ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fsumrelem Unicode version

Theorem fsumrelem 11897
Description: Lemma for fsumre 11898, fsumim 11899, and fsumcj 11900. (Contributed by Mario Carneiro, 25-Jul-2014.) (Revised by Mario Carneiro, 27-Dec-2014.)
Hypotheses
Ref Expression
fsumre.1  |-  ( ph  ->  A  e.  Fin )
fsumre.2  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  CC )
fsumrelem.3  |-  F : CC
--> CC
fsumrelem.4  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( F `  (
x  +  y ) )  =  ( ( F `  x )  +  ( F `  y ) ) )
Assertion
Ref Expression
fsumrelem  |-  ( ph  ->  ( F `  sum_ k  e.  A  B
)  =  sum_ k  e.  A  ( F `  B ) )
Distinct variable groups:    x, k, y, A    x, B, y   
k, F, x, y    ph, k, x, y
Allowed substitution hint:    B( k)

Proof of Theorem fsumrelem
Dummy variables  u  v  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sumeq1 11781 . . . 4  |-  ( w  =  (/)  ->  sum_ k  e.  w  B  =  sum_ k  e.  (/)  B )
21fveq2d 5603 . . 3  |-  ( w  =  (/)  ->  ( F `
 sum_ k  e.  w  B )  =  ( F `  sum_ k  e.  (/)  B ) )
3 sumeq1 11781 . . 3  |-  ( w  =  (/)  ->  sum_ k  e.  w  ( F `  B )  =  sum_ k  e.  (/)  ( F `
 B ) )
42, 3eqeq12d 2222 . 2  |-  ( w  =  (/)  ->  ( ( F `  sum_ k  e.  w  B )  =  sum_ k  e.  w  ( F `  B )  <-> 
( F `  sum_ k  e.  (/)  B )  =  sum_ k  e.  (/)  ( F `  B ) ) )
5 sumeq1 11781 . . . 4  |-  ( w  =  u  ->  sum_ k  e.  w  B  =  sum_ k  e.  u  B )
65fveq2d 5603 . . 3  |-  ( w  =  u  ->  ( F `  sum_ k  e.  w  B )  =  ( F `  sum_ k  e.  u  B
) )
7 sumeq1 11781 . . 3  |-  ( w  =  u  ->  sum_ k  e.  w  ( F `  B )  =  sum_ k  e.  u  ( F `  B )
)
86, 7eqeq12d 2222 . 2  |-  ( w  =  u  ->  (
( F `  sum_ k  e.  w  B
)  =  sum_ k  e.  w  ( F `  B )  <->  ( F `  sum_ k  e.  u  B )  =  sum_ k  e.  u  ( F `  B )
) )
9 sumeq1 11781 . . . 4  |-  ( w  =  ( u  u. 
{ v } )  ->  sum_ k  e.  w  B  =  sum_ k  e.  ( u  u.  {
v } ) B )
109fveq2d 5603 . . 3  |-  ( w  =  ( u  u. 
{ v } )  ->  ( F `  sum_ k  e.  w  B )  =  ( F `
 sum_ k  e.  ( u  u.  { v } ) B ) )
11 sumeq1 11781 . . 3  |-  ( w  =  ( u  u. 
{ v } )  ->  sum_ k  e.  w  ( F `  B )  =  sum_ k  e.  ( u  u.  { v } ) ( F `
 B ) )
1210, 11eqeq12d 2222 . 2  |-  ( w  =  ( u  u. 
{ v } )  ->  ( ( F `
 sum_ k  e.  w  B )  =  sum_ k  e.  w  ( F `  B )  <->  ( F `  sum_ k  e.  ( u  u.  {
v } ) B )  =  sum_ k  e.  ( u  u.  {
v } ) ( F `  B ) ) )
13 sumeq1 11781 . . . 4  |-  ( w  =  A  ->  sum_ k  e.  w  B  =  sum_ k  e.  A  B
)
1413fveq2d 5603 . . 3  |-  ( w  =  A  ->  ( F `  sum_ k  e.  w  B )  =  ( F `  sum_ k  e.  A  B
) )
15 sumeq1 11781 . . 3  |-  ( w  =  A  ->  sum_ k  e.  w  ( F `  B )  =  sum_ k  e.  A  ( F `  B )
)
1614, 15eqeq12d 2222 . 2  |-  ( w  =  A  ->  (
( F `  sum_ k  e.  w  B
)  =  sum_ k  e.  w  ( F `  B )  <->  ( F `  sum_ k  e.  A  B )  =  sum_ k  e.  A  ( F `  B )
) )
17 0cn 8099 . . . . . . . 8  |-  0  e.  CC
18 fsumrelem.3 . . . . . . . . 9  |-  F : CC
--> CC
1918ffvelcdmi 5737 . . . . . . . 8  |-  ( 0  e.  CC  ->  ( F `  0 )  e.  CC )
2017, 19ax-mp 5 . . . . . . 7  |-  ( F `
 0 )  e.  CC
2120addridi 8249 . . . . . 6  |-  ( ( F `  0 )  +  0 )  =  ( F `  0
)
22 fvoveq1 5990 . . . . . . . . 9  |-  ( x  =  0  ->  ( F `  ( x  +  y ) )  =  ( F `  ( 0  +  y ) ) )
23 fveq2 5599 . . . . . . . . . 10  |-  ( x  =  0  ->  ( F `  x )  =  ( F ` 
0 ) )
2423oveq1d 5982 . . . . . . . . 9  |-  ( x  =  0  ->  (
( F `  x
)  +  ( F `
 y ) )  =  ( ( F `
 0 )  +  ( F `  y
) ) )
2522, 24eqeq12d 2222 . . . . . . . 8  |-  ( x  =  0  ->  (
( F `  (
x  +  y ) )  =  ( ( F `  x )  +  ( F `  y ) )  <->  ( F `  ( 0  +  y ) )  =  ( ( F `  0
)  +  ( F `
 y ) ) ) )
26 oveq2 5975 . . . . . . . . . . 11  |-  ( y  =  0  ->  (
0  +  y )  =  ( 0  +  0 ) )
27 00id 8248 . . . . . . . . . . 11  |-  ( 0  +  0 )  =  0
2826, 27eqtrdi 2256 . . . . . . . . . 10  |-  ( y  =  0  ->  (
0  +  y )  =  0 )
2928fveq2d 5603 . . . . . . . . 9  |-  ( y  =  0  ->  ( F `  ( 0  +  y ) )  =  ( F ` 
0 ) )
30 fveq2 5599 . . . . . . . . . 10  |-  ( y  =  0  ->  ( F `  y )  =  ( F ` 
0 ) )
3130oveq2d 5983 . . . . . . . . 9  |-  ( y  =  0  ->  (
( F `  0
)  +  ( F `
 y ) )  =  ( ( F `
 0 )  +  ( F `  0
) ) )
3229, 31eqeq12d 2222 . . . . . . . 8  |-  ( y  =  0  ->  (
( F `  (
0  +  y ) )  =  ( ( F `  0 )  +  ( F `  y ) )  <->  ( F `  0 )  =  ( ( F ` 
0 )  +  ( F `  0 ) ) ) )
33 fsumrelem.4 . . . . . . . 8  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( F `  (
x  +  y ) )  =  ( ( F `  x )  +  ( F `  y ) ) )
3425, 32, 33vtocl2ga 2846 . . . . . . 7  |-  ( ( 0  e.  CC  /\  0  e.  CC )  ->  ( F `  0
)  =  ( ( F `  0 )  +  ( F ` 
0 ) ) )
3517, 17, 34mp2an 426 . . . . . 6  |-  ( F `
 0 )  =  ( ( F ` 
0 )  +  ( F `  0 ) )
3621, 35eqtr2i 2229 . . . . 5  |-  ( ( F `  0 )  +  ( F ` 
0 ) )  =  ( ( F ` 
0 )  +  0 )
3720, 20, 17addcani 8289 . . . . 5  |-  ( ( ( F `  0
)  +  ( F `
 0 ) )  =  ( ( F `
 0 )  +  0 )  <->  ( F `  0 )  =  0 )
3836, 37mpbi 145 . . . 4  |-  ( F `
 0 )  =  0
39 sum0 11814 . . . . 5  |-  sum_ k  e.  (/)  B  =  0
4039fveq2i 5602 . . . 4  |-  ( F `
 sum_ k  e.  (/)  B )  =  ( F `
 0 )
41 sum0 11814 . . . 4  |-  sum_ k  e.  (/)  ( F `  B )  =  0
4238, 40, 413eqtr4i 2238 . . 3  |-  ( F `
 sum_ k  e.  (/)  B )  =  sum_ k  e.  (/)  ( F `  B )
4342a1i 9 . 2  |-  ( ph  ->  ( F `  sum_ k  e.  (/)  B )  =  sum_ k  e.  (/)  ( F `  B ) )
44 nfv 1552 . . . . . . . 8  |-  F/ k ( ( ph  /\  u  e.  Fin )  /\  ( u  C_  A  /\  v  e.  ( A  \  u ) ) )
45 nfcsb1v 3134 . . . . . . . 8  |-  F/_ k [_ v  /  k ]_ B
46 simplr 528 . . . . . . . 8  |-  ( ( ( ph  /\  u  e.  Fin )  /\  (
u  C_  A  /\  v  e.  ( A  \  u ) ) )  ->  u  e.  Fin )
47 vex 2779 . . . . . . . . 9  |-  v  e. 
_V
4847a1i 9 . . . . . . . 8  |-  ( ( ( ph  /\  u  e.  Fin )  /\  (
u  C_  A  /\  v  e.  ( A  \  u ) ) )  ->  v  e.  _V )
49 simprr 531 . . . . . . . . 9  |-  ( ( ( ph  /\  u  e.  Fin )  /\  (
u  C_  A  /\  v  e.  ( A  \  u ) ) )  ->  v  e.  ( A  \  u ) )
5049eldifbd 3186 . . . . . . . 8  |-  ( ( ( ph  /\  u  e.  Fin )  /\  (
u  C_  A  /\  v  e.  ( A  \  u ) ) )  ->  -.  v  e.  u )
51 simplll 533 . . . . . . . . 9  |-  ( ( ( ( ph  /\  u  e.  Fin )  /\  ( u  C_  A  /\  v  e.  ( A  \  u ) ) )  /\  k  e.  u )  ->  ph )
52 simprl 529 . . . . . . . . . 10  |-  ( ( ( ph  /\  u  e.  Fin )  /\  (
u  C_  A  /\  v  e.  ( A  \  u ) ) )  ->  u  C_  A
)
5352sselda 3201 . . . . . . . . 9  |-  ( ( ( ( ph  /\  u  e.  Fin )  /\  ( u  C_  A  /\  v  e.  ( A  \  u ) ) )  /\  k  e.  u )  ->  k  e.  A )
54 fsumre.2 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  CC )
5551, 53, 54syl2anc 411 . . . . . . . 8  |-  ( ( ( ( ph  /\  u  e.  Fin )  /\  ( u  C_  A  /\  v  e.  ( A  \  u ) ) )  /\  k  e.  u )  ->  B  e.  CC )
56 csbeq1a 3110 . . . . . . . 8  |-  ( k  =  v  ->  B  =  [_ v  /  k ]_ B )
5749eldifad 3185 . . . . . . . . 9  |-  ( ( ( ph  /\  u  e.  Fin )  /\  (
u  C_  A  /\  v  e.  ( A  \  u ) ) )  ->  v  e.  A
)
5854ralrimiva 2581 . . . . . . . . . 10  |-  ( ph  ->  A. k  e.  A  B  e.  CC )
5958ad2antrr 488 . . . . . . . . 9  |-  ( ( ( ph  /\  u  e.  Fin )  /\  (
u  C_  A  /\  v  e.  ( A  \  u ) ) )  ->  A. k  e.  A  B  e.  CC )
6045nfel1 2361 . . . . . . . . . 10  |-  F/ k
[_ v  /  k ]_ B  e.  CC
6156eleq1d 2276 . . . . . . . . . 10  |-  ( k  =  v  ->  ( B  e.  CC  <->  [_ v  / 
k ]_ B  e.  CC ) )
6260, 61rspc 2878 . . . . . . . . 9  |-  ( v  e.  A  ->  ( A. k  e.  A  B  e.  CC  ->  [_ v  /  k ]_ B  e.  CC )
)
6357, 59, 62sylc 62 . . . . . . . 8  |-  ( ( ( ph  /\  u  e.  Fin )  /\  (
u  C_  A  /\  v  e.  ( A  \  u ) ) )  ->  [_ v  /  k ]_ B  e.  CC )
6444, 45, 46, 48, 50, 55, 56, 63fsumsplitsn 11836 . . . . . . 7  |-  ( ( ( ph  /\  u  e.  Fin )  /\  (
u  C_  A  /\  v  e.  ( A  \  u ) ) )  ->  sum_ k  e.  ( u  u.  { v } ) B  =  ( sum_ k  e.  u  B  +  [_ v  / 
k ]_ B ) )
6564adantr 276 . . . . . 6  |-  ( ( ( ( ph  /\  u  e.  Fin )  /\  ( u  C_  A  /\  v  e.  ( A  \  u ) ) )  /\  ( F `
 sum_ k  e.  u  B )  =  sum_ k  e.  u  ( F `  B )
)  ->  sum_ k  e.  ( u  u.  {
v } ) B  =  ( sum_ k  e.  u  B  +  [_ v  /  k ]_ B ) )
6665fveq2d 5603 . . . . 5  |-  ( ( ( ( ph  /\  u  e.  Fin )  /\  ( u  C_  A  /\  v  e.  ( A  \  u ) ) )  /\  ( F `
 sum_ k  e.  u  B )  =  sum_ k  e.  u  ( F `  B )
)  ->  ( F `  sum_ k  e.  ( u  u.  { v } ) B )  =  ( F `  ( sum_ k  e.  u  B  +  [_ v  / 
k ]_ B ) ) )
6746, 55fsumcl 11826 . . . . . . 7  |-  ( ( ( ph  /\  u  e.  Fin )  /\  (
u  C_  A  /\  v  e.  ( A  \  u ) ) )  ->  sum_ k  e.  u  B  e.  CC )
6867adantr 276 . . . . . 6  |-  ( ( ( ( ph  /\  u  e.  Fin )  /\  ( u  C_  A  /\  v  e.  ( A  \  u ) ) )  /\  ( F `
 sum_ k  e.  u  B )  =  sum_ k  e.  u  ( F `  B )
)  ->  sum_ k  e.  u  B  e.  CC )
6963adantr 276 . . . . . 6  |-  ( ( ( ( ph  /\  u  e.  Fin )  /\  ( u  C_  A  /\  v  e.  ( A  \  u ) ) )  /\  ( F `
 sum_ k  e.  u  B )  =  sum_ k  e.  u  ( F `  B )
)  ->  [_ v  / 
k ]_ B  e.  CC )
70 fvoveq1 5990 . . . . . . . 8  |-  ( x  =  sum_ k  e.  u  B  ->  ( F `  ( x  +  y
) )  =  ( F `  ( sum_ k  e.  u  B  +  y ) ) )
71 fveq2 5599 . . . . . . . . 9  |-  ( x  =  sum_ k  e.  u  B  ->  ( F `  x )  =  ( F `  sum_ k  e.  u  B )
)
7271oveq1d 5982 . . . . . . . 8  |-  ( x  =  sum_ k  e.  u  B  ->  ( ( F `
 x )  +  ( F `  y
) )  =  ( ( F `  sum_ k  e.  u  B
)  +  ( F `
 y ) ) )
7370, 72eqeq12d 2222 . . . . . . 7  |-  ( x  =  sum_ k  e.  u  B  ->  ( ( F `
 ( x  +  y ) )  =  ( ( F `  x )  +  ( F `  y ) )  <->  ( F `  ( sum_ k  e.  u  B  +  y )
)  =  ( ( F `  sum_ k  e.  u  B )  +  ( F `  y ) ) ) )
74 oveq2 5975 . . . . . . . . 9  |-  ( y  =  [_ v  / 
k ]_ B  ->  ( sum_ k  e.  u  B  +  y )  =  ( sum_ k  e.  u  B  +  [_ v  / 
k ]_ B ) )
7574fveq2d 5603 . . . . . . . 8  |-  ( y  =  [_ v  / 
k ]_ B  ->  ( F `  ( sum_ k  e.  u  B  +  y ) )  =  ( F `  ( sum_ k  e.  u  B  +  [_ v  / 
k ]_ B ) ) )
76 fveq2 5599 . . . . . . . . 9  |-  ( y  =  [_ v  / 
k ]_ B  ->  ( F `  y )  =  ( F `  [_ v  /  k ]_ B ) )
7776oveq2d 5983 . . . . . . . 8  |-  ( y  =  [_ v  / 
k ]_ B  ->  (
( F `  sum_ k  e.  u  B
)  +  ( F `
 y ) )  =  ( ( F `
 sum_ k  e.  u  B )  +  ( F `  [_ v  /  k ]_ B
) ) )
7875, 77eqeq12d 2222 . . . . . . 7  |-  ( y  =  [_ v  / 
k ]_ B  ->  (
( F `  ( sum_ k  e.  u  B  +  y ) )  =  ( ( F `
 sum_ k  e.  u  B )  +  ( F `  y ) )  <->  ( F `  ( sum_ k  e.  u  B  +  [_ v  / 
k ]_ B ) )  =  ( ( F `
 sum_ k  e.  u  B )  +  ( F `  [_ v  /  k ]_ B
) ) ) )
7973, 78, 33vtocl2ga 2846 . . . . . 6  |-  ( (
sum_ k  e.  u  B  e.  CC  /\  [_ v  /  k ]_ B  e.  CC )  ->  ( F `  ( sum_ k  e.  u  B  +  [_ v  /  k ]_ B ) )  =  ( ( F `  sum_ k  e.  u  B )  +  ( F `
 [_ v  /  k ]_ B ) ) )
8068, 69, 79syl2anc 411 . . . . 5  |-  ( ( ( ( ph  /\  u  e.  Fin )  /\  ( u  C_  A  /\  v  e.  ( A  \  u ) ) )  /\  ( F `
 sum_ k  e.  u  B )  =  sum_ k  e.  u  ( F `  B )
)  ->  ( F `  ( sum_ k  e.  u  B  +  [_ v  / 
k ]_ B ) )  =  ( ( F `
 sum_ k  e.  u  B )  +  ( F `  [_ v  /  k ]_ B
) ) )
81 simpr 110 . . . . . 6  |-  ( ( ( ( ph  /\  u  e.  Fin )  /\  ( u  C_  A  /\  v  e.  ( A  \  u ) ) )  /\  ( F `
 sum_ k  e.  u  B )  =  sum_ k  e.  u  ( F `  B )
)  ->  ( F `  sum_ k  e.  u  B )  =  sum_ k  e.  u  ( F `  B )
)
8281oveq1d 5982 . . . . 5  |-  ( ( ( ( ph  /\  u  e.  Fin )  /\  ( u  C_  A  /\  v  e.  ( A  \  u ) ) )  /\  ( F `
 sum_ k  e.  u  B )  =  sum_ k  e.  u  ( F `  B )
)  ->  ( ( F `  sum_ k  e.  u  B )  +  ( F `  [_ v  /  k ]_ B
) )  =  (
sum_ k  e.  u  ( F `  B )  +  ( F `  [_ v  /  k ]_ B ) ) )
8366, 80, 823eqtrd 2244 . . . 4  |-  ( ( ( ( ph  /\  u  e.  Fin )  /\  ( u  C_  A  /\  v  e.  ( A  \  u ) ) )  /\  ( F `
 sum_ k  e.  u  B )  =  sum_ k  e.  u  ( F `  B )
)  ->  ( F `  sum_ k  e.  ( u  u.  { v } ) B )  =  ( sum_ k  e.  u  ( F `  B )  +  ( F `  [_ v  /  k ]_ B
) ) )
84 nfcv 2350 . . . . . . 7  |-  F/_ k F
8584, 45nffv 5609 . . . . . 6  |-  F/_ k
( F `  [_ v  /  k ]_ B
)
8618a1i 9 . . . . . . 7  |-  ( ( ( ( ph  /\  u  e.  Fin )  /\  ( u  C_  A  /\  v  e.  ( A  \  u ) ) )  /\  k  e.  u )  ->  F : CC --> CC )
8786, 55ffvelcdmd 5739 . . . . . 6  |-  ( ( ( ( ph  /\  u  e.  Fin )  /\  ( u  C_  A  /\  v  e.  ( A  \  u ) ) )  /\  k  e.  u )  ->  ( F `  B )  e.  CC )
8856fveq2d 5603 . . . . . 6  |-  ( k  =  v  ->  ( F `  B )  =  ( F `  [_ v  /  k ]_ B ) )
8918a1i 9 . . . . . . 7  |-  ( ( ( ph  /\  u  e.  Fin )  /\  (
u  C_  A  /\  v  e.  ( A  \  u ) ) )  ->  F : CC --> CC )
9089, 63ffvelcdmd 5739 . . . . . 6  |-  ( ( ( ph  /\  u  e.  Fin )  /\  (
u  C_  A  /\  v  e.  ( A  \  u ) ) )  ->  ( F `  [_ v  /  k ]_ B )  e.  CC )
9144, 85, 46, 48, 50, 87, 88, 90fsumsplitsn 11836 . . . . 5  |-  ( ( ( ph  /\  u  e.  Fin )  /\  (
u  C_  A  /\  v  e.  ( A  \  u ) ) )  ->  sum_ k  e.  ( u  u.  { v } ) ( F `
 B )  =  ( sum_ k  e.  u  ( F `  B )  +  ( F `  [_ v  /  k ]_ B ) ) )
9291adantr 276 . . . 4  |-  ( ( ( ( ph  /\  u  e.  Fin )  /\  ( u  C_  A  /\  v  e.  ( A  \  u ) ) )  /\  ( F `
 sum_ k  e.  u  B )  =  sum_ k  e.  u  ( F `  B )
)  ->  sum_ k  e.  ( u  u.  {
v } ) ( F `  B )  =  ( sum_ k  e.  u  ( F `  B )  +  ( F `  [_ v  /  k ]_ B
) ) )
9383, 92eqtr4d 2243 . . 3  |-  ( ( ( ( ph  /\  u  e.  Fin )  /\  ( u  C_  A  /\  v  e.  ( A  \  u ) ) )  /\  ( F `
 sum_ k  e.  u  B )  =  sum_ k  e.  u  ( F `  B )
)  ->  ( F `  sum_ k  e.  ( u  u.  { v } ) B )  =  sum_ k  e.  ( u  u.  { v } ) ( F `
 B ) )
9493ex 115 . 2  |-  ( ( ( ph  /\  u  e.  Fin )  /\  (
u  C_  A  /\  v  e.  ( A  \  u ) ) )  ->  ( ( F `
 sum_ k  e.  u  B )  =  sum_ k  e.  u  ( F `  B )  ->  ( F `  sum_ k  e.  ( u  u.  { v } ) B )  =  sum_ k  e.  ( u  u.  { v } ) ( F `  B
) ) )
95 fsumre.1 . 2  |-  ( ph  ->  A  e.  Fin )
964, 8, 12, 16, 43, 94, 95findcard2sd 7015 1  |-  ( ph  ->  ( F `  sum_ k  e.  A  B
)  =  sum_ k  e.  A  ( F `  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2178   A.wral 2486   _Vcvv 2776   [_csb 3101    \ cdif 3171    u. cun 3172    C_ wss 3174   (/)c0 3468   {csn 3643   -->wf 5286   ` cfv 5290  (class class class)co 5967   Fincfn 6850   CCcc 7958   0cc0 7960    + caddc 7963   sum_csu 11779
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-iinf 4654  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-mulrcl 8059  ax-addcom 8060  ax-mulcom 8061  ax-addass 8062  ax-mulass 8063  ax-distr 8064  ax-i2m1 8065  ax-0lt1 8066  ax-1rid 8067  ax-0id 8068  ax-rnegex 8069  ax-precex 8070  ax-cnre 8071  ax-pre-ltirr 8072  ax-pre-ltwlin 8073  ax-pre-lttrn 8074  ax-pre-apti 8075  ax-pre-ltadd 8076  ax-pre-mulgt0 8077  ax-pre-mulext 8078  ax-arch 8079  ax-caucvg 8080
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rmo 2494  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-if 3580  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-tr 4159  df-id 4358  df-po 4361  df-iso 4362  df-iord 4431  df-on 4433  df-ilim 4434  df-suc 4436  df-iom 4657  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-isom 5299  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-1st 6249  df-2nd 6250  df-recs 6414  df-irdg 6479  df-frec 6500  df-1o 6525  df-oadd 6529  df-er 6643  df-en 6851  df-dom 6852  df-fin 6853  df-pnf 8144  df-mnf 8145  df-xr 8146  df-ltxr 8147  df-le 8148  df-sub 8280  df-neg 8281  df-reap 8683  df-ap 8690  df-div 8781  df-inn 9072  df-2 9130  df-3 9131  df-4 9132  df-n0 9331  df-z 9408  df-uz 9684  df-q 9776  df-rp 9811  df-fz 10166  df-fzo 10300  df-seqfrec 10630  df-exp 10721  df-ihash 10958  df-cj 11268  df-re 11269  df-im 11270  df-rsqrt 11424  df-abs 11425  df-clim 11705  df-sumdc 11780
This theorem is referenced by:  fsumre  11898  fsumim  11899  fsumcj  11900
  Copyright terms: Public domain W3C validator