ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xpssres Unicode version

Theorem xpssres 5013
Description: Restriction of a constant function (or other cross product). (Contributed by Stefan O'Rear, 24-Jan-2015.)
Assertion
Ref Expression
xpssres  |-  ( C 
C_  A  ->  (
( A  X.  B
)  |`  C )  =  ( C  X.  B
) )

Proof of Theorem xpssres
StepHypRef Expression
1 df-res 4705 . . 3  |-  ( ( A  X.  B )  |`  C )  =  ( ( A  X.  B
)  i^i  ( C  X.  _V ) )
2 inxp 4830 . . 3  |-  ( ( A  X.  B )  i^i  ( C  X.  _V ) )  =  ( ( A  i^i  C
)  X.  ( B  i^i  _V ) )
3 incom 3373 . . . 4  |-  ( A  i^i  C )  =  ( C  i^i  A
)
4 inv1 3505 . . . 4  |-  ( B  i^i  _V )  =  B
53, 4xpeq12i 4715 . . 3  |-  ( ( A  i^i  C )  X.  ( B  i^i  _V ) )  =  ( ( C  i^i  A
)  X.  B )
61, 2, 53eqtri 2232 . 2  |-  ( ( A  X.  B )  |`  C )  =  ( ( C  i^i  A
)  X.  B )
7 df-ss 3187 . . . 4  |-  ( C 
C_  A  <->  ( C  i^i  A )  =  C )
87biimpi 120 . . 3  |-  ( C 
C_  A  ->  ( C  i^i  A )  =  C )
98xpeq1d 4716 . 2  |-  ( C 
C_  A  ->  (
( C  i^i  A
)  X.  B )  =  ( C  X.  B ) )
106, 9eqtrid 2252 1  |-  ( C 
C_  A  ->  (
( A  X.  B
)  |`  C )  =  ( C  X.  B
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1373   _Vcvv 2776    i^i cin 3173    C_ wss 3174    X. cxp 4691    |` cres 4695
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ral 2491  df-rex 2492  df-v 2778  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-opab 4122  df-xp 4699  df-rel 4700  df-res 4705
This theorem is referenced by:  cnconst2  14820
  Copyright terms: Public domain W3C validator