ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  vtoclegft GIF version

Theorem vtoclegft 2845
Description: Implicit substitution of a class for a setvar variable. (Closed theorem version of vtoclef 2846.) (Contributed by NM, 7-Nov-2005.) (Revised by Mario Carneiro, 11-Oct-2016.)
Assertion
Ref Expression
vtoclegft ((𝐴𝐵 ∧ Ⅎ𝑥𝜑 ∧ ∀𝑥(𝑥 = 𝐴𝜑)) → 𝜑)
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝐵(𝑥)

Proof of Theorem vtoclegft
StepHypRef Expression
1 elisset 2786 . . . 4 (𝐴𝐵 → ∃𝑥 𝑥 = 𝐴)
2 exim 1622 . . . 4 (∀𝑥(𝑥 = 𝐴𝜑) → (∃𝑥 𝑥 = 𝐴 → ∃𝑥𝜑))
31, 2mpan9 281 . . 3 ((𝐴𝐵 ∧ ∀𝑥(𝑥 = 𝐴𝜑)) → ∃𝑥𝜑)
433adant2 1019 . 2 ((𝐴𝐵 ∧ Ⅎ𝑥𝜑 ∧ ∀𝑥(𝑥 = 𝐴𝜑)) → ∃𝑥𝜑)
5 19.9t 1665 . . 3 (Ⅎ𝑥𝜑 → (∃𝑥𝜑𝜑))
653ad2ant2 1022 . 2 ((𝐴𝐵 ∧ Ⅎ𝑥𝜑 ∧ ∀𝑥(𝑥 = 𝐴𝜑)) → (∃𝑥𝜑𝜑))
74, 6mpbid 147 1 ((𝐴𝐵 ∧ Ⅎ𝑥𝜑 ∧ ∀𝑥(𝑥 = 𝐴𝜑)) → 𝜑)
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105  w3a 981  wal 1371   = wceq 1373  wnf 1483  wex 1515  wcel 2176
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1470  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-3an 983  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-v 2774
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator