Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > isbth | Unicode version |
Description: Schroeder-Bernstein Theorem. Theorem 18 of [Suppes] p. 95. This theorem states that if set is smaller (has lower cardinality) than and vice-versa, then and are equinumerous (have the same cardinality). The interesting thing is that this can be proved without invoking the Axiom of Choice, as we do here, but the proof as you can see is quite difficult. (The theorem can be proved more easily if we allow AC.) The main proof consists of lemmas sbthlem1 6898 through sbthlemi10 6907; this final piece mainly changes bound variables to eliminate the hypotheses of sbthlemi10 6907. We follow closely the proof in Suppes, which you should consult to understand our proof at a higher level. Note that Suppes' proof, which is credited to J. M. Whitaker, does not require the Axiom of Infinity. The proof does require the law of the excluded middle which cannot be avoided as shown at exmidsbthr 13565. (Contributed by NM, 8-Jun-1998.) |
Ref | Expression |
---|---|
isbth | EXMID |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simprl 521 | . 2 EXMID | |
2 | simprr 522 | . 2 EXMID | |
3 | reldom 6687 | . . . . 5 | |
4 | 3 | brrelex1i 4628 | . . . 4 |
5 | 2, 4 | syl 14 | . . 3 EXMID |
6 | breq2 3969 | . . . . . 6 | |
7 | breq1 3968 | . . . . . 6 | |
8 | 6, 7 | anbi12d 465 | . . . . 5 |
9 | breq2 3969 | . . . . 5 | |
10 | 8, 9 | imbi12d 233 | . . . 4 |
11 | 10 | adantl 275 | . . 3 EXMID |
12 | 3 | brrelex1i 4628 | . . . . 5 |
13 | 1, 12 | syl 14 | . . . 4 EXMID |
14 | breq1 3968 | . . . . . . 7 | |
15 | breq2 3969 | . . . . . . 7 | |
16 | 14, 15 | anbi12d 465 | . . . . . 6 |
17 | breq1 3968 | . . . . . 6 | |
18 | 16, 17 | imbi12d 233 | . . . . 5 |
19 | 18 | adantl 275 | . . . 4 EXMID |
20 | vex 2715 | . . . . . . 7 | |
21 | sseq1 3151 | . . . . . . . . 9 | |
22 | imaeq2 4923 | . . . . . . . . . . . 12 | |
23 | 22 | difeq2d 3225 | . . . . . . . . . . 11 |
24 | 23 | imaeq2d 4927 | . . . . . . . . . 10 |
25 | difeq2 3219 | . . . . . . . . . 10 | |
26 | 24, 25 | sseq12d 3159 | . . . . . . . . 9 |
27 | 21, 26 | anbi12d 465 | . . . . . . . 8 |
28 | 27 | cbvabv 2282 | . . . . . . 7 |
29 | eqid 2157 | . . . . . . 7 | |
30 | vex 2715 | . . . . . . 7 | |
31 | 20, 28, 29, 30 | sbthlemi10 6907 | . . . . . 6 EXMID |
32 | 31 | ex 114 | . . . . 5 EXMID |
33 | 32 | adantr 274 | . . . 4 EXMID |
34 | 13, 19, 33 | vtocld 2764 | . . 3 EXMID |
35 | 5, 11, 34 | vtocld 2764 | . 2 EXMID |
36 | 1, 2, 35 | mp2and 430 | 1 EXMID |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1335 wcel 2128 cab 2143 cvv 2712 cdif 3099 cun 3100 wss 3102 cuni 3772 class class class wbr 3965 EXMIDwem 4155 ccnv 4584 cres 4587 cima 4588 cen 6680 cdom 6681 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-13 2130 ax-14 2131 ax-ext 2139 ax-sep 4082 ax-nul 4090 ax-pow 4135 ax-pr 4169 ax-un 4393 |
This theorem depends on definitions: df-bi 116 df-stab 817 df-dc 821 df-3an 965 df-tru 1338 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ral 2440 df-rex 2441 df-rab 2444 df-v 2714 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-nul 3395 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-br 3966 df-opab 4026 df-exmid 4156 df-id 4253 df-xp 4591 df-rel 4592 df-cnv 4593 df-co 4594 df-dm 4595 df-rn 4596 df-res 4597 df-ima 4598 df-fun 5171 df-fn 5172 df-f 5173 df-f1 5174 df-fo 5175 df-f1o 5176 df-en 6683 df-dom 6684 |
This theorem is referenced by: exmidsbth 13566 |
Copyright terms: Public domain | W3C validator |