ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funfvima3 Unicode version

Theorem funfvima3 5818
Description: A class including a function contains the function's value in the image of the singleton of the argument. (Contributed by NM, 23-Mar-2004.)
Assertion
Ref Expression
funfvima3  |-  ( ( Fun  F  /\  F  C_  G )  ->  ( A  e.  dom  F  -> 
( F `  A
)  e.  ( G
" { A }
) ) )

Proof of Theorem funfvima3
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 funfvop 5692 . . . . . 6  |-  ( ( Fun  F  /\  A  e.  dom  F )  ->  <. A ,  ( F `
 A ) >.  e.  F )
2 ssel 3187 . . . . . 6  |-  ( F 
C_  G  ->  ( <. A ,  ( F `
 A ) >.  e.  F  ->  <. A , 
( F `  A
) >.  e.  G ) )
31, 2syl5 32 . . . . 5  |-  ( F 
C_  G  ->  (
( Fun  F  /\  A  e.  dom  F )  ->  <. A ,  ( F `  A )
>.  e.  G ) )
43imp 124 . . . 4  |-  ( ( F  C_  G  /\  ( Fun  F  /\  A  e.  dom  F ) )  ->  <. A ,  ( F `  A )
>.  e.  G )
5 simpr 110 . . . . . 6  |-  ( ( Fun  F  /\  A  e.  dom  F )  ->  A  e.  dom  F )
6 sneq 3644 . . . . . . . . . 10  |-  ( x  =  A  ->  { x }  =  { A } )
76imaeq2d 5022 . . . . . . . . 9  |-  ( x  =  A  ->  ( G " { x }
)  =  ( G
" { A }
) )
87eleq2d 2275 . . . . . . . 8  |-  ( x  =  A  ->  (
( F `  A
)  e.  ( G
" { x }
)  <->  ( F `  A )  e.  ( G " { A } ) ) )
9 opeq1 3819 . . . . . . . . 9  |-  ( x  =  A  ->  <. x ,  ( F `  A ) >.  =  <. A ,  ( F `  A ) >. )
109eleq1d 2274 . . . . . . . 8  |-  ( x  =  A  ->  ( <. x ,  ( F `
 A ) >.  e.  G  <->  <. A ,  ( F `  A )
>.  e.  G ) )
118, 10bibi12d 235 . . . . . . 7  |-  ( x  =  A  ->  (
( ( F `  A )  e.  ( G " { x } )  <->  <. x ,  ( F `  A
) >.  e.  G )  <-> 
( ( F `  A )  e.  ( G " { A } )  <->  <. A , 
( F `  A
) >.  e.  G ) ) )
1211adantl 277 . . . . . 6  |-  ( ( ( Fun  F  /\  A  e.  dom  F )  /\  x  =  A )  ->  ( (
( F `  A
)  e.  ( G
" { x }
)  <->  <. x ,  ( F `  A )
>.  e.  G )  <->  ( ( F `  A )  e.  ( G " { A } )  <->  <. A , 
( F `  A
) >.  e.  G ) ) )
13 vex 2775 . . . . . . 7  |-  x  e. 
_V
14 funfvex 5593 . . . . . . 7  |-  ( ( Fun  F  /\  A  e.  dom  F )  -> 
( F `  A
)  e.  _V )
15 elimasng 5050 . . . . . . 7  |-  ( ( x  e.  _V  /\  ( F `  A )  e.  _V )  -> 
( ( F `  A )  e.  ( G " { x } )  <->  <. x ,  ( F `  A
) >.  e.  G ) )
1613, 14, 15sylancr 414 . . . . . 6  |-  ( ( Fun  F  /\  A  e.  dom  F )  -> 
( ( F `  A )  e.  ( G " { x } )  <->  <. x ,  ( F `  A
) >.  e.  G ) )
175, 12, 16vtocld 2825 . . . . 5  |-  ( ( Fun  F  /\  A  e.  dom  F )  -> 
( ( F `  A )  e.  ( G " { A } )  <->  <. A , 
( F `  A
) >.  e.  G ) )
1817adantl 277 . . . 4  |-  ( ( F  C_  G  /\  ( Fun  F  /\  A  e.  dom  F ) )  ->  ( ( F `
 A )  e.  ( G " { A } )  <->  <. A , 
( F `  A
) >.  e.  G ) )
194, 18mpbird 167 . . 3  |-  ( ( F  C_  G  /\  ( Fun  F  /\  A  e.  dom  F ) )  ->  ( F `  A )  e.  ( G " { A } ) )
2019exp32 365 . 2  |-  ( F 
C_  G  ->  ( Fun  F  ->  ( A  e.  dom  F  ->  ( F `  A )  e.  ( G " { A } ) ) ) )
2120impcom 125 1  |-  ( ( Fun  F  /\  F  C_  G )  ->  ( A  e.  dom  F  -> 
( F `  A
)  e.  ( G
" { A }
) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373    e. wcel 2176   _Vcvv 2772    C_ wss 3166   {csn 3633   <.cop 3636   dom cdm 4675   "cima 4678   Fun wfun 5265   ` cfv 5271
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-v 2774  df-sbc 2999  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4045  df-opab 4106  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-fv 5279
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator