ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  setscomd Unicode version

Theorem setscomd 12948
Description: Different components can be set in any order. (Contributed by Jim Kingdon, 20-Feb-2025.)
Hypotheses
Ref Expression
setscomd.a  |-  ( ph  ->  A  e.  Y )
setscomd.b  |-  ( ph  ->  B  e.  Z )
setscomd.s  |-  ( ph  ->  S  e.  V )
setscomd.ab  |-  ( ph  ->  A  =/=  B )
setscomd.c  |-  ( ph  ->  C  e.  W )
setscomd.d  |-  ( ph  ->  D  e.  X )
Assertion
Ref Expression
setscomd  |-  ( ph  ->  ( ( S sSet  <. A ,  C >. ) sSet  <. B ,  D >. )  =  ( ( S sSet  <. B ,  D >. ) sSet  <. A ,  C >. ) )

Proof of Theorem setscomd
Dummy variables  a  b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 setscomd.ab . 2  |-  ( ph  ->  A  =/=  B )
2 setscomd.b . . 3  |-  ( ph  ->  B  e.  Z )
3 simpr 110 . . . . 5  |-  ( (
ph  /\  b  =  B )  ->  b  =  B )
43neeq2d 2396 . . . 4  |-  ( (
ph  /\  b  =  B )  ->  ( A  =/=  b  <->  A  =/=  B ) )
53opeq1d 3831 . . . . . 6  |-  ( (
ph  /\  b  =  B )  ->  <. b ,  D >.  =  <. B ,  D >. )
65oveq2d 5973 . . . . 5  |-  ( (
ph  /\  b  =  B )  ->  (
( S sSet  <. A ,  C >. ) sSet  <. b ,  D >. )  =  ( ( S sSet  <. A ,  C >. ) sSet  <. B ,  D >. ) )
75oveq2d 5973 . . . . . 6  |-  ( (
ph  /\  b  =  B )  ->  ( S sSet  <. b ,  D >. )  =  ( S sSet  <. B ,  D >. ) )
87oveq1d 5972 . . . . 5  |-  ( (
ph  /\  b  =  B )  ->  (
( S sSet  <. b ,  D >. ) sSet  <. A ,  C >. )  =  ( ( S sSet  <. B ,  D >. ) sSet  <. A ,  C >. ) )
96, 8eqeq12d 2221 . . . 4  |-  ( (
ph  /\  b  =  B )  ->  (
( ( S sSet  <. A ,  C >. ) sSet  <.
b ,  D >. )  =  ( ( S sSet  <. b ,  D >. ) sSet  <. A ,  C >. )  <-> 
( ( S sSet  <. A ,  C >. ) sSet  <. B ,  D >. )  =  ( ( S sSet  <. B ,  D >. ) sSet  <. A ,  C >. ) ) )
104, 9imbi12d 234 . . 3  |-  ( (
ph  /\  b  =  B )  ->  (
( A  =/=  b  ->  ( ( S sSet  <. A ,  C >. ) sSet  <.
b ,  D >. )  =  ( ( S sSet  <. b ,  D >. ) sSet  <. A ,  C >. ) )  <->  ( A  =/= 
B  ->  ( ( S sSet  <. A ,  C >. ) sSet  <. B ,  D >. )  =  ( ( S sSet  <. B ,  D >. ) sSet  <. A ,  C >. ) ) ) )
11 setscomd.a . . . 4  |-  ( ph  ->  A  e.  Y )
12 simpr 110 . . . . . 6  |-  ( (
ph  /\  a  =  A )  ->  a  =  A )
1312neeq1d 2395 . . . . 5  |-  ( (
ph  /\  a  =  A )  ->  (
a  =/=  b  <->  A  =/=  b ) )
1412opeq1d 3831 . . . . . . . 8  |-  ( (
ph  /\  a  =  A )  ->  <. a ,  C >.  =  <. A ,  C >. )
1514oveq2d 5973 . . . . . . 7  |-  ( (
ph  /\  a  =  A )  ->  ( S sSet  <. a ,  C >. )  =  ( S sSet  <. A ,  C >. ) )
1615oveq1d 5972 . . . . . 6  |-  ( (
ph  /\  a  =  A )  ->  (
( S sSet  <. a ,  C >. ) sSet  <. b ,  D >. )  =  ( ( S sSet  <. A ,  C >. ) sSet  <. b ,  D >. ) )
1714oveq2d 5973 . . . . . 6  |-  ( (
ph  /\  a  =  A )  ->  (
( S sSet  <. b ,  D >. ) sSet  <. a ,  C >. )  =  ( ( S sSet  <. b ,  D >. ) sSet  <. A ,  C >. ) )
1816, 17eqeq12d 2221 . . . . 5  |-  ( (
ph  /\  a  =  A )  ->  (
( ( S sSet  <. a ,  C >. ) sSet  <.
b ,  D >. )  =  ( ( S sSet  <. b ,  D >. ) sSet  <. a ,  C >. )  <-> 
( ( S sSet  <. A ,  C >. ) sSet  <.
b ,  D >. )  =  ( ( S sSet  <. b ,  D >. ) sSet  <. A ,  C >. ) ) )
1913, 18imbi12d 234 . . . 4  |-  ( (
ph  /\  a  =  A )  ->  (
( a  =/=  b  ->  ( ( S sSet  <. a ,  C >. ) sSet  <.
b ,  D >. )  =  ( ( S sSet  <. b ,  D >. ) sSet  <. a ,  C >. ) )  <->  ( A  =/=  b  ->  ( ( S sSet  <. A ,  C >. ) sSet  <. b ,  D >. )  =  ( ( S sSet  <. b ,  D >. ) sSet  <. A ,  C >. ) ) ) )
20 setscomd.s . . . . . . 7  |-  ( ph  ->  S  e.  V )
2120adantr 276 . . . . . 6  |-  ( (
ph  /\  a  =/=  b )  ->  S  e.  V )
22 simpr 110 . . . . . 6  |-  ( (
ph  /\  a  =/=  b )  ->  a  =/=  b )
23 setscomd.c . . . . . . 7  |-  ( ph  ->  C  e.  W )
2423adantr 276 . . . . . 6  |-  ( (
ph  /\  a  =/=  b )  ->  C  e.  W )
25 setscomd.d . . . . . . 7  |-  ( ph  ->  D  e.  X )
2625adantr 276 . . . . . 6  |-  ( (
ph  /\  a  =/=  b )  ->  D  e.  X )
27 vex 2776 . . . . . . 7  |-  a  e. 
_V
28 vex 2776 . . . . . . 7  |-  b  e. 
_V
2927, 28setscom 12947 . . . . . 6  |-  ( ( ( S  e.  V  /\  a  =/=  b
)  /\  ( C  e.  W  /\  D  e.  X ) )  -> 
( ( S sSet  <. a ,  C >. ) sSet  <.
b ,  D >. )  =  ( ( S sSet  <. b ,  D >. ) sSet  <. a ,  C >. ) )
3021, 22, 24, 26, 29syl22anc 1251 . . . . 5  |-  ( (
ph  /\  a  =/=  b )  ->  (
( S sSet  <. a ,  C >. ) sSet  <. b ,  D >. )  =  ( ( S sSet  <. b ,  D >. ) sSet  <. a ,  C >. ) )
3130ex 115 . . . 4  |-  ( ph  ->  ( a  =/=  b  ->  ( ( S sSet  <. a ,  C >. ) sSet  <.
b ,  D >. )  =  ( ( S sSet  <. b ,  D >. ) sSet  <. a ,  C >. ) ) )
3211, 19, 31vtocld 2827 . . 3  |-  ( ph  ->  ( A  =/=  b  ->  ( ( S sSet  <. A ,  C >. ) sSet  <.
b ,  D >. )  =  ( ( S sSet  <. b ,  D >. ) sSet  <. A ,  C >. ) ) )
332, 10, 32vtocld 2827 . 2  |-  ( ph  ->  ( A  =/=  B  ->  ( ( S sSet  <. A ,  C >. ) sSet  <. B ,  D >. )  =  ( ( S sSet  <. B ,  D >. ) sSet  <. A ,  C >. ) ) )
341, 33mpd 13 1  |-  ( ph  ->  ( ( S sSet  <. A ,  C >. ) sSet  <. B ,  D >. )  =  ( ( S sSet  <. B ,  D >. ) sSet  <. A ,  C >. ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2177    =/= wne 2377   <.cop 3641  (class class class)co 5957   sSet csts 12905
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2179  ax-14 2180  ax-ext 2188  ax-sep 4170  ax-pow 4226  ax-pr 4261  ax-un 4488  ax-setind 4593
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ne 2378  df-ral 2490  df-rex 2491  df-rab 2494  df-v 2775  df-sbc 3003  df-dif 3172  df-un 3174  df-in 3176  df-ss 3183  df-nul 3465  df-pw 3623  df-sn 3644  df-pr 3645  df-op 3647  df-uni 3857  df-br 4052  df-opab 4114  df-id 4348  df-xp 4689  df-rel 4690  df-cnv 4691  df-co 4692  df-dm 4693  df-res 4695  df-iota 5241  df-fun 5282  df-fv 5288  df-ov 5960  df-oprab 5961  df-mpo 5962  df-sets 12914
This theorem is referenced by:  mgpress  13768
  Copyright terms: Public domain W3C validator