ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  setscomd Unicode version

Theorem setscomd 12503
Description: Different components can be set in any order. (Contributed by Jim Kingdon, 20-Feb-2025.)
Hypotheses
Ref Expression
setscomd.a  |-  ( ph  ->  A  e.  Y )
setscomd.b  |-  ( ph  ->  B  e.  Z )
setscomd.s  |-  ( ph  ->  S  e.  V )
setscomd.ab  |-  ( ph  ->  A  =/=  B )
setscomd.c  |-  ( ph  ->  C  e.  W )
setscomd.d  |-  ( ph  ->  D  e.  X )
Assertion
Ref Expression
setscomd  |-  ( ph  ->  ( ( S sSet  <. A ,  C >. ) sSet  <. B ,  D >. )  =  ( ( S sSet  <. B ,  D >. ) sSet  <. A ,  C >. ) )

Proof of Theorem setscomd
Dummy variables  a  b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 setscomd.ab . 2  |-  ( ph  ->  A  =/=  B )
2 setscomd.b . . 3  |-  ( ph  ->  B  e.  Z )
3 simpr 110 . . . . 5  |-  ( (
ph  /\  b  =  B )  ->  b  =  B )
43neeq2d 2366 . . . 4  |-  ( (
ph  /\  b  =  B )  ->  ( A  =/=  b  <->  A  =/=  B ) )
53opeq1d 3785 . . . . . 6  |-  ( (
ph  /\  b  =  B )  ->  <. b ,  D >.  =  <. B ,  D >. )
65oveq2d 5891 . . . . 5  |-  ( (
ph  /\  b  =  B )  ->  (
( S sSet  <. A ,  C >. ) sSet  <. b ,  D >. )  =  ( ( S sSet  <. A ,  C >. ) sSet  <. B ,  D >. ) )
75oveq2d 5891 . . . . . 6  |-  ( (
ph  /\  b  =  B )  ->  ( S sSet  <. b ,  D >. )  =  ( S sSet  <. B ,  D >. ) )
87oveq1d 5890 . . . . 5  |-  ( (
ph  /\  b  =  B )  ->  (
( S sSet  <. b ,  D >. ) sSet  <. A ,  C >. )  =  ( ( S sSet  <. B ,  D >. ) sSet  <. A ,  C >. ) )
96, 8eqeq12d 2192 . . . 4  |-  ( (
ph  /\  b  =  B )  ->  (
( ( S sSet  <. A ,  C >. ) sSet  <.
b ,  D >. )  =  ( ( S sSet  <. b ,  D >. ) sSet  <. A ,  C >. )  <-> 
( ( S sSet  <. A ,  C >. ) sSet  <. B ,  D >. )  =  ( ( S sSet  <. B ,  D >. ) sSet  <. A ,  C >. ) ) )
104, 9imbi12d 234 . . 3  |-  ( (
ph  /\  b  =  B )  ->  (
( A  =/=  b  ->  ( ( S sSet  <. A ,  C >. ) sSet  <.
b ,  D >. )  =  ( ( S sSet  <. b ,  D >. ) sSet  <. A ,  C >. ) )  <->  ( A  =/= 
B  ->  ( ( S sSet  <. A ,  C >. ) sSet  <. B ,  D >. )  =  ( ( S sSet  <. B ,  D >. ) sSet  <. A ,  C >. ) ) ) )
11 setscomd.a . . . 4  |-  ( ph  ->  A  e.  Y )
12 simpr 110 . . . . . 6  |-  ( (
ph  /\  a  =  A )  ->  a  =  A )
1312neeq1d 2365 . . . . 5  |-  ( (
ph  /\  a  =  A )  ->  (
a  =/=  b  <->  A  =/=  b ) )
1412opeq1d 3785 . . . . . . . 8  |-  ( (
ph  /\  a  =  A )  ->  <. a ,  C >.  =  <. A ,  C >. )
1514oveq2d 5891 . . . . . . 7  |-  ( (
ph  /\  a  =  A )  ->  ( S sSet  <. a ,  C >. )  =  ( S sSet  <. A ,  C >. ) )
1615oveq1d 5890 . . . . . 6  |-  ( (
ph  /\  a  =  A )  ->  (
( S sSet  <. a ,  C >. ) sSet  <. b ,  D >. )  =  ( ( S sSet  <. A ,  C >. ) sSet  <. b ,  D >. ) )
1714oveq2d 5891 . . . . . 6  |-  ( (
ph  /\  a  =  A )  ->  (
( S sSet  <. b ,  D >. ) sSet  <. a ,  C >. )  =  ( ( S sSet  <. b ,  D >. ) sSet  <. A ,  C >. ) )
1816, 17eqeq12d 2192 . . . . 5  |-  ( (
ph  /\  a  =  A )  ->  (
( ( S sSet  <. a ,  C >. ) sSet  <.
b ,  D >. )  =  ( ( S sSet  <. b ,  D >. ) sSet  <. a ,  C >. )  <-> 
( ( S sSet  <. A ,  C >. ) sSet  <.
b ,  D >. )  =  ( ( S sSet  <. b ,  D >. ) sSet  <. A ,  C >. ) ) )
1913, 18imbi12d 234 . . . 4  |-  ( (
ph  /\  a  =  A )  ->  (
( a  =/=  b  ->  ( ( S sSet  <. a ,  C >. ) sSet  <.
b ,  D >. )  =  ( ( S sSet  <. b ,  D >. ) sSet  <. a ,  C >. ) )  <->  ( A  =/=  b  ->  ( ( S sSet  <. A ,  C >. ) sSet  <. b ,  D >. )  =  ( ( S sSet  <. b ,  D >. ) sSet  <. A ,  C >. ) ) ) )
20 setscomd.s . . . . . . 7  |-  ( ph  ->  S  e.  V )
2120adantr 276 . . . . . 6  |-  ( (
ph  /\  a  =/=  b )  ->  S  e.  V )
22 simpr 110 . . . . . 6  |-  ( (
ph  /\  a  =/=  b )  ->  a  =/=  b )
23 setscomd.c . . . . . . 7  |-  ( ph  ->  C  e.  W )
2423adantr 276 . . . . . 6  |-  ( (
ph  /\  a  =/=  b )  ->  C  e.  W )
25 setscomd.d . . . . . . 7  |-  ( ph  ->  D  e.  X )
2625adantr 276 . . . . . 6  |-  ( (
ph  /\  a  =/=  b )  ->  D  e.  X )
27 vex 2741 . . . . . . 7  |-  a  e. 
_V
28 vex 2741 . . . . . . 7  |-  b  e. 
_V
2927, 28setscom 12502 . . . . . 6  |-  ( ( ( S  e.  V  /\  a  =/=  b
)  /\  ( C  e.  W  /\  D  e.  X ) )  -> 
( ( S sSet  <. a ,  C >. ) sSet  <.
b ,  D >. )  =  ( ( S sSet  <. b ,  D >. ) sSet  <. a ,  C >. ) )
3021, 22, 24, 26, 29syl22anc 1239 . . . . 5  |-  ( (
ph  /\  a  =/=  b )  ->  (
( S sSet  <. a ,  C >. ) sSet  <. b ,  D >. )  =  ( ( S sSet  <. b ,  D >. ) sSet  <. a ,  C >. ) )
3130ex 115 . . . 4  |-  ( ph  ->  ( a  =/=  b  ->  ( ( S sSet  <. a ,  C >. ) sSet  <.
b ,  D >. )  =  ( ( S sSet  <. b ,  D >. ) sSet  <. a ,  C >. ) ) )
3211, 19, 31vtocld 2790 . . 3  |-  ( ph  ->  ( A  =/=  b  ->  ( ( S sSet  <. A ,  C >. ) sSet  <.
b ,  D >. )  =  ( ( S sSet  <. b ,  D >. ) sSet  <. A ,  C >. ) ) )
332, 10, 32vtocld 2790 . 2  |-  ( ph  ->  ( A  =/=  B  ->  ( ( S sSet  <. A ,  C >. ) sSet  <. B ,  D >. )  =  ( ( S sSet  <. B ,  D >. ) sSet  <. A ,  C >. ) ) )
341, 33mpd 13 1  |-  ( ph  ->  ( ( S sSet  <. A ,  C >. ) sSet  <. B ,  D >. )  =  ( ( S sSet  <. B ,  D >. ) sSet  <. A ,  C >. ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1353    e. wcel 2148    =/= wne 2347   <.cop 3596  (class class class)co 5875   sSet csts 12460
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4122  ax-pow 4175  ax-pr 4210  ax-un 4434  ax-setind 4537
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-rab 2464  df-v 2740  df-sbc 2964  df-dif 3132  df-un 3134  df-in 3136  df-ss 3143  df-nul 3424  df-pw 3578  df-sn 3599  df-pr 3600  df-op 3602  df-uni 3811  df-br 4005  df-opab 4066  df-id 4294  df-xp 4633  df-rel 4634  df-cnv 4635  df-co 4636  df-dm 4637  df-res 4639  df-iota 5179  df-fun 5219  df-fv 5225  df-ov 5878  df-oprab 5879  df-mpo 5880  df-sets 12469
This theorem is referenced by:  mgpress  13141
  Copyright terms: Public domain W3C validator