ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  setscomd Unicode version

Theorem setscomd 12719
Description: Different components can be set in any order. (Contributed by Jim Kingdon, 20-Feb-2025.)
Hypotheses
Ref Expression
setscomd.a  |-  ( ph  ->  A  e.  Y )
setscomd.b  |-  ( ph  ->  B  e.  Z )
setscomd.s  |-  ( ph  ->  S  e.  V )
setscomd.ab  |-  ( ph  ->  A  =/=  B )
setscomd.c  |-  ( ph  ->  C  e.  W )
setscomd.d  |-  ( ph  ->  D  e.  X )
Assertion
Ref Expression
setscomd  |-  ( ph  ->  ( ( S sSet  <. A ,  C >. ) sSet  <. B ,  D >. )  =  ( ( S sSet  <. B ,  D >. ) sSet  <. A ,  C >. ) )

Proof of Theorem setscomd
Dummy variables  a  b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 setscomd.ab . 2  |-  ( ph  ->  A  =/=  B )
2 setscomd.b . . 3  |-  ( ph  ->  B  e.  Z )
3 simpr 110 . . . . 5  |-  ( (
ph  /\  b  =  B )  ->  b  =  B )
43neeq2d 2386 . . . 4  |-  ( (
ph  /\  b  =  B )  ->  ( A  =/=  b  <->  A  =/=  B ) )
53opeq1d 3814 . . . . . 6  |-  ( (
ph  /\  b  =  B )  ->  <. b ,  D >.  =  <. B ,  D >. )
65oveq2d 5938 . . . . 5  |-  ( (
ph  /\  b  =  B )  ->  (
( S sSet  <. A ,  C >. ) sSet  <. b ,  D >. )  =  ( ( S sSet  <. A ,  C >. ) sSet  <. B ,  D >. ) )
75oveq2d 5938 . . . . . 6  |-  ( (
ph  /\  b  =  B )  ->  ( S sSet  <. b ,  D >. )  =  ( S sSet  <. B ,  D >. ) )
87oveq1d 5937 . . . . 5  |-  ( (
ph  /\  b  =  B )  ->  (
( S sSet  <. b ,  D >. ) sSet  <. A ,  C >. )  =  ( ( S sSet  <. B ,  D >. ) sSet  <. A ,  C >. ) )
96, 8eqeq12d 2211 . . . 4  |-  ( (
ph  /\  b  =  B )  ->  (
( ( S sSet  <. A ,  C >. ) sSet  <.
b ,  D >. )  =  ( ( S sSet  <. b ,  D >. ) sSet  <. A ,  C >. )  <-> 
( ( S sSet  <. A ,  C >. ) sSet  <. B ,  D >. )  =  ( ( S sSet  <. B ,  D >. ) sSet  <. A ,  C >. ) ) )
104, 9imbi12d 234 . . 3  |-  ( (
ph  /\  b  =  B )  ->  (
( A  =/=  b  ->  ( ( S sSet  <. A ,  C >. ) sSet  <.
b ,  D >. )  =  ( ( S sSet  <. b ,  D >. ) sSet  <. A ,  C >. ) )  <->  ( A  =/= 
B  ->  ( ( S sSet  <. A ,  C >. ) sSet  <. B ,  D >. )  =  ( ( S sSet  <. B ,  D >. ) sSet  <. A ,  C >. ) ) ) )
11 setscomd.a . . . 4  |-  ( ph  ->  A  e.  Y )
12 simpr 110 . . . . . 6  |-  ( (
ph  /\  a  =  A )  ->  a  =  A )
1312neeq1d 2385 . . . . 5  |-  ( (
ph  /\  a  =  A )  ->  (
a  =/=  b  <->  A  =/=  b ) )
1412opeq1d 3814 . . . . . . . 8  |-  ( (
ph  /\  a  =  A )  ->  <. a ,  C >.  =  <. A ,  C >. )
1514oveq2d 5938 . . . . . . 7  |-  ( (
ph  /\  a  =  A )  ->  ( S sSet  <. a ,  C >. )  =  ( S sSet  <. A ,  C >. ) )
1615oveq1d 5937 . . . . . 6  |-  ( (
ph  /\  a  =  A )  ->  (
( S sSet  <. a ,  C >. ) sSet  <. b ,  D >. )  =  ( ( S sSet  <. A ,  C >. ) sSet  <. b ,  D >. ) )
1714oveq2d 5938 . . . . . 6  |-  ( (
ph  /\  a  =  A )  ->  (
( S sSet  <. b ,  D >. ) sSet  <. a ,  C >. )  =  ( ( S sSet  <. b ,  D >. ) sSet  <. A ,  C >. ) )
1816, 17eqeq12d 2211 . . . . 5  |-  ( (
ph  /\  a  =  A )  ->  (
( ( S sSet  <. a ,  C >. ) sSet  <.
b ,  D >. )  =  ( ( S sSet  <. b ,  D >. ) sSet  <. a ,  C >. )  <-> 
( ( S sSet  <. A ,  C >. ) sSet  <.
b ,  D >. )  =  ( ( S sSet  <. b ,  D >. ) sSet  <. A ,  C >. ) ) )
1913, 18imbi12d 234 . . . 4  |-  ( (
ph  /\  a  =  A )  ->  (
( a  =/=  b  ->  ( ( S sSet  <. a ,  C >. ) sSet  <.
b ,  D >. )  =  ( ( S sSet  <. b ,  D >. ) sSet  <. a ,  C >. ) )  <->  ( A  =/=  b  ->  ( ( S sSet  <. A ,  C >. ) sSet  <. b ,  D >. )  =  ( ( S sSet  <. b ,  D >. ) sSet  <. A ,  C >. ) ) ) )
20 setscomd.s . . . . . . 7  |-  ( ph  ->  S  e.  V )
2120adantr 276 . . . . . 6  |-  ( (
ph  /\  a  =/=  b )  ->  S  e.  V )
22 simpr 110 . . . . . 6  |-  ( (
ph  /\  a  =/=  b )  ->  a  =/=  b )
23 setscomd.c . . . . . . 7  |-  ( ph  ->  C  e.  W )
2423adantr 276 . . . . . 6  |-  ( (
ph  /\  a  =/=  b )  ->  C  e.  W )
25 setscomd.d . . . . . . 7  |-  ( ph  ->  D  e.  X )
2625adantr 276 . . . . . 6  |-  ( (
ph  /\  a  =/=  b )  ->  D  e.  X )
27 vex 2766 . . . . . . 7  |-  a  e. 
_V
28 vex 2766 . . . . . . 7  |-  b  e. 
_V
2927, 28setscom 12718 . . . . . 6  |-  ( ( ( S  e.  V  /\  a  =/=  b
)  /\  ( C  e.  W  /\  D  e.  X ) )  -> 
( ( S sSet  <. a ,  C >. ) sSet  <.
b ,  D >. )  =  ( ( S sSet  <. b ,  D >. ) sSet  <. a ,  C >. ) )
3021, 22, 24, 26, 29syl22anc 1250 . . . . 5  |-  ( (
ph  /\  a  =/=  b )  ->  (
( S sSet  <. a ,  C >. ) sSet  <. b ,  D >. )  =  ( ( S sSet  <. b ,  D >. ) sSet  <. a ,  C >. ) )
3130ex 115 . . . 4  |-  ( ph  ->  ( a  =/=  b  ->  ( ( S sSet  <. a ,  C >. ) sSet  <.
b ,  D >. )  =  ( ( S sSet  <. b ,  D >. ) sSet  <. a ,  C >. ) ) )
3211, 19, 31vtocld 2816 . . 3  |-  ( ph  ->  ( A  =/=  b  ->  ( ( S sSet  <. A ,  C >. ) sSet  <.
b ,  D >. )  =  ( ( S sSet  <. b ,  D >. ) sSet  <. A ,  C >. ) ) )
332, 10, 32vtocld 2816 . 2  |-  ( ph  ->  ( A  =/=  B  ->  ( ( S sSet  <. A ,  C >. ) sSet  <. B ,  D >. )  =  ( ( S sSet  <. B ,  D >. ) sSet  <. A ,  C >. ) ) )
341, 33mpd 13 1  |-  ( ph  ->  ( ( S sSet  <. A ,  C >. ) sSet  <. B ,  D >. )  =  ( ( S sSet  <. B ,  D >. ) sSet  <. A ,  C >. ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2167    =/= wne 2367   <.cop 3625  (class class class)co 5922   sSet csts 12676
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468  ax-setind 4573
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3451  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-opab 4095  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-res 4675  df-iota 5219  df-fun 5260  df-fv 5266  df-ov 5925  df-oprab 5926  df-mpo 5927  df-sets 12685
This theorem is referenced by:  mgpress  13487
  Copyright terms: Public domain W3C validator