ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funfvima3 Unicode version

Theorem funfvima3 5841
Description: A class including a function contains the function's value in the image of the singleton of the argument. (Contributed by NM, 23-Mar-2004.)
Assertion
Ref Expression
funfvima3  |-  ( ( Fun  F  /\  F  C_  G )  ->  ( A  e.  dom  F  -> 
( F `  A
)  e.  ( G
" { A }
) ) )

Proof of Theorem funfvima3
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 funfvop 5715 . . . . . 6  |-  ( ( Fun  F  /\  A  e.  dom  F )  ->  <. A ,  ( F `
 A ) >.  e.  F )
2 ssel 3195 . . . . . 6  |-  ( F 
C_  G  ->  ( <. A ,  ( F `
 A ) >.  e.  F  ->  <. A , 
( F `  A
) >.  e.  G ) )
31, 2syl5 32 . . . . 5  |-  ( F 
C_  G  ->  (
( Fun  F  /\  A  e.  dom  F )  ->  <. A ,  ( F `  A )
>.  e.  G ) )
43imp 124 . . . 4  |-  ( ( F  C_  G  /\  ( Fun  F  /\  A  e.  dom  F ) )  ->  <. A ,  ( F `  A )
>.  e.  G )
5 simpr 110 . . . . . 6  |-  ( ( Fun  F  /\  A  e.  dom  F )  ->  A  e.  dom  F )
6 sneq 3654 . . . . . . . . . 10  |-  ( x  =  A  ->  { x }  =  { A } )
76imaeq2d 5041 . . . . . . . . 9  |-  ( x  =  A  ->  ( G " { x }
)  =  ( G
" { A }
) )
87eleq2d 2277 . . . . . . . 8  |-  ( x  =  A  ->  (
( F `  A
)  e.  ( G
" { x }
)  <->  ( F `  A )  e.  ( G " { A } ) ) )
9 opeq1 3833 . . . . . . . . 9  |-  ( x  =  A  ->  <. x ,  ( F `  A ) >.  =  <. A ,  ( F `  A ) >. )
109eleq1d 2276 . . . . . . . 8  |-  ( x  =  A  ->  ( <. x ,  ( F `
 A ) >.  e.  G  <->  <. A ,  ( F `  A )
>.  e.  G ) )
118, 10bibi12d 235 . . . . . . 7  |-  ( x  =  A  ->  (
( ( F `  A )  e.  ( G " { x } )  <->  <. x ,  ( F `  A
) >.  e.  G )  <-> 
( ( F `  A )  e.  ( G " { A } )  <->  <. A , 
( F `  A
) >.  e.  G ) ) )
1211adantl 277 . . . . . 6  |-  ( ( ( Fun  F  /\  A  e.  dom  F )  /\  x  =  A )  ->  ( (
( F `  A
)  e.  ( G
" { x }
)  <->  <. x ,  ( F `  A )
>.  e.  G )  <->  ( ( F `  A )  e.  ( G " { A } )  <->  <. A , 
( F `  A
) >.  e.  G ) ) )
13 vex 2779 . . . . . . 7  |-  x  e. 
_V
14 funfvex 5616 . . . . . . 7  |-  ( ( Fun  F  /\  A  e.  dom  F )  -> 
( F `  A
)  e.  _V )
15 elimasng 5069 . . . . . . 7  |-  ( ( x  e.  _V  /\  ( F `  A )  e.  _V )  -> 
( ( F `  A )  e.  ( G " { x } )  <->  <. x ,  ( F `  A
) >.  e.  G ) )
1613, 14, 15sylancr 414 . . . . . 6  |-  ( ( Fun  F  /\  A  e.  dom  F )  -> 
( ( F `  A )  e.  ( G " { x } )  <->  <. x ,  ( F `  A
) >.  e.  G ) )
175, 12, 16vtocld 2830 . . . . 5  |-  ( ( Fun  F  /\  A  e.  dom  F )  -> 
( ( F `  A )  e.  ( G " { A } )  <->  <. A , 
( F `  A
) >.  e.  G ) )
1817adantl 277 . . . 4  |-  ( ( F  C_  G  /\  ( Fun  F  /\  A  e.  dom  F ) )  ->  ( ( F `
 A )  e.  ( G " { A } )  <->  <. A , 
( F `  A
) >.  e.  G ) )
194, 18mpbird 167 . . 3  |-  ( ( F  C_  G  /\  ( Fun  F  /\  A  e.  dom  F ) )  ->  ( F `  A )  e.  ( G " { A } ) )
2019exp32 365 . 2  |-  ( F 
C_  G  ->  ( Fun  F  ->  ( A  e.  dom  F  ->  ( F `  A )  e.  ( G " { A } ) ) ) )
2120impcom 125 1  |-  ( ( Fun  F  /\  F  C_  G )  ->  ( A  e.  dom  F  -> 
( F `  A
)  e.  ( G
" { A }
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373    e. wcel 2178   _Vcvv 2776    C_ wss 3174   {csn 3643   <.cop 3646   dom cdm 4693   "cima 4696   Fun wfun 5284   ` cfv 5290
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-v 2778  df-sbc 3006  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-br 4060  df-opab 4122  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-fv 5298
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator