ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isbth Unicode version

Theorem isbth 7042
Description: Schroeder-Bernstein Theorem. Theorem 18 of [Suppes] p. 95. This theorem states that if set 
A is smaller (has lower cardinality) than  B and vice-versa, then  A and  B are equinumerous (have the same cardinality). The interesting thing is that this can be proved without invoking the Axiom of Choice, as we do here, but the proof as you can see is quite difficult. (The theorem can be proved more easily if we allow AC.) The main proof consists of lemmas sbthlem1 7032 through sbthlemi10 7041; this final piece mainly changes bound variables to eliminate the hypotheses of sbthlemi10 7041. We follow closely the proof in Suppes, which you should consult to understand our proof at a higher level. Note that Suppes' proof, which is credited to J. M. Whitaker, does not require the Axiom of Infinity. The proof does require the law of the excluded middle which cannot be avoided as shown at exmidsbthr 15754. (Contributed by NM, 8-Jun-1998.)
Assertion
Ref Expression
isbth  |-  ( (EXMID  /\  ( A  ~<_  B  /\  B  ~<_  A ) )  ->  A  ~~  B
)

Proof of Theorem isbth
Dummy variables  x  y  z  w  f  g are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simprl 529 . 2  |-  ( (EXMID  /\  ( A  ~<_  B  /\  B  ~<_  A ) )  ->  A  ~<_  B )
2 simprr 531 . 2  |-  ( (EXMID  /\  ( A  ~<_  B  /\  B  ~<_  A ) )  ->  B  ~<_  A )
3 reldom 6813 . . . . 5  |-  Rel  ~<_
43brrelex1i 4707 . . . 4  |-  ( B  ~<_  A  ->  B  e.  _V )
52, 4syl 14 . . 3  |-  ( (EXMID  /\  ( A  ~<_  B  /\  B  ~<_  A ) )  ->  B  e.  _V )
6 breq2 4038 . . . . . 6  |-  ( w  =  B  ->  ( A  ~<_  w  <->  A  ~<_  B ) )
7 breq1 4037 . . . . . 6  |-  ( w  =  B  ->  (
w  ~<_  A  <->  B  ~<_  A ) )
86, 7anbi12d 473 . . . . 5  |-  ( w  =  B  ->  (
( A  ~<_  w  /\  w  ~<_  A )  <->  ( A  ~<_  B  /\  B  ~<_  A ) ) )
9 breq2 4038 . . . . 5  |-  ( w  =  B  ->  ( A  ~~  w  <->  A  ~~  B ) )
108, 9imbi12d 234 . . . 4  |-  ( w  =  B  ->  (
( ( A  ~<_  w  /\  w  ~<_  A )  ->  A  ~~  w
)  <->  ( ( A  ~<_  B  /\  B  ~<_  A )  ->  A  ~~  B ) ) )
1110adantl 277 . . 3  |-  ( ( (EXMID 
/\  ( A  ~<_  B  /\  B  ~<_  A ) )  /\  w  =  B )  ->  (
( ( A  ~<_  w  /\  w  ~<_  A )  ->  A  ~~  w
)  <->  ( ( A  ~<_  B  /\  B  ~<_  A )  ->  A  ~~  B ) ) )
123brrelex1i 4707 . . . . 5  |-  ( A  ~<_  B  ->  A  e.  _V )
131, 12syl 14 . . . 4  |-  ( (EXMID  /\  ( A  ~<_  B  /\  B  ~<_  A ) )  ->  A  e.  _V )
14 breq1 4037 . . . . . . 7  |-  ( z  =  A  ->  (
z  ~<_  w  <->  A  ~<_  w ) )
15 breq2 4038 . . . . . . 7  |-  ( z  =  A  ->  (
w  ~<_  z  <->  w  ~<_  A ) )
1614, 15anbi12d 473 . . . . . 6  |-  ( z  =  A  ->  (
( z  ~<_  w  /\  w  ~<_  z )  <->  ( A  ~<_  w  /\  w  ~<_  A ) ) )
17 breq1 4037 . . . . . 6  |-  ( z  =  A  ->  (
z  ~~  w  <->  A  ~~  w ) )
1816, 17imbi12d 234 . . . . 5  |-  ( z  =  A  ->  (
( ( z  ~<_  w  /\  w  ~<_  z )  ->  z  ~~  w
)  <->  ( ( A  ~<_  w  /\  w  ~<_  A )  ->  A  ~~  w ) ) )
1918adantl 277 . . . 4  |-  ( ( (EXMID 
/\  ( A  ~<_  B  /\  B  ~<_  A ) )  /\  z  =  A )  ->  (
( ( z  ~<_  w  /\  w  ~<_  z )  ->  z  ~~  w
)  <->  ( ( A  ~<_  w  /\  w  ~<_  A )  ->  A  ~~  w ) ) )
20 vex 2766 . . . . . . 7  |-  z  e. 
_V
21 sseq1 3207 . . . . . . . . 9  |-  ( y  =  x  ->  (
y  C_  z  <->  x  C_  z
) )
22 imaeq2 5006 . . . . . . . . . . . 12  |-  ( y  =  x  ->  (
f " y )  =  ( f "
x ) )
2322difeq2d 3282 . . . . . . . . . . 11  |-  ( y  =  x  ->  (
w  \  ( f " y ) )  =  ( w  \ 
( f " x
) ) )
2423imaeq2d 5010 . . . . . . . . . 10  |-  ( y  =  x  ->  (
g " ( w 
\  ( f "
y ) ) )  =  ( g "
( w  \  (
f " x ) ) ) )
25 difeq2 3276 . . . . . . . . . 10  |-  ( y  =  x  ->  (
z  \  y )  =  ( z  \  x ) )
2624, 25sseq12d 3215 . . . . . . . . 9  |-  ( y  =  x  ->  (
( g " (
w  \  ( f " y ) ) )  C_  ( z  \  y )  <->  ( g " ( w  \ 
( f " x
) ) )  C_  ( z  \  x
) ) )
2721, 26anbi12d 473 . . . . . . . 8  |-  ( y  =  x  ->  (
( y  C_  z  /\  ( g " (
w  \  ( f " y ) ) )  C_  ( z  \  y ) )  <-> 
( x  C_  z  /\  ( g " (
w  \  ( f " x ) ) )  C_  ( z  \  x ) ) ) )
2827cbvabv 2321 . . . . . . 7  |-  { y  |  ( y  C_  z  /\  ( g "
( w  \  (
f " y ) ) )  C_  (
z  \  y )
) }  =  {
x  |  ( x 
C_  z  /\  (
g " ( w 
\  ( f "
x ) ) ) 
C_  ( z  \  x ) ) }
29 eqid 2196 . . . . . . 7  |-  ( ( f  |`  U. { y  |  ( y  C_  z  /\  ( g "
( w  \  (
f " y ) ) )  C_  (
z  \  y )
) } )  u.  ( `' g  |`  ( z  \  U. { y  |  ( y  C_  z  /\  ( g " (
w  \  ( f " y ) ) )  C_  ( z  \  y ) ) } ) ) )  =  ( ( f  |`  U. { y  |  ( y  C_  z  /\  ( g " (
w  \  ( f " y ) ) )  C_  ( z  \  y ) ) } )  u.  ( `' g  |`  ( z 
\  U. { y  |  ( y  C_  z  /\  ( g " (
w  \  ( f " y ) ) )  C_  ( z  \  y ) ) } ) ) )
30 vex 2766 . . . . . . 7  |-  w  e. 
_V
3120, 28, 29, 30sbthlemi10 7041 . . . . . 6  |-  ( (EXMID  /\  ( z  ~<_  w  /\  w  ~<_  z ) )  ->  z  ~~  w
)
3231ex 115 . . . . 5  |-  (EXMID  ->  (
( z  ~<_  w  /\  w  ~<_  z )  -> 
z  ~~  w )
)
3332adantr 276 . . . 4  |-  ( (EXMID  /\  ( A  ~<_  B  /\  B  ~<_  A ) )  ->  ( ( z  ~<_  w  /\  w  ~<_  z )  ->  z  ~~  w ) )
3413, 19, 33vtocld 2816 . . 3  |-  ( (EXMID  /\  ( A  ~<_  B  /\  B  ~<_  A ) )  ->  ( ( A  ~<_  w  /\  w  ~<_  A )  ->  A  ~~  w ) )
355, 11, 34vtocld 2816 . 2  |-  ( (EXMID  /\  ( A  ~<_  B  /\  B  ~<_  A ) )  ->  ( ( A  ~<_  B  /\  B  ~<_  A )  ->  A  ~~  B ) )
361, 2, 35mp2and 433 1  |-  ( (EXMID  /\  ( A  ~<_  B  /\  B  ~<_  A ) )  ->  A  ~~  B
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2167   {cab 2182   _Vcvv 2763    \ cdif 3154    u. cun 3155    C_ wss 3157   U.cuni 3840   class class class wbr 4034  EXMIDwem 4228   `'ccnv 4663    |` cres 4666   "cima 4667    ~~ cen 6806    ~<_ cdom 6807
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469
This theorem depends on definitions:  df-bi 117  df-stab 832  df-dc 836  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-br 4035  df-opab 4096  df-exmid 4229  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-en 6809  df-dom 6810
This theorem is referenced by:  exmidsbth  15755
  Copyright terms: Public domain W3C validator