| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > vtocld | GIF version | ||
| Description: Implicit substitution of a class for a setvar variable. (Contributed by Mario Carneiro, 15-Oct-2016.) |
| Ref | Expression |
|---|---|
| vtocld.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| vtocld.2 | ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜓 ↔ 𝜒)) |
| vtocld.3 | ⊢ (𝜑 → 𝜓) |
| Ref | Expression |
|---|---|
| vtocld | ⊢ (𝜑 → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vtocld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 2 | vtocld.2 | . 2 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜓 ↔ 𝜒)) | |
| 3 | vtocld.3 | . 2 ⊢ (𝜑 → 𝜓) | |
| 4 | nfv 1550 | . 2 ⊢ Ⅎ𝑥𝜑 | |
| 5 | nfcvd 2348 | . 2 ⊢ (𝜑 → Ⅎ𝑥𝐴) | |
| 6 | nfvd 1551 | . 2 ⊢ (𝜑 → Ⅎ𝑥𝜒) | |
| 7 | 1, 2, 3, 4, 5, 6 | vtocldf 2823 | 1 ⊢ (𝜑 → 𝜒) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1372 ∈ wcel 2175 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-v 2773 |
| This theorem is referenced by: funfvima3 5808 isbth 7051 frec2uzuzd 10528 setscomd 12792 |
| Copyright terms: Public domain | W3C validator |