ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fsumrelem Unicode version

Theorem fsumrelem 11481
Description: Lemma for fsumre 11482, fsumim 11483, and fsumcj 11484. (Contributed by Mario Carneiro, 25-Jul-2014.) (Revised by Mario Carneiro, 27-Dec-2014.)
Hypotheses
Ref Expression
fsumre.1  |-  ( ph  ->  A  e.  Fin )
fsumre.2  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  CC )
fsumrelem.3  |-  F : CC
--> CC
fsumrelem.4  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( F `  (
x  +  y ) )  =  ( ( F `  x )  +  ( F `  y ) ) )
Assertion
Ref Expression
fsumrelem  |-  ( ph  ->  ( F `  sum_ k  e.  A  B
)  =  sum_ k  e.  A  ( F `  B ) )
Distinct variable groups:    x, k, y, A    x, B, y   
k, F, x, y    ph, k, x, y
Allowed substitution hint:    B( k)

Proof of Theorem fsumrelem
Dummy variables  u  v  w are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sumeq1 11365 . . . 4  |-  ( w  =  (/)  ->  sum_ k  e.  w  B  =  sum_ k  e.  (/)  B )
21fveq2d 5521 . . 3  |-  ( w  =  (/)  ->  ( F `
 sum_ k  e.  w  B )  =  ( F `  sum_ k  e.  (/)  B ) )
3 sumeq1 11365 . . 3  |-  ( w  =  (/)  ->  sum_ k  e.  w  ( F `  B )  =  sum_ k  e.  (/)  ( F `
 B ) )
42, 3eqeq12d 2192 . 2  |-  ( w  =  (/)  ->  ( ( F `  sum_ k  e.  w  B )  =  sum_ k  e.  w  ( F `  B )  <-> 
( F `  sum_ k  e.  (/)  B )  =  sum_ k  e.  (/)  ( F `  B ) ) )
5 sumeq1 11365 . . . 4  |-  ( w  =  u  ->  sum_ k  e.  w  B  =  sum_ k  e.  u  B )
65fveq2d 5521 . . 3  |-  ( w  =  u  ->  ( F `  sum_ k  e.  w  B )  =  ( F `  sum_ k  e.  u  B
) )
7 sumeq1 11365 . . 3  |-  ( w  =  u  ->  sum_ k  e.  w  ( F `  B )  =  sum_ k  e.  u  ( F `  B )
)
86, 7eqeq12d 2192 . 2  |-  ( w  =  u  ->  (
( F `  sum_ k  e.  w  B
)  =  sum_ k  e.  w  ( F `  B )  <->  ( F `  sum_ k  e.  u  B )  =  sum_ k  e.  u  ( F `  B )
) )
9 sumeq1 11365 . . . 4  |-  ( w  =  ( u  u. 
{ v } )  ->  sum_ k  e.  w  B  =  sum_ k  e.  ( u  u.  {
v } ) B )
109fveq2d 5521 . . 3  |-  ( w  =  ( u  u. 
{ v } )  ->  ( F `  sum_ k  e.  w  B )  =  ( F `
 sum_ k  e.  ( u  u.  { v } ) B ) )
11 sumeq1 11365 . . 3  |-  ( w  =  ( u  u. 
{ v } )  ->  sum_ k  e.  w  ( F `  B )  =  sum_ k  e.  ( u  u.  { v } ) ( F `
 B ) )
1210, 11eqeq12d 2192 . 2  |-  ( w  =  ( u  u. 
{ v } )  ->  ( ( F `
 sum_ k  e.  w  B )  =  sum_ k  e.  w  ( F `  B )  <->  ( F `  sum_ k  e.  ( u  u.  {
v } ) B )  =  sum_ k  e.  ( u  u.  {
v } ) ( F `  B ) ) )
13 sumeq1 11365 . . . 4  |-  ( w  =  A  ->  sum_ k  e.  w  B  =  sum_ k  e.  A  B
)
1413fveq2d 5521 . . 3  |-  ( w  =  A  ->  ( F `  sum_ k  e.  w  B )  =  ( F `  sum_ k  e.  A  B
) )
15 sumeq1 11365 . . 3  |-  ( w  =  A  ->  sum_ k  e.  w  ( F `  B )  =  sum_ k  e.  A  ( F `  B )
)
1614, 15eqeq12d 2192 . 2  |-  ( w  =  A  ->  (
( F `  sum_ k  e.  w  B
)  =  sum_ k  e.  w  ( F `  B )  <->  ( F `  sum_ k  e.  A  B )  =  sum_ k  e.  A  ( F `  B )
) )
17 0cn 7951 . . . . . . . 8  |-  0  e.  CC
18 fsumrelem.3 . . . . . . . . 9  |-  F : CC
--> CC
1918ffvelcdmi 5652 . . . . . . . 8  |-  ( 0  e.  CC  ->  ( F `  0 )  e.  CC )
2017, 19ax-mp 5 . . . . . . 7  |-  ( F `
 0 )  e.  CC
2120addid1i 8101 . . . . . 6  |-  ( ( F `  0 )  +  0 )  =  ( F `  0
)
22 fvoveq1 5900 . . . . . . . . 9  |-  ( x  =  0  ->  ( F `  ( x  +  y ) )  =  ( F `  ( 0  +  y ) ) )
23 fveq2 5517 . . . . . . . . . 10  |-  ( x  =  0  ->  ( F `  x )  =  ( F ` 
0 ) )
2423oveq1d 5892 . . . . . . . . 9  |-  ( x  =  0  ->  (
( F `  x
)  +  ( F `
 y ) )  =  ( ( F `
 0 )  +  ( F `  y
) ) )
2522, 24eqeq12d 2192 . . . . . . . 8  |-  ( x  =  0  ->  (
( F `  (
x  +  y ) )  =  ( ( F `  x )  +  ( F `  y ) )  <->  ( F `  ( 0  +  y ) )  =  ( ( F `  0
)  +  ( F `
 y ) ) ) )
26 oveq2 5885 . . . . . . . . . . 11  |-  ( y  =  0  ->  (
0  +  y )  =  ( 0  +  0 ) )
27 00id 8100 . . . . . . . . . . 11  |-  ( 0  +  0 )  =  0
2826, 27eqtrdi 2226 . . . . . . . . . 10  |-  ( y  =  0  ->  (
0  +  y )  =  0 )
2928fveq2d 5521 . . . . . . . . 9  |-  ( y  =  0  ->  ( F `  ( 0  +  y ) )  =  ( F ` 
0 ) )
30 fveq2 5517 . . . . . . . . . 10  |-  ( y  =  0  ->  ( F `  y )  =  ( F ` 
0 ) )
3130oveq2d 5893 . . . . . . . . 9  |-  ( y  =  0  ->  (
( F `  0
)  +  ( F `
 y ) )  =  ( ( F `
 0 )  +  ( F `  0
) ) )
3229, 31eqeq12d 2192 . . . . . . . 8  |-  ( y  =  0  ->  (
( F `  (
0  +  y ) )  =  ( ( F `  0 )  +  ( F `  y ) )  <->  ( F `  0 )  =  ( ( F ` 
0 )  +  ( F `  0 ) ) ) )
33 fsumrelem.4 . . . . . . . 8  |-  ( ( x  e.  CC  /\  y  e.  CC )  ->  ( F `  (
x  +  y ) )  =  ( ( F `  x )  +  ( F `  y ) ) )
3425, 32, 33vtocl2ga 2807 . . . . . . 7  |-  ( ( 0  e.  CC  /\  0  e.  CC )  ->  ( F `  0
)  =  ( ( F `  0 )  +  ( F ` 
0 ) ) )
3517, 17, 34mp2an 426 . . . . . 6  |-  ( F `
 0 )  =  ( ( F ` 
0 )  +  ( F `  0 ) )
3621, 35eqtr2i 2199 . . . . 5  |-  ( ( F `  0 )  +  ( F ` 
0 ) )  =  ( ( F ` 
0 )  +  0 )
3720, 20, 17addcani 8141 . . . . 5  |-  ( ( ( F `  0
)  +  ( F `
 0 ) )  =  ( ( F `
 0 )  +  0 )  <->  ( F `  0 )  =  0 )
3836, 37mpbi 145 . . . 4  |-  ( F `
 0 )  =  0
39 sum0 11398 . . . . 5  |-  sum_ k  e.  (/)  B  =  0
4039fveq2i 5520 . . . 4  |-  ( F `
 sum_ k  e.  (/)  B )  =  ( F `
 0 )
41 sum0 11398 . . . 4  |-  sum_ k  e.  (/)  ( F `  B )  =  0
4238, 40, 413eqtr4i 2208 . . 3  |-  ( F `
 sum_ k  e.  (/)  B )  =  sum_ k  e.  (/)  ( F `  B )
4342a1i 9 . 2  |-  ( ph  ->  ( F `  sum_ k  e.  (/)  B )  =  sum_ k  e.  (/)  ( F `  B ) )
44 nfv 1528 . . . . . . . 8  |-  F/ k ( ( ph  /\  u  e.  Fin )  /\  ( u  C_  A  /\  v  e.  ( A  \  u ) ) )
45 nfcsb1v 3092 . . . . . . . 8  |-  F/_ k [_ v  /  k ]_ B
46 simplr 528 . . . . . . . 8  |-  ( ( ( ph  /\  u  e.  Fin )  /\  (
u  C_  A  /\  v  e.  ( A  \  u ) ) )  ->  u  e.  Fin )
47 vex 2742 . . . . . . . . 9  |-  v  e. 
_V
4847a1i 9 . . . . . . . 8  |-  ( ( ( ph  /\  u  e.  Fin )  /\  (
u  C_  A  /\  v  e.  ( A  \  u ) ) )  ->  v  e.  _V )
49 simprr 531 . . . . . . . . 9  |-  ( ( ( ph  /\  u  e.  Fin )  /\  (
u  C_  A  /\  v  e.  ( A  \  u ) ) )  ->  v  e.  ( A  \  u ) )
5049eldifbd 3143 . . . . . . . 8  |-  ( ( ( ph  /\  u  e.  Fin )  /\  (
u  C_  A  /\  v  e.  ( A  \  u ) ) )  ->  -.  v  e.  u )
51 simplll 533 . . . . . . . . 9  |-  ( ( ( ( ph  /\  u  e.  Fin )  /\  ( u  C_  A  /\  v  e.  ( A  \  u ) ) )  /\  k  e.  u )  ->  ph )
52 simprl 529 . . . . . . . . . 10  |-  ( ( ( ph  /\  u  e.  Fin )  /\  (
u  C_  A  /\  v  e.  ( A  \  u ) ) )  ->  u  C_  A
)
5352sselda 3157 . . . . . . . . 9  |-  ( ( ( ( ph  /\  u  e.  Fin )  /\  ( u  C_  A  /\  v  e.  ( A  \  u ) ) )  /\  k  e.  u )  ->  k  e.  A )
54 fsumre.2 . . . . . . . . 9  |-  ( (
ph  /\  k  e.  A )  ->  B  e.  CC )
5551, 53, 54syl2anc 411 . . . . . . . 8  |-  ( ( ( ( ph  /\  u  e.  Fin )  /\  ( u  C_  A  /\  v  e.  ( A  \  u ) ) )  /\  k  e.  u )  ->  B  e.  CC )
56 csbeq1a 3068 . . . . . . . 8  |-  ( k  =  v  ->  B  =  [_ v  /  k ]_ B )
5749eldifad 3142 . . . . . . . . 9  |-  ( ( ( ph  /\  u  e.  Fin )  /\  (
u  C_  A  /\  v  e.  ( A  \  u ) ) )  ->  v  e.  A
)
5854ralrimiva 2550 . . . . . . . . . 10  |-  ( ph  ->  A. k  e.  A  B  e.  CC )
5958ad2antrr 488 . . . . . . . . 9  |-  ( ( ( ph  /\  u  e.  Fin )  /\  (
u  C_  A  /\  v  e.  ( A  \  u ) ) )  ->  A. k  e.  A  B  e.  CC )
6045nfel1 2330 . . . . . . . . . 10  |-  F/ k
[_ v  /  k ]_ B  e.  CC
6156eleq1d 2246 . . . . . . . . . 10  |-  ( k  =  v  ->  ( B  e.  CC  <->  [_ v  / 
k ]_ B  e.  CC ) )
6260, 61rspc 2837 . . . . . . . . 9  |-  ( v  e.  A  ->  ( A. k  e.  A  B  e.  CC  ->  [_ v  /  k ]_ B  e.  CC )
)
6357, 59, 62sylc 62 . . . . . . . 8  |-  ( ( ( ph  /\  u  e.  Fin )  /\  (
u  C_  A  /\  v  e.  ( A  \  u ) ) )  ->  [_ v  /  k ]_ B  e.  CC )
6444, 45, 46, 48, 50, 55, 56, 63fsumsplitsn 11420 . . . . . . 7  |-  ( ( ( ph  /\  u  e.  Fin )  /\  (
u  C_  A  /\  v  e.  ( A  \  u ) ) )  ->  sum_ k  e.  ( u  u.  { v } ) B  =  ( sum_ k  e.  u  B  +  [_ v  / 
k ]_ B ) )
6564adantr 276 . . . . . 6  |-  ( ( ( ( ph  /\  u  e.  Fin )  /\  ( u  C_  A  /\  v  e.  ( A  \  u ) ) )  /\  ( F `
 sum_ k  e.  u  B )  =  sum_ k  e.  u  ( F `  B )
)  ->  sum_ k  e.  ( u  u.  {
v } ) B  =  ( sum_ k  e.  u  B  +  [_ v  /  k ]_ B ) )
6665fveq2d 5521 . . . . 5  |-  ( ( ( ( ph  /\  u  e.  Fin )  /\  ( u  C_  A  /\  v  e.  ( A  \  u ) ) )  /\  ( F `
 sum_ k  e.  u  B )  =  sum_ k  e.  u  ( F `  B )
)  ->  ( F `  sum_ k  e.  ( u  u.  { v } ) B )  =  ( F `  ( sum_ k  e.  u  B  +  [_ v  / 
k ]_ B ) ) )
6746, 55fsumcl 11410 . . . . . . 7  |-  ( ( ( ph  /\  u  e.  Fin )  /\  (
u  C_  A  /\  v  e.  ( A  \  u ) ) )  ->  sum_ k  e.  u  B  e.  CC )
6867adantr 276 . . . . . 6  |-  ( ( ( ( ph  /\  u  e.  Fin )  /\  ( u  C_  A  /\  v  e.  ( A  \  u ) ) )  /\  ( F `
 sum_ k  e.  u  B )  =  sum_ k  e.  u  ( F `  B )
)  ->  sum_ k  e.  u  B  e.  CC )
6963adantr 276 . . . . . 6  |-  ( ( ( ( ph  /\  u  e.  Fin )  /\  ( u  C_  A  /\  v  e.  ( A  \  u ) ) )  /\  ( F `
 sum_ k  e.  u  B )  =  sum_ k  e.  u  ( F `  B )
)  ->  [_ v  / 
k ]_ B  e.  CC )
70 fvoveq1 5900 . . . . . . . 8  |-  ( x  =  sum_ k  e.  u  B  ->  ( F `  ( x  +  y
) )  =  ( F `  ( sum_ k  e.  u  B  +  y ) ) )
71 fveq2 5517 . . . . . . . . 9  |-  ( x  =  sum_ k  e.  u  B  ->  ( F `  x )  =  ( F `  sum_ k  e.  u  B )
)
7271oveq1d 5892 . . . . . . . 8  |-  ( x  =  sum_ k  e.  u  B  ->  ( ( F `
 x )  +  ( F `  y
) )  =  ( ( F `  sum_ k  e.  u  B
)  +  ( F `
 y ) ) )
7370, 72eqeq12d 2192 . . . . . . 7  |-  ( x  =  sum_ k  e.  u  B  ->  ( ( F `
 ( x  +  y ) )  =  ( ( F `  x )  +  ( F `  y ) )  <->  ( F `  ( sum_ k  e.  u  B  +  y )
)  =  ( ( F `  sum_ k  e.  u  B )  +  ( F `  y ) ) ) )
74 oveq2 5885 . . . . . . . . 9  |-  ( y  =  [_ v  / 
k ]_ B  ->  ( sum_ k  e.  u  B  +  y )  =  ( sum_ k  e.  u  B  +  [_ v  / 
k ]_ B ) )
7574fveq2d 5521 . . . . . . . 8  |-  ( y  =  [_ v  / 
k ]_ B  ->  ( F `  ( sum_ k  e.  u  B  +  y ) )  =  ( F `  ( sum_ k  e.  u  B  +  [_ v  / 
k ]_ B ) ) )
76 fveq2 5517 . . . . . . . . 9  |-  ( y  =  [_ v  / 
k ]_ B  ->  ( F `  y )  =  ( F `  [_ v  /  k ]_ B ) )
7776oveq2d 5893 . . . . . . . 8  |-  ( y  =  [_ v  / 
k ]_ B  ->  (
( F `  sum_ k  e.  u  B
)  +  ( F `
 y ) )  =  ( ( F `
 sum_ k  e.  u  B )  +  ( F `  [_ v  /  k ]_ B
) ) )
7875, 77eqeq12d 2192 . . . . . . 7  |-  ( y  =  [_ v  / 
k ]_ B  ->  (
( F `  ( sum_ k  e.  u  B  +  y ) )  =  ( ( F `
 sum_ k  e.  u  B )  +  ( F `  y ) )  <->  ( F `  ( sum_ k  e.  u  B  +  [_ v  / 
k ]_ B ) )  =  ( ( F `
 sum_ k  e.  u  B )  +  ( F `  [_ v  /  k ]_ B
) ) ) )
7973, 78, 33vtocl2ga 2807 . . . . . 6  |-  ( (
sum_ k  e.  u  B  e.  CC  /\  [_ v  /  k ]_ B  e.  CC )  ->  ( F `  ( sum_ k  e.  u  B  +  [_ v  /  k ]_ B ) )  =  ( ( F `  sum_ k  e.  u  B )  +  ( F `
 [_ v  /  k ]_ B ) ) )
8068, 69, 79syl2anc 411 . . . . 5  |-  ( ( ( ( ph  /\  u  e.  Fin )  /\  ( u  C_  A  /\  v  e.  ( A  \  u ) ) )  /\  ( F `
 sum_ k  e.  u  B )  =  sum_ k  e.  u  ( F `  B )
)  ->  ( F `  ( sum_ k  e.  u  B  +  [_ v  / 
k ]_ B ) )  =  ( ( F `
 sum_ k  e.  u  B )  +  ( F `  [_ v  /  k ]_ B
) ) )
81 simpr 110 . . . . . 6  |-  ( ( ( ( ph  /\  u  e.  Fin )  /\  ( u  C_  A  /\  v  e.  ( A  \  u ) ) )  /\  ( F `
 sum_ k  e.  u  B )  =  sum_ k  e.  u  ( F `  B )
)  ->  ( F `  sum_ k  e.  u  B )  =  sum_ k  e.  u  ( F `  B )
)
8281oveq1d 5892 . . . . 5  |-  ( ( ( ( ph  /\  u  e.  Fin )  /\  ( u  C_  A  /\  v  e.  ( A  \  u ) ) )  /\  ( F `
 sum_ k  e.  u  B )  =  sum_ k  e.  u  ( F `  B )
)  ->  ( ( F `  sum_ k  e.  u  B )  +  ( F `  [_ v  /  k ]_ B
) )  =  (
sum_ k  e.  u  ( F `  B )  +  ( F `  [_ v  /  k ]_ B ) ) )
8366, 80, 823eqtrd 2214 . . . 4  |-  ( ( ( ( ph  /\  u  e.  Fin )  /\  ( u  C_  A  /\  v  e.  ( A  \  u ) ) )  /\  ( F `
 sum_ k  e.  u  B )  =  sum_ k  e.  u  ( F `  B )
)  ->  ( F `  sum_ k  e.  ( u  u.  { v } ) B )  =  ( sum_ k  e.  u  ( F `  B )  +  ( F `  [_ v  /  k ]_ B
) ) )
84 nfcv 2319 . . . . . . 7  |-  F/_ k F
8584, 45nffv 5527 . . . . . 6  |-  F/_ k
( F `  [_ v  /  k ]_ B
)
8618a1i 9 . . . . . . 7  |-  ( ( ( ( ph  /\  u  e.  Fin )  /\  ( u  C_  A  /\  v  e.  ( A  \  u ) ) )  /\  k  e.  u )  ->  F : CC --> CC )
8786, 55ffvelcdmd 5654 . . . . . 6  |-  ( ( ( ( ph  /\  u  e.  Fin )  /\  ( u  C_  A  /\  v  e.  ( A  \  u ) ) )  /\  k  e.  u )  ->  ( F `  B )  e.  CC )
8856fveq2d 5521 . . . . . 6  |-  ( k  =  v  ->  ( F `  B )  =  ( F `  [_ v  /  k ]_ B ) )
8918a1i 9 . . . . . . 7  |-  ( ( ( ph  /\  u  e.  Fin )  /\  (
u  C_  A  /\  v  e.  ( A  \  u ) ) )  ->  F : CC --> CC )
9089, 63ffvelcdmd 5654 . . . . . 6  |-  ( ( ( ph  /\  u  e.  Fin )  /\  (
u  C_  A  /\  v  e.  ( A  \  u ) ) )  ->  ( F `  [_ v  /  k ]_ B )  e.  CC )
9144, 85, 46, 48, 50, 87, 88, 90fsumsplitsn 11420 . . . . 5  |-  ( ( ( ph  /\  u  e.  Fin )  /\  (
u  C_  A  /\  v  e.  ( A  \  u ) ) )  ->  sum_ k  e.  ( u  u.  { v } ) ( F `
 B )  =  ( sum_ k  e.  u  ( F `  B )  +  ( F `  [_ v  /  k ]_ B ) ) )
9291adantr 276 . . . 4  |-  ( ( ( ( ph  /\  u  e.  Fin )  /\  ( u  C_  A  /\  v  e.  ( A  \  u ) ) )  /\  ( F `
 sum_ k  e.  u  B )  =  sum_ k  e.  u  ( F `  B )
)  ->  sum_ k  e.  ( u  u.  {
v } ) ( F `  B )  =  ( sum_ k  e.  u  ( F `  B )  +  ( F `  [_ v  /  k ]_ B
) ) )
9383, 92eqtr4d 2213 . . 3  |-  ( ( ( ( ph  /\  u  e.  Fin )  /\  ( u  C_  A  /\  v  e.  ( A  \  u ) ) )  /\  ( F `
 sum_ k  e.  u  B )  =  sum_ k  e.  u  ( F `  B )
)  ->  ( F `  sum_ k  e.  ( u  u.  { v } ) B )  =  sum_ k  e.  ( u  u.  { v } ) ( F `
 B ) )
9493ex 115 . 2  |-  ( ( ( ph  /\  u  e.  Fin )  /\  (
u  C_  A  /\  v  e.  ( A  \  u ) ) )  ->  ( ( F `
 sum_ k  e.  u  B )  =  sum_ k  e.  u  ( F `  B )  ->  ( F `  sum_ k  e.  ( u  u.  { v } ) B )  =  sum_ k  e.  ( u  u.  { v } ) ( F `  B
) ) )
95 fsumre.1 . 2  |-  ( ph  ->  A  e.  Fin )
964, 8, 12, 16, 43, 94, 95findcard2sd 6894 1  |-  ( ph  ->  ( F `  sum_ k  e.  A  B
)  =  sum_ k  e.  A  ( F `  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1353    e. wcel 2148   A.wral 2455   _Vcvv 2739   [_csb 3059    \ cdif 3128    u. cun 3129    C_ wss 3131   (/)c0 3424   {csn 3594   -->wf 5214   ` cfv 5218  (class class class)co 5877   Fincfn 6742   CCcc 7811   0cc0 7813    + caddc 7816   sum_csu 11363
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435  ax-setind 4538  ax-iinf 4589  ax-cnex 7904  ax-resscn 7905  ax-1cn 7906  ax-1re 7907  ax-icn 7908  ax-addcl 7909  ax-addrcl 7910  ax-mulcl 7911  ax-mulrcl 7912  ax-addcom 7913  ax-mulcom 7914  ax-addass 7915  ax-mulass 7916  ax-distr 7917  ax-i2m1 7918  ax-0lt1 7919  ax-1rid 7920  ax-0id 7921  ax-rnegex 7922  ax-precex 7923  ax-cnre 7924  ax-pre-ltirr 7925  ax-pre-ltwlin 7926  ax-pre-lttrn 7927  ax-pre-apti 7928  ax-pre-ltadd 7929  ax-pre-mulgt0 7930  ax-pre-mulext 7931  ax-arch 7932  ax-caucvg 7933
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-if 3537  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-tr 4104  df-id 4295  df-po 4298  df-iso 4299  df-iord 4368  df-on 4370  df-ilim 4371  df-suc 4373  df-iom 4592  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-isom 5227  df-riota 5833  df-ov 5880  df-oprab 5881  df-mpo 5882  df-1st 6143  df-2nd 6144  df-recs 6308  df-irdg 6373  df-frec 6394  df-1o 6419  df-oadd 6423  df-er 6537  df-en 6743  df-dom 6744  df-fin 6745  df-pnf 7996  df-mnf 7997  df-xr 7998  df-ltxr 7999  df-le 8000  df-sub 8132  df-neg 8133  df-reap 8534  df-ap 8541  df-div 8632  df-inn 8922  df-2 8980  df-3 8981  df-4 8982  df-n0 9179  df-z 9256  df-uz 9531  df-q 9622  df-rp 9656  df-fz 10011  df-fzo 10145  df-seqfrec 10448  df-exp 10522  df-ihash 10758  df-cj 10853  df-re 10854  df-im 10855  df-rsqrt 11009  df-abs 11010  df-clim 11289  df-sumdc 11364
This theorem is referenced by:  fsumre  11482  fsumim  11483  fsumcj  11484
  Copyright terms: Public domain W3C validator