ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xpssres Unicode version

Theorem xpssres 4977
Description: Restriction of a constant function (or other cross product). (Contributed by Stefan O'Rear, 24-Jan-2015.)
Assertion
Ref Expression
xpssres  |-  ( C 
C_  A  ->  (
( A  X.  B
)  |`  C )  =  ( C  X.  B
) )

Proof of Theorem xpssres
StepHypRef Expression
1 df-res 4671 . . 3  |-  ( ( A  X.  B )  |`  C )  =  ( ( A  X.  B
)  i^i  ( C  X.  _V ) )
2 inxp 4796 . . 3  |-  ( ( A  X.  B )  i^i  ( C  X.  _V ) )  =  ( ( A  i^i  C
)  X.  ( B  i^i  _V ) )
3 incom 3351 . . . 4  |-  ( A  i^i  C )  =  ( C  i^i  A
)
4 inv1 3483 . . . 4  |-  ( B  i^i  _V )  =  B
53, 4xpeq12i 4681 . . 3  |-  ( ( A  i^i  C )  X.  ( B  i^i  _V ) )  =  ( ( C  i^i  A
)  X.  B )
61, 2, 53eqtri 2218 . 2  |-  ( ( A  X.  B )  |`  C )  =  ( ( C  i^i  A
)  X.  B )
7 df-ss 3166 . . . 4  |-  ( C 
C_  A  <->  ( C  i^i  A )  =  C )
87biimpi 120 . . 3  |-  ( C 
C_  A  ->  ( C  i^i  A )  =  C )
98xpeq1d 4682 . 2  |-  ( C 
C_  A  ->  (
( C  i^i  A
)  X.  B )  =  ( C  X.  B ) )
106, 9eqtrid 2238 1  |-  ( C 
C_  A  ->  (
( A  X.  B
)  |`  C )  =  ( C  X.  B
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1364   _Vcvv 2760    i^i cin 3152    C_ wss 3153    X. cxp 4657    |` cres 4661
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-pr 4238
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-opab 4091  df-xp 4665  df-rel 4666  df-res 4671
This theorem is referenced by:  cnconst2  14401
  Copyright terms: Public domain W3C validator