| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > vtoclegft | GIF version | ||
| Description: Implicit substitution of a class for a setvar variable. (Closed theorem version of vtoclef 2845.) (Contributed by NM, 7-Nov-2005.) (Revised by Mario Carneiro, 11-Oct-2016.) |
| Ref | Expression |
|---|---|
| vtoclegft | ⊢ ((𝐴 ∈ 𝐵 ∧ Ⅎ𝑥𝜑 ∧ ∀𝑥(𝑥 = 𝐴 → 𝜑)) → 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elisset 2785 | . . . 4 ⊢ (𝐴 ∈ 𝐵 → ∃𝑥 𝑥 = 𝐴) | |
| 2 | exim 1621 | . . . 4 ⊢ (∀𝑥(𝑥 = 𝐴 → 𝜑) → (∃𝑥 𝑥 = 𝐴 → ∃𝑥𝜑)) | |
| 3 | 1, 2 | mpan9 281 | . . 3 ⊢ ((𝐴 ∈ 𝐵 ∧ ∀𝑥(𝑥 = 𝐴 → 𝜑)) → ∃𝑥𝜑) |
| 4 | 3 | 3adant2 1018 | . 2 ⊢ ((𝐴 ∈ 𝐵 ∧ Ⅎ𝑥𝜑 ∧ ∀𝑥(𝑥 = 𝐴 → 𝜑)) → ∃𝑥𝜑) |
| 5 | 19.9t 1664 | . . 3 ⊢ (Ⅎ𝑥𝜑 → (∃𝑥𝜑 ↔ 𝜑)) | |
| 6 | 5 | 3ad2ant2 1021 | . 2 ⊢ ((𝐴 ∈ 𝐵 ∧ Ⅎ𝑥𝜑 ∧ ∀𝑥(𝑥 = 𝐴 → 𝜑)) → (∃𝑥𝜑 ↔ 𝜑)) |
| 7 | 4, 6 | mpbid 147 | 1 ⊢ ((𝐴 ∈ 𝐵 ∧ Ⅎ𝑥𝜑 ∧ ∀𝑥(𝑥 = 𝐴 → 𝜑)) → 𝜑) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 ∧ w3a 980 ∀wal 1370 = wceq 1372 Ⅎwnf 1482 ∃wex 1514 ∈ wcel 2175 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1469 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-3an 982 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-v 2773 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |