| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > isbth | Unicode version | ||
| Description: Schroeder-Bernstein
Theorem. Theorem 18 of [Suppes] p. 95. This
theorem states that if set |
| Ref | Expression |
|---|---|
| isbth |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simprl 529 |
. 2
| |
| 2 | simprr 531 |
. 2
| |
| 3 | reldom 6813 |
. . . . 5
| |
| 4 | 3 | brrelex1i 4707 |
. . . 4
|
| 5 | 2, 4 | syl 14 |
. . 3
|
| 6 | breq2 4038 |
. . . . . 6
| |
| 7 | breq1 4037 |
. . . . . 6
| |
| 8 | 6, 7 | anbi12d 473 |
. . . . 5
|
| 9 | breq2 4038 |
. . . . 5
| |
| 10 | 8, 9 | imbi12d 234 |
. . . 4
|
| 11 | 10 | adantl 277 |
. . 3
|
| 12 | 3 | brrelex1i 4707 |
. . . . 5
|
| 13 | 1, 12 | syl 14 |
. . . 4
|
| 14 | breq1 4037 |
. . . . . . 7
| |
| 15 | breq2 4038 |
. . . . . . 7
| |
| 16 | 14, 15 | anbi12d 473 |
. . . . . 6
|
| 17 | breq1 4037 |
. . . . . 6
| |
| 18 | 16, 17 | imbi12d 234 |
. . . . 5
|
| 19 | 18 | adantl 277 |
. . . 4
|
| 20 | vex 2766 |
. . . . . . 7
| |
| 21 | sseq1 3207 |
. . . . . . . . 9
| |
| 22 | imaeq2 5006 |
. . . . . . . . . . . 12
| |
| 23 | 22 | difeq2d 3282 |
. . . . . . . . . . 11
|
| 24 | 23 | imaeq2d 5010 |
. . . . . . . . . 10
|
| 25 | difeq2 3276 |
. . . . . . . . . 10
| |
| 26 | 24, 25 | sseq12d 3215 |
. . . . . . . . 9
|
| 27 | 21, 26 | anbi12d 473 |
. . . . . . . 8
|
| 28 | 27 | cbvabv 2321 |
. . . . . . 7
|
| 29 | eqid 2196 |
. . . . . . 7
| |
| 30 | vex 2766 |
. . . . . . 7
| |
| 31 | 20, 28, 29, 30 | sbthlemi10 7041 |
. . . . . 6
|
| 32 | 31 | ex 115 |
. . . . 5
|
| 33 | 32 | adantr 276 |
. . . 4
|
| 34 | 13, 19, 33 | vtocld 2816 |
. . 3
|
| 35 | 5, 11, 34 | vtocld 2816 |
. 2
|
| 36 | 1, 2, 35 | mp2and 433 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4152 ax-nul 4160 ax-pow 4208 ax-pr 4243 ax-un 4469 |
| This theorem depends on definitions: df-bi 117 df-stab 832 df-dc 836 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-rab 2484 df-v 2765 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-br 4035 df-opab 4096 df-exmid 4229 df-id 4329 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-en 6809 df-dom 6810 |
| This theorem is referenced by: exmidsbth 15755 |
| Copyright terms: Public domain | W3C validator |