| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > vtocld | GIF version | ||
| Description: Implicit substitution of a class for a setvar variable. (Contributed by Mario Carneiro, 15-Oct-2016.) | 
| Ref | Expression | 
|---|---|
| vtocld.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) | 
| vtocld.2 | ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜓 ↔ 𝜒)) | 
| vtocld.3 | ⊢ (𝜑 → 𝜓) | 
| Ref | Expression | 
|---|---|
| vtocld | ⊢ (𝜑 → 𝜒) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | vtocld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 2 | vtocld.2 | . 2 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜓 ↔ 𝜒)) | |
| 3 | vtocld.3 | . 2 ⊢ (𝜑 → 𝜓) | |
| 4 | nfv 1542 | . 2 ⊢ Ⅎ𝑥𝜑 | |
| 5 | nfcvd 2340 | . 2 ⊢ (𝜑 → Ⅎ𝑥𝐴) | |
| 6 | nfvd 1543 | . 2 ⊢ (𝜑 → Ⅎ𝑥𝜒) | |
| 7 | 1, 2, 3, 4, 5, 6 | vtocldf 2815 | 1 ⊢ (𝜑 → 𝜒) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1364 ∈ wcel 2167 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-v 2765 | 
| This theorem is referenced by: funfvima3 5796 isbth 7033 frec2uzuzd 10494 setscomd 12719 | 
| Copyright terms: Public domain | W3C validator |