ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xpeq1d Unicode version

Theorem xpeq1d 4716
Description: Equality deduction for cross product. (Contributed by Jeff Madsen, 17-Jun-2010.)
Hypothesis
Ref Expression
xpeq1d.1  |-  ( ph  ->  A  =  B )
Assertion
Ref Expression
xpeq1d  |-  ( ph  ->  ( A  X.  C
)  =  ( B  X.  C ) )

Proof of Theorem xpeq1d
StepHypRef Expression
1 xpeq1d.1 . 2  |-  ( ph  ->  A  =  B )
2 xpeq1 4707 . 2  |-  ( A  =  B  ->  ( A  X.  C )  =  ( B  X.  C
) )
31, 2syl 14 1  |-  ( ph  ->  ( A  X.  C
)  =  ( B  X.  C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373    X. cxp 4691
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-11 1530  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-opab 4122  df-xp 4699
This theorem is referenced by:  xpssres  5013  ixpsnf1o  6846  xpfi  7055  hashxp  11008  psrval  14543  mpl0fi  14579  dvmptc  15304
  Copyright terms: Public domain W3C validator