![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > vtoclegft | GIF version |
Description: Implicit substitution of a class for a setvar variable. (Closed theorem version of vtoclef 2833.) (Contributed by NM, 7-Nov-2005.) (Revised by Mario Carneiro, 11-Oct-2016.) |
Ref | Expression |
---|---|
vtoclegft | ⊢ ((𝐴 ∈ 𝐵 ∧ Ⅎ𝑥𝜑 ∧ ∀𝑥(𝑥 = 𝐴 → 𝜑)) → 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elisset 2774 | . . . 4 ⊢ (𝐴 ∈ 𝐵 → ∃𝑥 𝑥 = 𝐴) | |
2 | exim 1610 | . . . 4 ⊢ (∀𝑥(𝑥 = 𝐴 → 𝜑) → (∃𝑥 𝑥 = 𝐴 → ∃𝑥𝜑)) | |
3 | 1, 2 | mpan9 281 | . . 3 ⊢ ((𝐴 ∈ 𝐵 ∧ ∀𝑥(𝑥 = 𝐴 → 𝜑)) → ∃𝑥𝜑) |
4 | 3 | 3adant2 1018 | . 2 ⊢ ((𝐴 ∈ 𝐵 ∧ Ⅎ𝑥𝜑 ∧ ∀𝑥(𝑥 = 𝐴 → 𝜑)) → ∃𝑥𝜑) |
5 | 19.9t 1653 | . . 3 ⊢ (Ⅎ𝑥𝜑 → (∃𝑥𝜑 ↔ 𝜑)) | |
6 | 5 | 3ad2ant2 1021 | . 2 ⊢ ((𝐴 ∈ 𝐵 ∧ Ⅎ𝑥𝜑 ∧ ∀𝑥(𝑥 = 𝐴 → 𝜑)) → (∃𝑥𝜑 ↔ 𝜑)) |
7 | 4, 6 | mpbid 147 | 1 ⊢ ((𝐴 ∈ 𝐵 ∧ Ⅎ𝑥𝜑 ∧ ∀𝑥(𝑥 = 𝐴 → 𝜑)) → 𝜑) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 ∧ w3a 980 ∀wal 1362 = wceq 1364 Ⅎwnf 1471 ∃wex 1503 ∈ wcel 2164 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-nf 1472 df-sb 1774 df-clab 2180 df-cleq 2186 df-clel 2189 df-v 2762 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |