![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > vtocld | GIF version |
Description: Implicit substitution of a class for a setvar variable. (Contributed by Mario Carneiro, 15-Oct-2016.) |
Ref | Expression |
---|---|
vtocld.1 | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
vtocld.2 | ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜓 ↔ 𝜒)) |
vtocld.3 | ⊢ (𝜑 → 𝜓) |
Ref | Expression |
---|---|
vtocld | ⊢ (𝜑 → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vtocld.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
2 | vtocld.2 | . 2 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜓 ↔ 𝜒)) | |
3 | vtocld.3 | . 2 ⊢ (𝜑 → 𝜓) | |
4 | nfv 1528 | . 2 ⊢ Ⅎ𝑥𝜑 | |
5 | nfcvd 2320 | . 2 ⊢ (𝜑 → Ⅎ𝑥𝐴) | |
6 | nfvd 1529 | . 2 ⊢ (𝜑 → Ⅎ𝑥𝜒) | |
7 | 1, 2, 3, 4, 5, 6 | vtocldf 2790 | 1 ⊢ (𝜑 → 𝜒) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 104 ↔ wb 105 = wceq 1353 ∈ wcel 2148 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-ext 2159 |
This theorem depends on definitions: df-bi 117 df-3an 980 df-nf 1461 df-sb 1763 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-v 2741 |
This theorem is referenced by: funfvima3 5752 isbth 6968 frec2uzuzd 10404 setscomd 12505 |
Copyright terms: Public domain | W3C validator |