ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xpeq1d Unicode version

Theorem xpeq1d 4686
Description: Equality deduction for cross product. (Contributed by Jeff Madsen, 17-Jun-2010.)
Hypothesis
Ref Expression
xpeq1d.1  |-  ( ph  ->  A  =  B )
Assertion
Ref Expression
xpeq1d  |-  ( ph  ->  ( A  X.  C
)  =  ( B  X.  C ) )

Proof of Theorem xpeq1d
StepHypRef Expression
1 xpeq1d.1 . 2  |-  ( ph  ->  A  =  B )
2 xpeq1 4677 . 2  |-  ( A  =  B  ->  ( A  X.  C )  =  ( B  X.  C
) )
31, 2syl 14 1  |-  ( ph  ->  ( A  X.  C
)  =  ( B  X.  C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364    X. cxp 4661
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-11 1520  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-opab 4095  df-xp 4669
This theorem is referenced by:  xpssres  4981  ixpsnf1o  6795  xpfi  6993  hashxp  10918  psrval  14220  dvmptc  14953
  Copyright terms: Public domain W3C validator