ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xpfi Unicode version

Theorem xpfi 6886
Description: The Cartesian product of two finite sets is finite. Lemma 8.1.16 of [AczelRathjen], p. 74. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 12-Mar-2015.)
Assertion
Ref Expression
xpfi  |-  ( ( A  e.  Fin  /\  B  e.  Fin )  ->  ( A  X.  B
)  e.  Fin )

Proof of Theorem xpfi
Dummy variables  w  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xpeq1 4612 . . . . 5  |-  ( x  =  (/)  ->  ( x  X.  B )  =  ( (/)  X.  B
) )
21eleq1d 2233 . . . 4  |-  ( x  =  (/)  ->  ( ( x  X.  B )  e.  Fin  <->  ( (/)  X.  B
)  e.  Fin )
)
32imbi2d 229 . . 3  |-  ( x  =  (/)  ->  ( ( B  e.  Fin  ->  ( x  X.  B )  e.  Fin )  <->  ( B  e.  Fin  ->  ( (/)  X.  B
)  e.  Fin )
) )
4 xpeq1 4612 . . . . 5  |-  ( x  =  ( y  \  { z } )  ->  ( x  X.  B )  =  ( ( y  \  {
z } )  X.  B ) )
54eleq1d 2233 . . . 4  |-  ( x  =  ( y  \  { z } )  ->  ( ( x  X.  B )  e. 
Fin 
<->  ( ( y  \  { z } )  X.  B )  e. 
Fin ) )
65imbi2d 229 . . 3  |-  ( x  =  ( y  \  { z } )  ->  ( ( B  e.  Fin  ->  (
x  X.  B )  e.  Fin )  <->  ( B  e.  Fin  ->  ( (
y  \  { z } )  X.  B
)  e.  Fin )
) )
7 xpeq1 4612 . . . . 5  |-  ( x  =  y  ->  (
x  X.  B )  =  ( y  X.  B ) )
87eleq1d 2233 . . . 4  |-  ( x  =  y  ->  (
( x  X.  B
)  e.  Fin  <->  ( y  X.  B )  e.  Fin ) )
98imbi2d 229 . . 3  |-  ( x  =  y  ->  (
( B  e.  Fin  ->  ( x  X.  B
)  e.  Fin )  <->  ( B  e.  Fin  ->  ( y  X.  B )  e.  Fin ) ) )
10 xpeq1 4612 . . . . 5  |-  ( x  =  A  ->  (
x  X.  B )  =  ( A  X.  B ) )
1110eleq1d 2233 . . . 4  |-  ( x  =  A  ->  (
( x  X.  B
)  e.  Fin  <->  ( A  X.  B )  e.  Fin ) )
1211imbi2d 229 . . 3  |-  ( x  =  A  ->  (
( B  e.  Fin  ->  ( x  X.  B
)  e.  Fin )  <->  ( B  e.  Fin  ->  ( A  X.  B )  e.  Fin ) ) )
13 0xp 4678 . . . . 5  |-  ( (/)  X.  B )  =  (/)
14 0fin 6841 . . . . 5  |-  (/)  e.  Fin
1513, 14eqeltri 2237 . . . 4  |-  ( (/)  X.  B )  e.  Fin
1615a1i 9 . . 3  |-  ( B  e.  Fin  ->  ( (/) 
X.  B )  e. 
Fin )
17 xpeq1 4612 . . . . . . . 8  |-  ( y  =  (/)  ->  ( y  X.  B )  =  ( (/)  X.  B
) )
1817, 15eqeltrdi 2255 . . . . . . 7  |-  ( y  =  (/)  ->  ( y  X.  B )  e. 
Fin )
1918a1i13 24 . . . . . 6  |-  ( ( y  e.  Fin  /\  B  e.  Fin )  ->  ( y  =  (/)  ->  ( A. z  e.  y  ( B  e. 
Fin  ->  ( ( y 
\  { z } )  X.  B )  e.  Fin )  -> 
( y  X.  B
)  e.  Fin )
) )
20 sneq 3581 . . . . . . . . . . . . . . 15  |-  ( z  =  w  ->  { z }  =  { w } )
2120difeq2d 3235 . . . . . . . . . . . . . 14  |-  ( z  =  w  ->  (
y  \  { z } )  =  ( y  \  { w } ) )
2221xpeq1d 4621 . . . . . . . . . . . . 13  |-  ( z  =  w  ->  (
( y  \  {
z } )  X.  B )  =  ( ( y  \  {
w } )  X.  B ) )
2322eleq1d 2233 . . . . . . . . . . . 12  |-  ( z  =  w  ->  (
( ( y  \  { z } )  X.  B )  e. 
Fin 
<->  ( ( y  \  { w } )  X.  B )  e. 
Fin ) )
2423imbi2d 229 . . . . . . . . . . 11  |-  ( z  =  w  ->  (
( B  e.  Fin  ->  ( ( y  \  { z } )  X.  B )  e. 
Fin )  <->  ( B  e.  Fin  ->  ( (
y  \  { w } )  X.  B
)  e.  Fin )
) )
2524rspcv 2821 . . . . . . . . . 10  |-  ( w  e.  y  ->  ( A. z  e.  y 
( B  e.  Fin  ->  ( ( y  \  { z } )  X.  B )  e. 
Fin )  ->  ( B  e.  Fin  ->  (
( y  \  {
w } )  X.  B )  e.  Fin ) ) )
2625adantl 275 . . . . . . . . 9  |-  ( ( ( y  e.  Fin  /\  B  e.  Fin )  /\  w  e.  y
)  ->  ( A. z  e.  y  ( B  e.  Fin  ->  (
( y  \  {
z } )  X.  B )  e.  Fin )  ->  ( B  e. 
Fin  ->  ( ( y 
\  { w }
)  X.  B )  e.  Fin ) ) )
27 pm2.27 40 . . . . . . . . . 10  |-  ( B  e.  Fin  ->  (
( B  e.  Fin  ->  ( ( y  \  { w } )  X.  B )  e. 
Fin )  ->  (
( y  \  {
w } )  X.  B )  e.  Fin ) )
2827ad2antlr 481 . . . . . . . . 9  |-  ( ( ( y  e.  Fin  /\  B  e.  Fin )  /\  w  e.  y
)  ->  ( ( B  e.  Fin  ->  (
( y  \  {
w } )  X.  B )  e.  Fin )  ->  ( ( y 
\  { w }
)  X.  B )  e.  Fin ) )
29 vex 2724 . . . . . . . . . . . . . . 15  |-  w  e. 
_V
3029snex 4158 . . . . . . . . . . . . . 14  |-  { w }  e.  _V
31 xpexg 4712 . . . . . . . . . . . . . 14  |-  ( ( { w }  e.  _V  /\  B  e.  Fin )  ->  ( { w }  X.  B )  e. 
_V )
3230, 31mpan 421 . . . . . . . . . . . . 13  |-  ( B  e.  Fin  ->  ( { w }  X.  B )  e.  _V )
33 id 19 . . . . . . . . . . . . 13  |-  ( B  e.  Fin  ->  B  e.  Fin )
34 2ndconst 6181 . . . . . . . . . . . . . 14  |-  ( w  e.  _V  ->  ( 2nd  |`  ( { w }  X.  B ) ) : ( { w }  X.  B ) -1-1-onto-> B )
3529, 34mp1i 10 . . . . . . . . . . . . 13  |-  ( B  e.  Fin  ->  ( 2nd  |`  ( { w }  X.  B ) ) : ( { w }  X.  B ) -1-1-onto-> B )
36 f1oen2g 6712 . . . . . . . . . . . . 13  |-  ( ( ( { w }  X.  B )  e.  _V  /\  B  e.  Fin  /\  ( 2nd  |`  ( {
w }  X.  B
) ) : ( { w }  X.  B ) -1-1-onto-> B )  ->  ( { w }  X.  B )  ~~  B
)
3732, 33, 35, 36syl3anc 1227 . . . . . . . . . . . 12  |-  ( B  e.  Fin  ->  ( { w }  X.  B )  ~~  B
)
38 enfii 6831 . . . . . . . . . . . 12  |-  ( ( B  e.  Fin  /\  ( { w }  X.  B )  ~~  B
)  ->  ( {
w }  X.  B
)  e.  Fin )
3937, 38mpdan 418 . . . . . . . . . . 11  |-  ( B  e.  Fin  ->  ( { w }  X.  B )  e.  Fin )
4039ad2antlr 481 . . . . . . . . . 10  |-  ( ( ( y  e.  Fin  /\  B  e.  Fin )  /\  w  e.  y
)  ->  ( {
w }  X.  B
)  e.  Fin )
41 incom 3309 . . . . . . . . . . . . . 14  |-  ( { w }  i^i  (
y  \  { w } ) )  =  ( ( y  \  { w } )  i^i  { w }
)
42 disjdif 3476 . . . . . . . . . . . . . 14  |-  ( { w }  i^i  (
y  \  { w } ) )  =  (/)
4341, 42eqtr3i 2187 . . . . . . . . . . . . 13  |-  ( ( y  \  { w } )  i^i  {
w } )  =  (/)
44 xpdisj1 5022 . . . . . . . . . . . . 13  |-  ( ( ( y  \  {
w } )  i^i 
{ w } )  =  (/)  ->  ( ( ( y  \  {
w } )  X.  B )  i^i  ( { w }  X.  B ) )  =  (/) )
4543, 44ax-mp 5 . . . . . . . . . . . 12  |-  ( ( ( y  \  {
w } )  X.  B )  i^i  ( { w }  X.  B ) )  =  (/)
46 unfidisj 6878 . . . . . . . . . . . 12  |-  ( ( ( ( y  \  { w } )  X.  B )  e. 
Fin  /\  ( {
w }  X.  B
)  e.  Fin  /\  ( ( ( y 
\  { w }
)  X.  B )  i^i  ( { w }  X.  B ) )  =  (/) )  ->  (
( ( y  \  { w } )  X.  B )  u.  ( { w }  X.  B ) )  e. 
Fin )
4745, 46mp3an3 1315 . . . . . . . . . . 11  |-  ( ( ( ( y  \  { w } )  X.  B )  e. 
Fin  /\  ( {
w }  X.  B
)  e.  Fin )  ->  ( ( ( y 
\  { w }
)  X.  B )  u.  ( { w }  X.  B ) )  e.  Fin )
48 xpundir 4655 . . . . . . . . . . . . 13  |-  ( ( ( y  \  {
w } )  u. 
{ w } )  X.  B )  =  ( ( ( y 
\  { w }
)  X.  B )  u.  ( { w }  X.  B ) )
49 fidifsnid 6828 . . . . . . . . . . . . . . 15  |-  ( ( y  e.  Fin  /\  w  e.  y )  ->  ( ( y  \  { w } )  u.  { w }
)  =  y )
5049adantlr 469 . . . . . . . . . . . . . 14  |-  ( ( ( y  e.  Fin  /\  B  e.  Fin )  /\  w  e.  y
)  ->  ( (
y  \  { w } )  u.  {
w } )  =  y )
5150xpeq1d 4621 . . . . . . . . . . . . 13  |-  ( ( ( y  e.  Fin  /\  B  e.  Fin )  /\  w  e.  y
)  ->  ( (
( y  \  {
w } )  u. 
{ w } )  X.  B )  =  ( y  X.  B
) )
5248, 51eqtr3id 2211 . . . . . . . . . . . 12  |-  ( ( ( y  e.  Fin  /\  B  e.  Fin )  /\  w  e.  y
)  ->  ( (
( y  \  {
w } )  X.  B )  u.  ( { w }  X.  B ) )  =  ( y  X.  B
) )
5352eleq1d 2233 . . . . . . . . . . 11  |-  ( ( ( y  e.  Fin  /\  B  e.  Fin )  /\  w  e.  y
)  ->  ( (
( ( y  \  { w } )  X.  B )  u.  ( { w }  X.  B ) )  e. 
Fin 
<->  ( y  X.  B
)  e.  Fin )
)
5447, 53syl5ib 153 . . . . . . . . . 10  |-  ( ( ( y  e.  Fin  /\  B  e.  Fin )  /\  w  e.  y
)  ->  ( (
( ( y  \  { w } )  X.  B )  e. 
Fin  /\  ( {
w }  X.  B
)  e.  Fin )  ->  ( y  X.  B
)  e.  Fin )
)
5540, 54mpan2d 425 . . . . . . . . 9  |-  ( ( ( y  e.  Fin  /\  B  e.  Fin )  /\  w  e.  y
)  ->  ( (
( y  \  {
w } )  X.  B )  e.  Fin  ->  ( y  X.  B
)  e.  Fin )
)
5626, 28, 553syld 57 . . . . . . . 8  |-  ( ( ( y  e.  Fin  /\  B  e.  Fin )  /\  w  e.  y
)  ->  ( A. z  e.  y  ( B  e.  Fin  ->  (
( y  \  {
z } )  X.  B )  e.  Fin )  ->  ( y  X.  B )  e.  Fin ) )
5756ex 114 . . . . . . 7  |-  ( ( y  e.  Fin  /\  B  e.  Fin )  ->  ( w  e.  y  ->  ( A. z  e.  y  ( B  e.  Fin  ->  ( (
y  \  { z } )  X.  B
)  e.  Fin )  ->  ( y  X.  B
)  e.  Fin )
) )
5857exlimdv 1806 . . . . . 6  |-  ( ( y  e.  Fin  /\  B  e.  Fin )  ->  ( E. w  w  e.  y  ->  ( A. z  e.  y 
( B  e.  Fin  ->  ( ( y  \  { z } )  X.  B )  e. 
Fin )  ->  (
y  X.  B )  e.  Fin ) ) )
59 fin0or 6843 . . . . . . 7  |-  ( y  e.  Fin  ->  (
y  =  (/)  \/  E. w  w  e.  y
) )
6059adantr 274 . . . . . 6  |-  ( ( y  e.  Fin  /\  B  e.  Fin )  ->  ( y  =  (/)  \/ 
E. w  w  e.  y ) )
6119, 58, 60mpjaod 708 . . . . 5  |-  ( ( y  e.  Fin  /\  B  e.  Fin )  ->  ( A. z  e.  y  ( B  e. 
Fin  ->  ( ( y 
\  { z } )  X.  B )  e.  Fin )  -> 
( y  X.  B
)  e.  Fin )
)
6261ex 114 . . . 4  |-  ( y  e.  Fin  ->  ( B  e.  Fin  ->  ( A. z  e.  y 
( B  e.  Fin  ->  ( ( y  \  { z } )  X.  B )  e. 
Fin )  ->  (
y  X.  B )  e.  Fin ) ) )
6362com23 78 . . 3  |-  ( y  e.  Fin  ->  ( A. z  e.  y 
( B  e.  Fin  ->  ( ( y  \  { z } )  X.  B )  e. 
Fin )  ->  ( B  e.  Fin  ->  (
y  X.  B )  e.  Fin ) ) )
643, 6, 9, 12, 16, 63findcard 6845 . 2  |-  ( A  e.  Fin  ->  ( B  e.  Fin  ->  ( A  X.  B )  e. 
Fin ) )
6564imp 123 1  |-  ( ( A  e.  Fin  /\  B  e.  Fin )  ->  ( A  X.  B
)  e.  Fin )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    \/ wo 698    = wceq 1342   E.wex 1479    e. wcel 2135   A.wral 2442   _Vcvv 2721    \ cdif 3108    u. cun 3109    i^i cin 3110   (/)c0 3404   {csn 3570   class class class wbr 3976    X. cxp 4596    |` cres 4600   -1-1-onto->wf1o 5181   2ndc2nd 6099    ~~ cen 6695   Fincfn 6697
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1434  ax-7 1435  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-8 1491  ax-10 1492  ax-11 1493  ax-i12 1494  ax-bndl 1496  ax-4 1497  ax-17 1513  ax-i9 1517  ax-ial 1521  ax-i5r 1522  ax-13 2137  ax-14 2138  ax-ext 2146  ax-coll 4091  ax-sep 4094  ax-nul 4102  ax-pow 4147  ax-pr 4181  ax-un 4405  ax-setind 4508  ax-iinf 4559
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 968  df-3an 969  df-tru 1345  df-fal 1348  df-nf 1448  df-sb 1750  df-eu 2016  df-mo 2017  df-clab 2151  df-cleq 2157  df-clel 2160  df-nfc 2295  df-ne 2335  df-ral 2447  df-rex 2448  df-reu 2449  df-rab 2451  df-v 2723  df-sbc 2947  df-csb 3041  df-dif 3113  df-un 3115  df-in 3117  df-ss 3124  df-nul 3405  df-if 3516  df-pw 3555  df-sn 3576  df-pr 3577  df-op 3579  df-uni 3784  df-int 3819  df-iun 3862  df-br 3977  df-opab 4038  df-mpt 4039  df-tr 4075  df-id 4265  df-iord 4338  df-on 4340  df-suc 4343  df-iom 4562  df-xp 4604  df-rel 4605  df-cnv 4606  df-co 4607  df-dm 4608  df-rn 4609  df-res 4610  df-ima 4611  df-iota 5147  df-fun 5184  df-fn 5185  df-f 5186  df-f1 5187  df-fo 5188  df-f1o 5189  df-fv 5190  df-1st 6100  df-2nd 6101  df-1o 6375  df-er 6492  df-en 6698  df-fin 6700
This theorem is referenced by:  3xpfi  6887  hashxp  10728  fsum2dlemstep  11361  fisumcom2  11365  fprod2dlemstep  11549  fprodcom2fi  11553  crth  12133  phimullem  12134
  Copyright terms: Public domain W3C validator