ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  vtocld GIF version

Theorem vtocld 2816
Description: Implicit substitution of a class for a setvar variable. (Contributed by Mario Carneiro, 15-Oct-2016.)
Hypotheses
Ref Expression
vtocld.1 (𝜑𝐴𝑉)
vtocld.2 ((𝜑𝑥 = 𝐴) → (𝜓𝜒))
vtocld.3 (𝜑𝜓)
Assertion
Ref Expression
vtocld (𝜑𝜒)
Distinct variable groups:   𝑥,𝐴   𝜑,𝑥   𝜒,𝑥
Allowed substitution hints:   𝜓(𝑥)   𝑉(𝑥)

Proof of Theorem vtocld
StepHypRef Expression
1 vtocld.1 . 2 (𝜑𝐴𝑉)
2 vtocld.2 . 2 ((𝜑𝑥 = 𝐴) → (𝜓𝜒))
3 vtocld.3 . 2 (𝜑𝜓)
4 nfv 1542 . 2 𝑥𝜑
5 nfcvd 2340 . 2 (𝜑𝑥𝐴)
6 nfvd 1543 . 2 (𝜑 → Ⅎ𝑥𝜒)
71, 2, 3, 4, 5, 6vtocldf 2815 1 (𝜑𝜒)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105   = wceq 1364  wcel 2167
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-3an 982  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-v 2765
This theorem is referenced by:  funfvima3  5796  isbth  7033  frec2uzuzd  10494  setscomd  12719
  Copyright terms: Public domain W3C validator