ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  setscomd Unicode version

Theorem setscomd 13068
Description: Different components can be set in any order. (Contributed by Jim Kingdon, 20-Feb-2025.)
Hypotheses
Ref Expression
setscomd.a  |-  ( ph  ->  A  e.  Y )
setscomd.b  |-  ( ph  ->  B  e.  Z )
setscomd.s  |-  ( ph  ->  S  e.  V )
setscomd.ab  |-  ( ph  ->  A  =/=  B )
setscomd.c  |-  ( ph  ->  C  e.  W )
setscomd.d  |-  ( ph  ->  D  e.  X )
Assertion
Ref Expression
setscomd  |-  ( ph  ->  ( ( S sSet  <. A ,  C >. ) sSet  <. B ,  D >. )  =  ( ( S sSet  <. B ,  D >. ) sSet  <. A ,  C >. ) )

Proof of Theorem setscomd
Dummy variables  a  b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 setscomd.ab . 2  |-  ( ph  ->  A  =/=  B )
2 setscomd.b . . 3  |-  ( ph  ->  B  e.  Z )
3 simpr 110 . . . . 5  |-  ( (
ph  /\  b  =  B )  ->  b  =  B )
43neeq2d 2419 . . . 4  |-  ( (
ph  /\  b  =  B )  ->  ( A  =/=  b  <->  A  =/=  B ) )
53opeq1d 3862 . . . . . 6  |-  ( (
ph  /\  b  =  B )  ->  <. b ,  D >.  =  <. B ,  D >. )
65oveq2d 6016 . . . . 5  |-  ( (
ph  /\  b  =  B )  ->  (
( S sSet  <. A ,  C >. ) sSet  <. b ,  D >. )  =  ( ( S sSet  <. A ,  C >. ) sSet  <. B ,  D >. ) )
75oveq2d 6016 . . . . . 6  |-  ( (
ph  /\  b  =  B )  ->  ( S sSet  <. b ,  D >. )  =  ( S sSet  <. B ,  D >. ) )
87oveq1d 6015 . . . . 5  |-  ( (
ph  /\  b  =  B )  ->  (
( S sSet  <. b ,  D >. ) sSet  <. A ,  C >. )  =  ( ( S sSet  <. B ,  D >. ) sSet  <. A ,  C >. ) )
96, 8eqeq12d 2244 . . . 4  |-  ( (
ph  /\  b  =  B )  ->  (
( ( S sSet  <. A ,  C >. ) sSet  <.
b ,  D >. )  =  ( ( S sSet  <. b ,  D >. ) sSet  <. A ,  C >. )  <-> 
( ( S sSet  <. A ,  C >. ) sSet  <. B ,  D >. )  =  ( ( S sSet  <. B ,  D >. ) sSet  <. A ,  C >. ) ) )
104, 9imbi12d 234 . . 3  |-  ( (
ph  /\  b  =  B )  ->  (
( A  =/=  b  ->  ( ( S sSet  <. A ,  C >. ) sSet  <.
b ,  D >. )  =  ( ( S sSet  <. b ,  D >. ) sSet  <. A ,  C >. ) )  <->  ( A  =/= 
B  ->  ( ( S sSet  <. A ,  C >. ) sSet  <. B ,  D >. )  =  ( ( S sSet  <. B ,  D >. ) sSet  <. A ,  C >. ) ) ) )
11 setscomd.a . . . 4  |-  ( ph  ->  A  e.  Y )
12 simpr 110 . . . . . 6  |-  ( (
ph  /\  a  =  A )  ->  a  =  A )
1312neeq1d 2418 . . . . 5  |-  ( (
ph  /\  a  =  A )  ->  (
a  =/=  b  <->  A  =/=  b ) )
1412opeq1d 3862 . . . . . . . 8  |-  ( (
ph  /\  a  =  A )  ->  <. a ,  C >.  =  <. A ,  C >. )
1514oveq2d 6016 . . . . . . 7  |-  ( (
ph  /\  a  =  A )  ->  ( S sSet  <. a ,  C >. )  =  ( S sSet  <. A ,  C >. ) )
1615oveq1d 6015 . . . . . 6  |-  ( (
ph  /\  a  =  A )  ->  (
( S sSet  <. a ,  C >. ) sSet  <. b ,  D >. )  =  ( ( S sSet  <. A ,  C >. ) sSet  <. b ,  D >. ) )
1714oveq2d 6016 . . . . . 6  |-  ( (
ph  /\  a  =  A )  ->  (
( S sSet  <. b ,  D >. ) sSet  <. a ,  C >. )  =  ( ( S sSet  <. b ,  D >. ) sSet  <. A ,  C >. ) )
1816, 17eqeq12d 2244 . . . . 5  |-  ( (
ph  /\  a  =  A )  ->  (
( ( S sSet  <. a ,  C >. ) sSet  <.
b ,  D >. )  =  ( ( S sSet  <. b ,  D >. ) sSet  <. a ,  C >. )  <-> 
( ( S sSet  <. A ,  C >. ) sSet  <.
b ,  D >. )  =  ( ( S sSet  <. b ,  D >. ) sSet  <. A ,  C >. ) ) )
1913, 18imbi12d 234 . . . 4  |-  ( (
ph  /\  a  =  A )  ->  (
( a  =/=  b  ->  ( ( S sSet  <. a ,  C >. ) sSet  <.
b ,  D >. )  =  ( ( S sSet  <. b ,  D >. ) sSet  <. a ,  C >. ) )  <->  ( A  =/=  b  ->  ( ( S sSet  <. A ,  C >. ) sSet  <. b ,  D >. )  =  ( ( S sSet  <. b ,  D >. ) sSet  <. A ,  C >. ) ) ) )
20 setscomd.s . . . . . . 7  |-  ( ph  ->  S  e.  V )
2120adantr 276 . . . . . 6  |-  ( (
ph  /\  a  =/=  b )  ->  S  e.  V )
22 simpr 110 . . . . . 6  |-  ( (
ph  /\  a  =/=  b )  ->  a  =/=  b )
23 setscomd.c . . . . . . 7  |-  ( ph  ->  C  e.  W )
2423adantr 276 . . . . . 6  |-  ( (
ph  /\  a  =/=  b )  ->  C  e.  W )
25 setscomd.d . . . . . . 7  |-  ( ph  ->  D  e.  X )
2625adantr 276 . . . . . 6  |-  ( (
ph  /\  a  =/=  b )  ->  D  e.  X )
27 vex 2802 . . . . . . 7  |-  a  e. 
_V
28 vex 2802 . . . . . . 7  |-  b  e. 
_V
2927, 28setscom 13067 . . . . . 6  |-  ( ( ( S  e.  V  /\  a  =/=  b
)  /\  ( C  e.  W  /\  D  e.  X ) )  -> 
( ( S sSet  <. a ,  C >. ) sSet  <.
b ,  D >. )  =  ( ( S sSet  <. b ,  D >. ) sSet  <. a ,  C >. ) )
3021, 22, 24, 26, 29syl22anc 1272 . . . . 5  |-  ( (
ph  /\  a  =/=  b )  ->  (
( S sSet  <. a ,  C >. ) sSet  <. b ,  D >. )  =  ( ( S sSet  <. b ,  D >. ) sSet  <. a ,  C >. ) )
3130ex 115 . . . 4  |-  ( ph  ->  ( a  =/=  b  ->  ( ( S sSet  <. a ,  C >. ) sSet  <.
b ,  D >. )  =  ( ( S sSet  <. b ,  D >. ) sSet  <. a ,  C >. ) ) )
3211, 19, 31vtocld 2853 . . 3  |-  ( ph  ->  ( A  =/=  b  ->  ( ( S sSet  <. A ,  C >. ) sSet  <.
b ,  D >. )  =  ( ( S sSet  <. b ,  D >. ) sSet  <. A ,  C >. ) ) )
332, 10, 32vtocld 2853 . 2  |-  ( ph  ->  ( A  =/=  B  ->  ( ( S sSet  <. A ,  C >. ) sSet  <. B ,  D >. )  =  ( ( S sSet  <. B ,  D >. ) sSet  <. A ,  C >. ) ) )
341, 33mpd 13 1  |-  ( ph  ->  ( ( S sSet  <. A ,  C >. ) sSet  <. B ,  D >. )  =  ( ( S sSet  <. B ,  D >. ) sSet  <. A ,  C >. ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1395    e. wcel 2200    =/= wne 2400   <.cop 3669  (class class class)co 6000   sSet csts 13025
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-nul 3492  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-br 4083  df-opab 4145  df-id 4383  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-res 4730  df-iota 5277  df-fun 5319  df-fv 5325  df-ov 6003  df-oprab 6004  df-mpo 6005  df-sets 13034
This theorem is referenced by:  mgpress  13889
  Copyright terms: Public domain W3C validator