ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  isbth Unicode version

Theorem isbth 7071
Description: Schroeder-Bernstein Theorem. Theorem 18 of [Suppes] p. 95. This theorem states that if set 
A is smaller (has lower cardinality) than  B and vice-versa, then  A and  B are equinumerous (have the same cardinality). The interesting thing is that this can be proved without invoking the Axiom of Choice, as we do here, but the proof as you can see is quite difficult. (The theorem can be proved more easily if we allow AC.) The main proof consists of lemmas sbthlem1 7061 through sbthlemi10 7070; this final piece mainly changes bound variables to eliminate the hypotheses of sbthlemi10 7070. We follow closely the proof in Suppes, which you should consult to understand our proof at a higher level. Note that Suppes' proof, which is credited to J. M. Whitaker, does not require the Axiom of Infinity. The proof does require the law of the excluded middle which cannot be avoided as shown at exmidsbthr 15999. (Contributed by NM, 8-Jun-1998.)
Assertion
Ref Expression
isbth  |-  ( (EXMID  /\  ( A  ~<_  B  /\  B  ~<_  A ) )  ->  A  ~~  B
)

Proof of Theorem isbth
Dummy variables  x  y  z  w  f  g are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simprl 529 . 2  |-  ( (EXMID  /\  ( A  ~<_  B  /\  B  ~<_  A ) )  ->  A  ~<_  B )
2 simprr 531 . 2  |-  ( (EXMID  /\  ( A  ~<_  B  /\  B  ~<_  A ) )  ->  B  ~<_  A )
3 reldom 6834 . . . . 5  |-  Rel  ~<_
43brrelex1i 4719 . . . 4  |-  ( B  ~<_  A  ->  B  e.  _V )
52, 4syl 14 . . 3  |-  ( (EXMID  /\  ( A  ~<_  B  /\  B  ~<_  A ) )  ->  B  e.  _V )
6 breq2 4049 . . . . . 6  |-  ( w  =  B  ->  ( A  ~<_  w  <->  A  ~<_  B ) )
7 breq1 4048 . . . . . 6  |-  ( w  =  B  ->  (
w  ~<_  A  <->  B  ~<_  A ) )
86, 7anbi12d 473 . . . . 5  |-  ( w  =  B  ->  (
( A  ~<_  w  /\  w  ~<_  A )  <->  ( A  ~<_  B  /\  B  ~<_  A ) ) )
9 breq2 4049 . . . . 5  |-  ( w  =  B  ->  ( A  ~~  w  <->  A  ~~  B ) )
108, 9imbi12d 234 . . . 4  |-  ( w  =  B  ->  (
( ( A  ~<_  w  /\  w  ~<_  A )  ->  A  ~~  w
)  <->  ( ( A  ~<_  B  /\  B  ~<_  A )  ->  A  ~~  B ) ) )
1110adantl 277 . . 3  |-  ( ( (EXMID 
/\  ( A  ~<_  B  /\  B  ~<_  A ) )  /\  w  =  B )  ->  (
( ( A  ~<_  w  /\  w  ~<_  A )  ->  A  ~~  w
)  <->  ( ( A  ~<_  B  /\  B  ~<_  A )  ->  A  ~~  B ) ) )
123brrelex1i 4719 . . . . 5  |-  ( A  ~<_  B  ->  A  e.  _V )
131, 12syl 14 . . . 4  |-  ( (EXMID  /\  ( A  ~<_  B  /\  B  ~<_  A ) )  ->  A  e.  _V )
14 breq1 4048 . . . . . . 7  |-  ( z  =  A  ->  (
z  ~<_  w  <->  A  ~<_  w ) )
15 breq2 4049 . . . . . . 7  |-  ( z  =  A  ->  (
w  ~<_  z  <->  w  ~<_  A ) )
1614, 15anbi12d 473 . . . . . 6  |-  ( z  =  A  ->  (
( z  ~<_  w  /\  w  ~<_  z )  <->  ( A  ~<_  w  /\  w  ~<_  A ) ) )
17 breq1 4048 . . . . . 6  |-  ( z  =  A  ->  (
z  ~~  w  <->  A  ~~  w ) )
1816, 17imbi12d 234 . . . . 5  |-  ( z  =  A  ->  (
( ( z  ~<_  w  /\  w  ~<_  z )  ->  z  ~~  w
)  <->  ( ( A  ~<_  w  /\  w  ~<_  A )  ->  A  ~~  w ) ) )
1918adantl 277 . . . 4  |-  ( ( (EXMID 
/\  ( A  ~<_  B  /\  B  ~<_  A ) )  /\  z  =  A )  ->  (
( ( z  ~<_  w  /\  w  ~<_  z )  ->  z  ~~  w
)  <->  ( ( A  ~<_  w  /\  w  ~<_  A )  ->  A  ~~  w ) ) )
20 vex 2775 . . . . . . 7  |-  z  e. 
_V
21 sseq1 3216 . . . . . . . . 9  |-  ( y  =  x  ->  (
y  C_  z  <->  x  C_  z
) )
22 imaeq2 5019 . . . . . . . . . . . 12  |-  ( y  =  x  ->  (
f " y )  =  ( f "
x ) )
2322difeq2d 3291 . . . . . . . . . . 11  |-  ( y  =  x  ->  (
w  \  ( f " y ) )  =  ( w  \ 
( f " x
) ) )
2423imaeq2d 5023 . . . . . . . . . 10  |-  ( y  =  x  ->  (
g " ( w 
\  ( f "
y ) ) )  =  ( g "
( w  \  (
f " x ) ) ) )
25 difeq2 3285 . . . . . . . . . 10  |-  ( y  =  x  ->  (
z  \  y )  =  ( z  \  x ) )
2624, 25sseq12d 3224 . . . . . . . . 9  |-  ( y  =  x  ->  (
( g " (
w  \  ( f " y ) ) )  C_  ( z  \  y )  <->  ( g " ( w  \ 
( f " x
) ) )  C_  ( z  \  x
) ) )
2721, 26anbi12d 473 . . . . . . . 8  |-  ( y  =  x  ->  (
( y  C_  z  /\  ( g " (
w  \  ( f " y ) ) )  C_  ( z  \  y ) )  <-> 
( x  C_  z  /\  ( g " (
w  \  ( f " x ) ) )  C_  ( z  \  x ) ) ) )
2827cbvabv 2330 . . . . . . 7  |-  { y  |  ( y  C_  z  /\  ( g "
( w  \  (
f " y ) ) )  C_  (
z  \  y )
) }  =  {
x  |  ( x 
C_  z  /\  (
g " ( w 
\  ( f "
x ) ) ) 
C_  ( z  \  x ) ) }
29 eqid 2205 . . . . . . 7  |-  ( ( f  |`  U. { y  |  ( y  C_  z  /\  ( g "
( w  \  (
f " y ) ) )  C_  (
z  \  y )
) } )  u.  ( `' g  |`  ( z  \  U. { y  |  ( y  C_  z  /\  ( g " (
w  \  ( f " y ) ) )  C_  ( z  \  y ) ) } ) ) )  =  ( ( f  |`  U. { y  |  ( y  C_  z  /\  ( g " (
w  \  ( f " y ) ) )  C_  ( z  \  y ) ) } )  u.  ( `' g  |`  ( z 
\  U. { y  |  ( y  C_  z  /\  ( g " (
w  \  ( f " y ) ) )  C_  ( z  \  y ) ) } ) ) )
30 vex 2775 . . . . . . 7  |-  w  e. 
_V
3120, 28, 29, 30sbthlemi10 7070 . . . . . 6  |-  ( (EXMID  /\  ( z  ~<_  w  /\  w  ~<_  z ) )  ->  z  ~~  w
)
3231ex 115 . . . . 5  |-  (EXMID  ->  (
( z  ~<_  w  /\  w  ~<_  z )  -> 
z  ~~  w )
)
3332adantr 276 . . . 4  |-  ( (EXMID  /\  ( A  ~<_  B  /\  B  ~<_  A ) )  ->  ( ( z  ~<_  w  /\  w  ~<_  z )  ->  z  ~~  w ) )
3413, 19, 33vtocld 2825 . . 3  |-  ( (EXMID  /\  ( A  ~<_  B  /\  B  ~<_  A ) )  ->  ( ( A  ~<_  w  /\  w  ~<_  A )  ->  A  ~~  w ) )
355, 11, 34vtocld 2825 . 2  |-  ( (EXMID  /\  ( A  ~<_  B  /\  B  ~<_  A ) )  ->  ( ( A  ~<_  B  /\  B  ~<_  A )  ->  A  ~~  B ) )
361, 2, 35mp2and 433 1  |-  ( (EXMID  /\  ( A  ~<_  B  /\  B  ~<_  A ) )  ->  A  ~~  B
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373    e. wcel 2176   {cab 2191   _Vcvv 2772    \ cdif 3163    u. cun 3164    C_ wss 3166   U.cuni 3850   class class class wbr 4045  EXMIDwem 4239   `'ccnv 4675    |` cres 4678   "cima 4679    ~~ cen 6827    ~<_ cdom 6828
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4163  ax-nul 4171  ax-pow 4219  ax-pr 4254  ax-un 4481
This theorem depends on definitions:  df-bi 117  df-stab 833  df-dc 837  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-rab 2493  df-v 2774  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4046  df-opab 4107  df-exmid 4240  df-id 4341  df-xp 4682  df-rel 4683  df-cnv 4684  df-co 4685  df-dm 4686  df-rn 4687  df-res 4688  df-ima 4689  df-fun 5274  df-fn 5275  df-f 5276  df-f1 5277  df-fo 5278  df-f1o 5279  df-en 6830  df-dom 6831
This theorem is referenced by:  exmidsbth  16000
  Copyright terms: Public domain W3C validator