilim 4460 df-suc 4462 df-iom 4683 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-isom 5327 df-riota 5954 df-ov 6004 df-oprab 6005 df-mpo 6006 df-1st 6286 df-2nd 6287 df-recs 6451 df-irdg 6516 df-frec 6537 df-1o 6562 df-oadd 6566 df-er 6680 df-en 6888 df-dom 6889 df-fin 6890 df-pnf 8183 df-mnf 8184 df-xr 8185 df-ltxr 8186 df-le 8187 df-sub 8319 df-neg 8320 df-reap 8722 df-ap 8729 df-div 8820 df-inn 9111 df-2 9169 df-3 9170 df-4 9171 df-n0 9370 df-z 9447 df-uz 9723 df-q 9815 df-rp 9850 df-fz 10205 df-fzo 10339 df-seqfrec 10670 df-exp 10761 df-ihash 10998 df-cj 11353 df-re 11354 df-im 11355 df-rsqrt 11509 df-abs 11510 df-clim 11790 df-sumdc 11865 |
| This theorem is referenced by: fsumre 11983 fsumim 11984 fsumcj 11985 |
| Copyright terms: Public domain | W3C validator |