ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  setscomd Unicode version

Theorem setscomd 12659
Description: Different components can be set in any order. (Contributed by Jim Kingdon, 20-Feb-2025.)
Hypotheses
Ref Expression
setscomd.a  |-  ( ph  ->  A  e.  Y )
setscomd.b  |-  ( ph  ->  B  e.  Z )
setscomd.s  |-  ( ph  ->  S  e.  V )
setscomd.ab  |-  ( ph  ->  A  =/=  B )
setscomd.c  |-  ( ph  ->  C  e.  W )
setscomd.d  |-  ( ph  ->  D  e.  X )
Assertion
Ref Expression
setscomd  |-  ( ph  ->  ( ( S sSet  <. A ,  C >. ) sSet  <. B ,  D >. )  =  ( ( S sSet  <. B ,  D >. ) sSet  <. A ,  C >. ) )

Proof of Theorem setscomd
Dummy variables  a  b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 setscomd.ab . 2  |-  ( ph  ->  A  =/=  B )
2 setscomd.b . . 3  |-  ( ph  ->  B  e.  Z )
3 simpr 110 . . . . 5  |-  ( (
ph  /\  b  =  B )  ->  b  =  B )
43neeq2d 2383 . . . 4  |-  ( (
ph  /\  b  =  B )  ->  ( A  =/=  b  <->  A  =/=  B ) )
53opeq1d 3810 . . . . . 6  |-  ( (
ph  /\  b  =  B )  ->  <. b ,  D >.  =  <. B ,  D >. )
65oveq2d 5934 . . . . 5  |-  ( (
ph  /\  b  =  B )  ->  (
( S sSet  <. A ,  C >. ) sSet  <. b ,  D >. )  =  ( ( S sSet  <. A ,  C >. ) sSet  <. B ,  D >. ) )
75oveq2d 5934 . . . . . 6  |-  ( (
ph  /\  b  =  B )  ->  ( S sSet  <. b ,  D >. )  =  ( S sSet  <. B ,  D >. ) )
87oveq1d 5933 . . . . 5  |-  ( (
ph  /\  b  =  B )  ->  (
( S sSet  <. b ,  D >. ) sSet  <. A ,  C >. )  =  ( ( S sSet  <. B ,  D >. ) sSet  <. A ,  C >. ) )
96, 8eqeq12d 2208 . . . 4  |-  ( (
ph  /\  b  =  B )  ->  (
( ( S sSet  <. A ,  C >. ) sSet  <.
b ,  D >. )  =  ( ( S sSet  <. b ,  D >. ) sSet  <. A ,  C >. )  <-> 
( ( S sSet  <. A ,  C >. ) sSet  <. B ,  D >. )  =  ( ( S sSet  <. B ,  D >. ) sSet  <. A ,  C >. ) ) )
104, 9imbi12d 234 . . 3  |-  ( (
ph  /\  b  =  B )  ->  (
( A  =/=  b  ->  ( ( S sSet  <. A ,  C >. ) sSet  <.
b ,  D >. )  =  ( ( S sSet  <. b ,  D >. ) sSet  <. A ,  C >. ) )  <->  ( A  =/= 
B  ->  ( ( S sSet  <. A ,  C >. ) sSet  <. B ,  D >. )  =  ( ( S sSet  <. B ,  D >. ) sSet  <. A ,  C >. ) ) ) )
11 setscomd.a . . . 4  |-  ( ph  ->  A  e.  Y )
12 simpr 110 . . . . . 6  |-  ( (
ph  /\  a  =  A )  ->  a  =  A )
1312neeq1d 2382 . . . . 5  |-  ( (
ph  /\  a  =  A )  ->  (
a  =/=  b  <->  A  =/=  b ) )
1412opeq1d 3810 . . . . . . . 8  |-  ( (
ph  /\  a  =  A )  ->  <. a ,  C >.  =  <. A ,  C >. )
1514oveq2d 5934 . . . . . . 7  |-  ( (
ph  /\  a  =  A )  ->  ( S sSet  <. a ,  C >. )  =  ( S sSet  <. A ,  C >. ) )
1615oveq1d 5933 . . . . . 6  |-  ( (
ph  /\  a  =  A )  ->  (
( S sSet  <. a ,  C >. ) sSet  <. b ,  D >. )  =  ( ( S sSet  <. A ,  C >. ) sSet  <. b ,  D >. ) )
1714oveq2d 5934 . . . . . 6  |-  ( (
ph  /\  a  =  A )  ->  (
( S sSet  <. b ,  D >. ) sSet  <. a ,  C >. )  =  ( ( S sSet  <. b ,  D >. ) sSet  <. A ,  C >. ) )
1816, 17eqeq12d 2208 . . . . 5  |-  ( (
ph  /\  a  =  A )  ->  (
( ( S sSet  <. a ,  C >. ) sSet  <.
b ,  D >. )  =  ( ( S sSet  <. b ,  D >. ) sSet  <. a ,  C >. )  <-> 
( ( S sSet  <. A ,  C >. ) sSet  <.
b ,  D >. )  =  ( ( S sSet  <. b ,  D >. ) sSet  <. A ,  C >. ) ) )
1913, 18imbi12d 234 . . . 4  |-  ( (
ph  /\  a  =  A )  ->  (
( a  =/=  b  ->  ( ( S sSet  <. a ,  C >. ) sSet  <.
b ,  D >. )  =  ( ( S sSet  <. b ,  D >. ) sSet  <. a ,  C >. ) )  <->  ( A  =/=  b  ->  ( ( S sSet  <. A ,  C >. ) sSet  <. b ,  D >. )  =  ( ( S sSet  <. b ,  D >. ) sSet  <. A ,  C >. ) ) ) )
20 setscomd.s . . . . . . 7  |-  ( ph  ->  S  e.  V )
2120adantr 276 . . . . . 6  |-  ( (
ph  /\  a  =/=  b )  ->  S  e.  V )
22 simpr 110 . . . . . 6  |-  ( (
ph  /\  a  =/=  b )  ->  a  =/=  b )
23 setscomd.c . . . . . . 7  |-  ( ph  ->  C  e.  W )
2423adantr 276 . . . . . 6  |-  ( (
ph  /\  a  =/=  b )  ->  C  e.  W )
25 setscomd.d . . . . . . 7  |-  ( ph  ->  D  e.  X )
2625adantr 276 . . . . . 6  |-  ( (
ph  /\  a  =/=  b )  ->  D  e.  X )
27 vex 2763 . . . . . . 7  |-  a  e. 
_V
28 vex 2763 . . . . . . 7  |-  b  e. 
_V
2927, 28setscom 12658 . . . . . 6  |-  ( ( ( S  e.  V  /\  a  =/=  b
)  /\  ( C  e.  W  /\  D  e.  X ) )  -> 
( ( S sSet  <. a ,  C >. ) sSet  <.
b ,  D >. )  =  ( ( S sSet  <. b ,  D >. ) sSet  <. a ,  C >. ) )
3021, 22, 24, 26, 29syl22anc 1250 . . . . 5  |-  ( (
ph  /\  a  =/=  b )  ->  (
( S sSet  <. a ,  C >. ) sSet  <. b ,  D >. )  =  ( ( S sSet  <. b ,  D >. ) sSet  <. a ,  C >. ) )
3130ex 115 . . . 4  |-  ( ph  ->  ( a  =/=  b  ->  ( ( S sSet  <. a ,  C >. ) sSet  <.
b ,  D >. )  =  ( ( S sSet  <. b ,  D >. ) sSet  <. a ,  C >. ) ) )
3211, 19, 31vtocld 2812 . . 3  |-  ( ph  ->  ( A  =/=  b  ->  ( ( S sSet  <. A ,  C >. ) sSet  <.
b ,  D >. )  =  ( ( S sSet  <. b ,  D >. ) sSet  <. A ,  C >. ) ) )
332, 10, 32vtocld 2812 . 2  |-  ( ph  ->  ( A  =/=  B  ->  ( ( S sSet  <. A ,  C >. ) sSet  <. B ,  D >. )  =  ( ( S sSet  <. B ,  D >. ) sSet  <. A ,  C >. ) ) )
341, 33mpd 13 1  |-  ( ph  ->  ( ( S sSet  <. A ,  C >. ) sSet  <. B ,  D >. )  =  ( ( S sSet  <. B ,  D >. ) sSet  <. A ,  C >. ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1364    e. wcel 2164    =/= wne 2364   <.cop 3621  (class class class)co 5918   sSet csts 12616
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238  ax-un 4464  ax-setind 4569
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-rab 2481  df-v 2762  df-sbc 2986  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-br 4030  df-opab 4091  df-id 4324  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-res 4671  df-iota 5215  df-fun 5256  df-fv 5262  df-ov 5921  df-oprab 5922  df-mpo 5923  df-sets 12625
This theorem is referenced by:  mgpress  13427
  Copyright terms: Public domain W3C validator