ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  frec2uzuzd Unicode version

Theorem frec2uzuzd 10511
Description: The value  G (see frec2uz0d 10508) at an ordinal natural number is in the upper integers. (Contributed by Jim Kingdon, 16-May-2020.)
Hypotheses
Ref Expression
frec2uz.1  |-  ( ph  ->  C  e.  ZZ )
frec2uz.2  |-  G  = frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  C )
frec2uzzd.a  |-  ( ph  ->  A  e.  om )
Assertion
Ref Expression
frec2uzuzd  |-  ( ph  ->  ( G `  A
)  e.  ( ZZ>= `  C ) )
Distinct variable group:    x, C
Allowed substitution hints:    ph( x)    A( x)    G( x)

Proof of Theorem frec2uzuzd
Dummy variables  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 frec2uzzd.a . 2  |-  ( ph  ->  A  e.  om )
2 simpr 110 . . . . 5  |-  ( (
ph  /\  y  =  A )  ->  y  =  A )
32eleq1d 2265 . . . 4  |-  ( (
ph  /\  y  =  A )  ->  (
y  e.  om  <->  A  e.  om ) )
42fveq2d 5565 . . . . 5  |-  ( (
ph  /\  y  =  A )  ->  ( G `  y )  =  ( G `  A ) )
54eleq1d 2265 . . . 4  |-  ( (
ph  /\  y  =  A )  ->  (
( G `  y
)  e.  ( ZZ>= `  C )  <->  ( G `  A )  e.  (
ZZ>= `  C ) ) )
63, 5imbi12d 234 . . 3  |-  ( (
ph  /\  y  =  A )  ->  (
( y  e.  om  ->  ( G `  y
)  e.  ( ZZ>= `  C ) )  <->  ( A  e.  om  ->  ( G `  A )  e.  (
ZZ>= `  C ) ) ) )
7 fveq2 5561 . . . . . 6  |-  ( y  =  (/)  ->  ( G `
 y )  =  ( G `  (/) ) )
87eleq1d 2265 . . . . 5  |-  ( y  =  (/)  ->  ( ( G `  y )  e.  ( ZZ>= `  C
)  <->  ( G `  (/) )  e.  ( ZZ>= `  C ) ) )
9 fveq2 5561 . . . . . 6  |-  ( y  =  z  ->  ( G `  y )  =  ( G `  z ) )
109eleq1d 2265 . . . . 5  |-  ( y  =  z  ->  (
( G `  y
)  e.  ( ZZ>= `  C )  <->  ( G `  z )  e.  (
ZZ>= `  C ) ) )
11 fveq2 5561 . . . . . 6  |-  ( y  =  suc  z  -> 
( G `  y
)  =  ( G `
 suc  z )
)
1211eleq1d 2265 . . . . 5  |-  ( y  =  suc  z  -> 
( ( G `  y )  e.  (
ZZ>= `  C )  <->  ( G `  suc  z )  e.  ( ZZ>= `  C )
) )
13 frec2uz.1 . . . . . . 7  |-  ( ph  ->  C  e.  ZZ )
14 frec2uz.2 . . . . . . 7  |-  G  = frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  C )
1513, 14frec2uz0d 10508 . . . . . 6  |-  ( ph  ->  ( G `  (/) )  =  C )
16 uzid 9632 . . . . . . 7  |-  ( C  e.  ZZ  ->  C  e.  ( ZZ>= `  C )
)
1713, 16syl 14 . . . . . 6  |-  ( ph  ->  C  e.  ( ZZ>= `  C ) )
1815, 17eqeltrd 2273 . . . . 5  |-  ( ph  ->  ( G `  (/) )  e.  ( ZZ>= `  C )
)
19 peano2uz 9674 . . . . . . 7  |-  ( ( G `  z )  e.  ( ZZ>= `  C
)  ->  ( ( G `  z )  +  1 )  e.  ( ZZ>= `  C )
)
2013adantl 277 . . . . . . . . 9  |-  ( ( z  e.  om  /\  ph )  ->  C  e.  ZZ )
21 simpl 109 . . . . . . . . 9  |-  ( ( z  e.  om  /\  ph )  ->  z  e.  om )
2220, 14, 21frec2uzsucd 10510 . . . . . . . 8  |-  ( ( z  e.  om  /\  ph )  ->  ( G `  suc  z )  =  ( ( G `  z )  +  1 ) )
2322eleq1d 2265 . . . . . . 7  |-  ( ( z  e.  om  /\  ph )  ->  ( ( G `  suc  z )  e.  ( ZZ>= `  C
)  <->  ( ( G `
 z )  +  1 )  e.  (
ZZ>= `  C ) ) )
2419, 23imbitrrid 156 . . . . . 6  |-  ( ( z  e.  om  /\  ph )  ->  ( ( G `  z )  e.  ( ZZ>= `  C )  ->  ( G `  suc  z )  e.  (
ZZ>= `  C ) ) )
2524ex 115 . . . . 5  |-  ( z  e.  om  ->  ( ph  ->  ( ( G `
 z )  e.  ( ZZ>= `  C )  ->  ( G `  suc  z )  e.  (
ZZ>= `  C ) ) ) )
268, 10, 12, 18, 25finds2 4638 . . . 4  |-  ( y  e.  om  ->  ( ph  ->  ( G `  y )  e.  (
ZZ>= `  C ) ) )
2726com12 30 . . 3  |-  ( ph  ->  ( y  e.  om  ->  ( G `  y
)  e.  ( ZZ>= `  C ) ) )
281, 6, 27vtocld 2816 . 2  |-  ( ph  ->  ( A  e.  om  ->  ( G `  A
)  e.  ( ZZ>= `  C ) ) )
291, 28mpd 13 1  |-  ( ph  ->  ( G `  A
)  e.  ( ZZ>= `  C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2167   (/)c0 3451    |-> cmpt 4095   suc csuc 4401   omcom 4627   ` cfv 5259  (class class class)co 5925  freccfrec 6457   1c1 7897    + caddc 7899   ZZcz 9343   ZZ>=cuz 9618
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-addcom 7996  ax-addass 7998  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-0id 8004  ax-rnegex 8005  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-ltadd 8012
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-id 4329  df-iord 4402  df-on 4404  df-ilim 4405  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-recs 6372  df-frec 6458  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-inn 9008  df-n0 9267  df-z 9344  df-uz 9619
This theorem is referenced by:  frec2uzltd  10512  frec2uzrand  10514  frec2uzrdg  10518  frecuzrdgsuc  10523  hashcl  10890  nninfctlemfo  12232  ennnfonelemrn  12661
  Copyright terms: Public domain W3C validator