Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > funfvima3 | Unicode version |
Description: A class including a function contains the function's value in the image of the singleton of the argument. (Contributed by NM, 23-Mar-2004.) |
Ref | Expression |
---|---|
funfvima3 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funfvop 5579 | . . . . . 6 | |
2 | ssel 3122 | . . . . . 6 | |
3 | 1, 2 | syl5 32 | . . . . 5 |
4 | 3 | imp 123 | . . . 4 |
5 | simpr 109 | . . . . . 6 | |
6 | sneq 3571 | . . . . . . . . . 10 | |
7 | 6 | imaeq2d 4928 | . . . . . . . . 9 |
8 | 7 | eleq2d 2227 | . . . . . . . 8 |
9 | opeq1 3741 | . . . . . . . . 9 | |
10 | 9 | eleq1d 2226 | . . . . . . . 8 |
11 | 8, 10 | bibi12d 234 | . . . . . . 7 |
12 | 11 | adantl 275 | . . . . . 6 |
13 | vex 2715 | . . . . . . 7 | |
14 | funfvex 5485 | . . . . . . 7 | |
15 | elimasng 4954 | . . . . . . 7 | |
16 | 13, 14, 15 | sylancr 411 | . . . . . 6 |
17 | 5, 12, 16 | vtocld 2764 | . . . . 5 |
18 | 17 | adantl 275 | . . . 4 |
19 | 4, 18 | mpbird 166 | . . 3 |
20 | 19 | exp32 363 | . 2 |
21 | 20 | impcom 124 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1335 wcel 2128 cvv 2712 wss 3102 csn 3560 cop 3563 cdm 4586 cima 4589 wfun 5164 cfv 5170 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-14 2131 ax-ext 2139 ax-sep 4082 ax-pow 4135 ax-pr 4169 |
This theorem depends on definitions: df-bi 116 df-3an 965 df-tru 1338 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ral 2440 df-rex 2441 df-v 2714 df-sbc 2938 df-un 3106 df-in 3108 df-ss 3115 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-br 3966 df-opab 4026 df-id 4253 df-xp 4592 df-rel 4593 df-cnv 4594 df-co 4595 df-dm 4596 df-rn 4597 df-res 4598 df-ima 4599 df-iota 5135 df-fun 5172 df-fn 5173 df-fv 5178 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |