Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > caovcan | Unicode version |
Description: Convert an operation cancellation law to class notation. (Contributed by NM, 20-Aug-1995.) |
Ref | Expression |
---|---|
caovcan.1 | |
caovcan.2 |
Ref | Expression |
---|---|
caovcan |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq1 5821 | . . . 4 | |
2 | oveq1 5821 | . . . 4 | |
3 | 1, 2 | eqeq12d 2169 | . . 3 |
4 | 3 | imbi1d 230 | . 2 |
5 | oveq2 5822 | . . . 4 | |
6 | 5 | eqeq1d 2163 | . . 3 |
7 | eqeq1 2161 | . . 3 | |
8 | 6, 7 | imbi12d 233 | . 2 |
9 | caovcan.1 | . . 3 | |
10 | oveq2 5822 | . . . . . 6 | |
11 | 10 | eqeq2d 2166 | . . . . 5 |
12 | eqeq2 2164 | . . . . 5 | |
13 | 11, 12 | imbi12d 233 | . . . 4 |
14 | 13 | imbi2d 229 | . . 3 |
15 | caovcan.2 | . . 3 | |
16 | 9, 14, 15 | vtocl 2763 | . 2 |
17 | 4, 8, 16 | vtocl2ga 2777 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wceq 1332 wcel 2125 cvv 2709 (class class class)co 5814 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1424 ax-7 1425 ax-gen 1426 ax-ie1 1470 ax-ie2 1471 ax-8 1481 ax-10 1482 ax-11 1483 ax-i12 1484 ax-bndl 1486 ax-4 1487 ax-17 1503 ax-i9 1507 ax-ial 1511 ax-i5r 1512 ax-ext 2136 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1335 df-nf 1438 df-sb 1740 df-clab 2141 df-cleq 2147 df-clel 2150 df-nfc 2285 df-rex 2438 df-v 2711 df-un 3102 df-sn 3562 df-pr 3563 df-op 3565 df-uni 3769 df-br 3962 df-iota 5128 df-fv 5171 df-ov 5817 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |