ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  caovcan Unicode version

Theorem caovcan 6110
Description: Convert an operation cancellation law to class notation. (Contributed by NM, 20-Aug-1995.)
Hypotheses
Ref Expression
caovcan.1  |-  C  e. 
_V
caovcan.2  |-  ( ( x  e.  S  /\  y  e.  S )  ->  ( ( x F y )  =  ( x F z )  ->  y  =  z ) )
Assertion
Ref Expression
caovcan  |-  ( ( A  e.  S  /\  B  e.  S )  ->  ( ( A F B )  =  ( A F C )  ->  B  =  C ) )
Distinct variable groups:    x, y, z, A    x, B, y, z    x, C, y, z    x, F, y, z    x, S, y, z

Proof of Theorem caovcan
StepHypRef Expression
1 oveq1 5950 . . . 4  |-  ( x  =  A  ->  (
x F y )  =  ( A F y ) )
2 oveq1 5950 . . . 4  |-  ( x  =  A  ->  (
x F C )  =  ( A F C ) )
31, 2eqeq12d 2219 . . 3  |-  ( x  =  A  ->  (
( x F y )  =  ( x F C )  <->  ( A F y )  =  ( A F C ) ) )
43imbi1d 231 . 2  |-  ( x  =  A  ->  (
( ( x F y )  =  ( x F C )  ->  y  =  C )  <->  ( ( A F y )  =  ( A F C )  ->  y  =  C ) ) )
5 oveq2 5951 . . . 4  |-  ( y  =  B  ->  ( A F y )  =  ( A F B ) )
65eqeq1d 2213 . . 3  |-  ( y  =  B  ->  (
( A F y )  =  ( A F C )  <->  ( A F B )  =  ( A F C ) ) )
7 eqeq1 2211 . . 3  |-  ( y  =  B  ->  (
y  =  C  <->  B  =  C ) )
86, 7imbi12d 234 . 2  |-  ( y  =  B  ->  (
( ( A F y )  =  ( A F C )  ->  y  =  C )  <->  ( ( A F B )  =  ( A F C )  ->  B  =  C ) ) )
9 caovcan.1 . . 3  |-  C  e. 
_V
10 oveq2 5951 . . . . . 6  |-  ( z  =  C  ->  (
x F z )  =  ( x F C ) )
1110eqeq2d 2216 . . . . 5  |-  ( z  =  C  ->  (
( x F y )  =  ( x F z )  <->  ( x F y )  =  ( x F C ) ) )
12 eqeq2 2214 . . . . 5  |-  ( z  =  C  ->  (
y  =  z  <->  y  =  C ) )
1311, 12imbi12d 234 . . . 4  |-  ( z  =  C  ->  (
( ( x F y )  =  ( x F z )  ->  y  =  z )  <->  ( ( x F y )  =  ( x F C )  ->  y  =  C ) ) )
1413imbi2d 230 . . 3  |-  ( z  =  C  ->  (
( ( x  e.  S  /\  y  e.  S )  ->  (
( x F y )  =  ( x F z )  -> 
y  =  z ) )  <->  ( ( x  e.  S  /\  y  e.  S )  ->  (
( x F y )  =  ( x F C )  -> 
y  =  C ) ) ) )
15 caovcan.2 . . 3  |-  ( ( x  e.  S  /\  y  e.  S )  ->  ( ( x F y )  =  ( x F z )  ->  y  =  z ) )
169, 14, 15vtocl 2826 . 2  |-  ( ( x  e.  S  /\  y  e.  S )  ->  ( ( x F y )  =  ( x F C )  ->  y  =  C ) )
174, 8, 16vtocl2ga 2840 1  |-  ( ( A  e.  S  /\  B  e.  S )  ->  ( ( A F B )  =  ( A F C )  ->  B  =  C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1372    e. wcel 2175   _Vcvv 2771  (class class class)co 5943
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-ext 2186
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-rex 2489  df-v 2773  df-un 3169  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-br 4044  df-iota 5231  df-fv 5278  df-ov 5946
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator