Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > isbth | Unicode version |
Description: Schroeder-Bernstein Theorem. Theorem 18 of [Suppes] p. 95. This theorem states that if set is smaller (has lower cardinality) than and vice-versa, then and are equinumerous (have the same cardinality). The interesting thing is that this can be proved without invoking the Axiom of Choice, as we do here, but the proof as you can see is quite difficult. (The theorem can be proved more easily if we allow AC.) The main proof consists of lemmas sbthlem1 6922 through sbthlemi10 6931; this final piece mainly changes bound variables to eliminate the hypotheses of sbthlemi10 6931. We follow closely the proof in Suppes, which you should consult to understand our proof at a higher level. Note that Suppes' proof, which is credited to J. M. Whitaker, does not require the Axiom of Infinity. The proof does require the law of the excluded middle which cannot be avoided as shown at exmidsbthr 13902. (Contributed by NM, 8-Jun-1998.) |
Ref | Expression |
---|---|
isbth | EXMID |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simprl 521 | . 2 EXMID | |
2 | simprr 522 | . 2 EXMID | |
3 | reldom 6711 | . . . . 5 | |
4 | 3 | brrelex1i 4647 | . . . 4 |
5 | 2, 4 | syl 14 | . . 3 EXMID |
6 | breq2 3986 | . . . . . 6 | |
7 | breq1 3985 | . . . . . 6 | |
8 | 6, 7 | anbi12d 465 | . . . . 5 |
9 | breq2 3986 | . . . . 5 | |
10 | 8, 9 | imbi12d 233 | . . . 4 |
11 | 10 | adantl 275 | . . 3 EXMID |
12 | 3 | brrelex1i 4647 | . . . . 5 |
13 | 1, 12 | syl 14 | . . . 4 EXMID |
14 | breq1 3985 | . . . . . . 7 | |
15 | breq2 3986 | . . . . . . 7 | |
16 | 14, 15 | anbi12d 465 | . . . . . 6 |
17 | breq1 3985 | . . . . . 6 | |
18 | 16, 17 | imbi12d 233 | . . . . 5 |
19 | 18 | adantl 275 | . . . 4 EXMID |
20 | vex 2729 | . . . . . . 7 | |
21 | sseq1 3165 | . . . . . . . . 9 | |
22 | imaeq2 4942 | . . . . . . . . . . . 12 | |
23 | 22 | difeq2d 3240 | . . . . . . . . . . 11 |
24 | 23 | imaeq2d 4946 | . . . . . . . . . 10 |
25 | difeq2 3234 | . . . . . . . . . 10 | |
26 | 24, 25 | sseq12d 3173 | . . . . . . . . 9 |
27 | 21, 26 | anbi12d 465 | . . . . . . . 8 |
28 | 27 | cbvabv 2291 | . . . . . . 7 |
29 | eqid 2165 | . . . . . . 7 | |
30 | vex 2729 | . . . . . . 7 | |
31 | 20, 28, 29, 30 | sbthlemi10 6931 | . . . . . 6 EXMID |
32 | 31 | ex 114 | . . . . 5 EXMID |
33 | 32 | adantr 274 | . . . 4 EXMID |
34 | 13, 19, 33 | vtocld 2778 | . . 3 EXMID |
35 | 5, 11, 34 | vtocld 2778 | . 2 EXMID |
36 | 1, 2, 35 | mp2and 430 | 1 EXMID |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1343 wcel 2136 cab 2151 cvv 2726 cdif 3113 cun 3114 wss 3116 cuni 3789 class class class wbr 3982 EXMIDwem 4173 ccnv 4603 cres 4606 cima 4607 cen 6704 cdom 6705 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 |
This theorem depends on definitions: df-bi 116 df-stab 821 df-dc 825 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ral 2449 df-rex 2450 df-rab 2453 df-v 2728 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-br 3983 df-opab 4044 df-exmid 4174 df-id 4271 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-en 6707 df-dom 6708 |
This theorem is referenced by: exmidsbth 13903 |
Copyright terms: Public domain | W3C validator |