Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > isbth | Unicode version |
Description: Schroeder-Bernstein Theorem. Theorem 18 of [Suppes] p. 95. This theorem states that if set is smaller (has lower cardinality) than and vice-versa, then and are equinumerous (have the same cardinality). The interesting thing is that this can be proved without invoking the Axiom of Choice, as we do here, but the proof as you can see is quite difficult. (The theorem can be proved more easily if we allow AC.) The main proof consists of lemmas sbthlem1 6934 through sbthlemi10 6943; this final piece mainly changes bound variables to eliminate the hypotheses of sbthlemi10 6943. We follow closely the proof in Suppes, which you should consult to understand our proof at a higher level. Note that Suppes' proof, which is credited to J. M. Whitaker, does not require the Axiom of Infinity. The proof does require the law of the excluded middle which cannot be avoided as shown at exmidsbthr 14055. (Contributed by NM, 8-Jun-1998.) |
Ref | Expression |
---|---|
isbth | EXMID |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simprl 526 | . 2 EXMID | |
2 | simprr 527 | . 2 EXMID | |
3 | reldom 6723 | . . . . 5 | |
4 | 3 | brrelex1i 4654 | . . . 4 |
5 | 2, 4 | syl 14 | . . 3 EXMID |
6 | breq2 3993 | . . . . . 6 | |
7 | breq1 3992 | . . . . . 6 | |
8 | 6, 7 | anbi12d 470 | . . . . 5 |
9 | breq2 3993 | . . . . 5 | |
10 | 8, 9 | imbi12d 233 | . . . 4 |
11 | 10 | adantl 275 | . . 3 EXMID |
12 | 3 | brrelex1i 4654 | . . . . 5 |
13 | 1, 12 | syl 14 | . . . 4 EXMID |
14 | breq1 3992 | . . . . . . 7 | |
15 | breq2 3993 | . . . . . . 7 | |
16 | 14, 15 | anbi12d 470 | . . . . . 6 |
17 | breq1 3992 | . . . . . 6 | |
18 | 16, 17 | imbi12d 233 | . . . . 5 |
19 | 18 | adantl 275 | . . . 4 EXMID |
20 | vex 2733 | . . . . . . 7 | |
21 | sseq1 3170 | . . . . . . . . 9 | |
22 | imaeq2 4949 | . . . . . . . . . . . 12 | |
23 | 22 | difeq2d 3245 | . . . . . . . . . . 11 |
24 | 23 | imaeq2d 4953 | . . . . . . . . . 10 |
25 | difeq2 3239 | . . . . . . . . . 10 | |
26 | 24, 25 | sseq12d 3178 | . . . . . . . . 9 |
27 | 21, 26 | anbi12d 470 | . . . . . . . 8 |
28 | 27 | cbvabv 2295 | . . . . . . 7 |
29 | eqid 2170 | . . . . . . 7 | |
30 | vex 2733 | . . . . . . 7 | |
31 | 20, 28, 29, 30 | sbthlemi10 6943 | . . . . . 6 EXMID |
32 | 31 | ex 114 | . . . . 5 EXMID |
33 | 32 | adantr 274 | . . . 4 EXMID |
34 | 13, 19, 33 | vtocld 2782 | . . 3 EXMID |
35 | 5, 11, 34 | vtocld 2782 | . 2 EXMID |
36 | 1, 2, 35 | mp2and 431 | 1 EXMID |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1348 wcel 2141 cab 2156 cvv 2730 cdif 3118 cun 3119 wss 3121 cuni 3796 class class class wbr 3989 EXMIDwem 4180 ccnv 4610 cres 4613 cima 4614 cen 6716 cdom 6717 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-nul 4115 ax-pow 4160 ax-pr 4194 ax-un 4418 |
This theorem depends on definitions: df-bi 116 df-stab 826 df-dc 830 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-rab 2457 df-v 2732 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-exmid 4181 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-en 6719 df-dom 6720 |
This theorem is referenced by: exmidsbth 14056 |
Copyright terms: Public domain | W3C validator |