ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xpeq1d Unicode version

Theorem xpeq1d 4742
Description: Equality deduction for cross product. (Contributed by Jeff Madsen, 17-Jun-2010.)
Hypothesis
Ref Expression
xpeq1d.1  |-  ( ph  ->  A  =  B )
Assertion
Ref Expression
xpeq1d  |-  ( ph  ->  ( A  X.  C
)  =  ( B  X.  C ) )

Proof of Theorem xpeq1d
StepHypRef Expression
1 xpeq1d.1 . 2  |-  ( ph  ->  A  =  B )
2 xpeq1 4733 . 2  |-  ( A  =  B  ->  ( A  X.  C )  =  ( B  X.  C
) )
31, 2syl 14 1  |-  ( ph  ->  ( A  X.  C
)  =  ( B  X.  C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1395    X. cxp 4717
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-11 1552  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-opab 4146  df-xp 4725
This theorem is referenced by:  xpssres  5040  ixpsnf1o  6883  xpfi  7094  hashxp  11048  psrval  14630  mpl0fi  14666  dvmptc  15391
  Copyright terms: Public domain W3C validator