Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > vtocld | GIF version |
Description: Implicit substitution of a class for a setvar variable. (Contributed by Mario Carneiro, 15-Oct-2016.) |
Ref | Expression |
---|---|
vtocld.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
vtocld.2 | ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜓 ↔ 𝜒)) |
vtocld.3 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
vtocld | ⊢ (𝜑 → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vtocld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
2 | vtocld.2 | . 2 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜓 ↔ 𝜒)) | |
3 | vtocld.3 | . 2 ⊢ (𝜑 → 𝜓) | |
4 | nfv 1521 | . 2 ⊢ Ⅎ𝑥𝜑 | |
5 | nfcvd 2313 | . 2 ⊢ (𝜑 → Ⅎ𝑥𝐴) | |
6 | nfvd 1522 | . 2 ⊢ (𝜑 → Ⅎ𝑥𝜒) | |
7 | 1, 2, 3, 4, 5, 6 | vtocldf 2781 | 1 ⊢ (𝜑 → 𝜒) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 ↔ wb 104 = wceq 1348 ∈ wcel 2141 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-nf 1454 df-sb 1756 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-v 2732 |
This theorem is referenced by: funfvima3 5726 isbth 6940 frec2uzuzd 10345 |
Copyright terms: Public domain | W3C validator |