ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xpfi Unicode version

Theorem xpfi 7055
Description: The Cartesian product of two finite sets is finite. Lemma 8.1.16 of [AczelRathjen], p. 74. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 12-Mar-2015.)
Assertion
Ref Expression
xpfi  |-  ( ( A  e.  Fin  /\  B  e.  Fin )  ->  ( A  X.  B
)  e.  Fin )

Proof of Theorem xpfi
Dummy variables  w  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xpeq1 4707 . . . . 5  |-  ( x  =  (/)  ->  ( x  X.  B )  =  ( (/)  X.  B
) )
21eleq1d 2276 . . . 4  |-  ( x  =  (/)  ->  ( ( x  X.  B )  e.  Fin  <->  ( (/)  X.  B
)  e.  Fin )
)
32imbi2d 230 . . 3  |-  ( x  =  (/)  ->  ( ( B  e.  Fin  ->  ( x  X.  B )  e.  Fin )  <->  ( B  e.  Fin  ->  ( (/)  X.  B
)  e.  Fin )
) )
4 xpeq1 4707 . . . . 5  |-  ( x  =  ( y  \  { z } )  ->  ( x  X.  B )  =  ( ( y  \  {
z } )  X.  B ) )
54eleq1d 2276 . . . 4  |-  ( x  =  ( y  \  { z } )  ->  ( ( x  X.  B )  e. 
Fin 
<->  ( ( y  \  { z } )  X.  B )  e. 
Fin ) )
65imbi2d 230 . . 3  |-  ( x  =  ( y  \  { z } )  ->  ( ( B  e.  Fin  ->  (
x  X.  B )  e.  Fin )  <->  ( B  e.  Fin  ->  ( (
y  \  { z } )  X.  B
)  e.  Fin )
) )
7 xpeq1 4707 . . . . 5  |-  ( x  =  y  ->  (
x  X.  B )  =  ( y  X.  B ) )
87eleq1d 2276 . . . 4  |-  ( x  =  y  ->  (
( x  X.  B
)  e.  Fin  <->  ( y  X.  B )  e.  Fin ) )
98imbi2d 230 . . 3  |-  ( x  =  y  ->  (
( B  e.  Fin  ->  ( x  X.  B
)  e.  Fin )  <->  ( B  e.  Fin  ->  ( y  X.  B )  e.  Fin ) ) )
10 xpeq1 4707 . . . . 5  |-  ( x  =  A  ->  (
x  X.  B )  =  ( A  X.  B ) )
1110eleq1d 2276 . . . 4  |-  ( x  =  A  ->  (
( x  X.  B
)  e.  Fin  <->  ( A  X.  B )  e.  Fin ) )
1211imbi2d 230 . . 3  |-  ( x  =  A  ->  (
( B  e.  Fin  ->  ( x  X.  B
)  e.  Fin )  <->  ( B  e.  Fin  ->  ( A  X.  B )  e.  Fin ) ) )
13 0xp 4773 . . . . 5  |-  ( (/)  X.  B )  =  (/)
14 0fin 7007 . . . . 5  |-  (/)  e.  Fin
1513, 14eqeltri 2280 . . . 4  |-  ( (/)  X.  B )  e.  Fin
1615a1i 9 . . 3  |-  ( B  e.  Fin  ->  ( (/) 
X.  B )  e. 
Fin )
17 xpeq1 4707 . . . . . . . 8  |-  ( y  =  (/)  ->  ( y  X.  B )  =  ( (/)  X.  B
) )
1817, 15eqeltrdi 2298 . . . . . . 7  |-  ( y  =  (/)  ->  ( y  X.  B )  e. 
Fin )
1918a1i13 24 . . . . . 6  |-  ( ( y  e.  Fin  /\  B  e.  Fin )  ->  ( y  =  (/)  ->  ( A. z  e.  y  ( B  e. 
Fin  ->  ( ( y 
\  { z } )  X.  B )  e.  Fin )  -> 
( y  X.  B
)  e.  Fin )
) )
20 sneq 3654 . . . . . . . . . . . . . . 15  |-  ( z  =  w  ->  { z }  =  { w } )
2120difeq2d 3299 . . . . . . . . . . . . . 14  |-  ( z  =  w  ->  (
y  \  { z } )  =  ( y  \  { w } ) )
2221xpeq1d 4716 . . . . . . . . . . . . 13  |-  ( z  =  w  ->  (
( y  \  {
z } )  X.  B )  =  ( ( y  \  {
w } )  X.  B ) )
2322eleq1d 2276 . . . . . . . . . . . 12  |-  ( z  =  w  ->  (
( ( y  \  { z } )  X.  B )  e. 
Fin 
<->  ( ( y  \  { w } )  X.  B )  e. 
Fin ) )
2423imbi2d 230 . . . . . . . . . . 11  |-  ( z  =  w  ->  (
( B  e.  Fin  ->  ( ( y  \  { z } )  X.  B )  e. 
Fin )  <->  ( B  e.  Fin  ->  ( (
y  \  { w } )  X.  B
)  e.  Fin )
) )
2524rspcv 2880 . . . . . . . . . 10  |-  ( w  e.  y  ->  ( A. z  e.  y 
( B  e.  Fin  ->  ( ( y  \  { z } )  X.  B )  e. 
Fin )  ->  ( B  e.  Fin  ->  (
( y  \  {
w } )  X.  B )  e.  Fin ) ) )
2625adantl 277 . . . . . . . . 9  |-  ( ( ( y  e.  Fin  /\  B  e.  Fin )  /\  w  e.  y
)  ->  ( A. z  e.  y  ( B  e.  Fin  ->  (
( y  \  {
z } )  X.  B )  e.  Fin )  ->  ( B  e. 
Fin  ->  ( ( y 
\  { w }
)  X.  B )  e.  Fin ) ) )
27 pm2.27 40 . . . . . . . . . 10  |-  ( B  e.  Fin  ->  (
( B  e.  Fin  ->  ( ( y  \  { w } )  X.  B )  e. 
Fin )  ->  (
( y  \  {
w } )  X.  B )  e.  Fin ) )
2827ad2antlr 489 . . . . . . . . 9  |-  ( ( ( y  e.  Fin  /\  B  e.  Fin )  /\  w  e.  y
)  ->  ( ( B  e.  Fin  ->  (
( y  \  {
w } )  X.  B )  e.  Fin )  ->  ( ( y 
\  { w }
)  X.  B )  e.  Fin ) )
29 vex 2779 . . . . . . . . . . . . . . 15  |-  w  e. 
_V
3029snex 4245 . . . . . . . . . . . . . 14  |-  { w }  e.  _V
31 xpexg 4807 . . . . . . . . . . . . . 14  |-  ( ( { w }  e.  _V  /\  B  e.  Fin )  ->  ( { w }  X.  B )  e. 
_V )
3230, 31mpan 424 . . . . . . . . . . . . 13  |-  ( B  e.  Fin  ->  ( { w }  X.  B )  e.  _V )
33 id 19 . . . . . . . . . . . . 13  |-  ( B  e.  Fin  ->  B  e.  Fin )
34 2ndconst 6331 . . . . . . . . . . . . . 14  |-  ( w  e.  _V  ->  ( 2nd  |`  ( { w }  X.  B ) ) : ( { w }  X.  B ) -1-1-onto-> B )
3529, 34mp1i 10 . . . . . . . . . . . . 13  |-  ( B  e.  Fin  ->  ( 2nd  |`  ( { w }  X.  B ) ) : ( { w }  X.  B ) -1-1-onto-> B )
36 f1oen2g 6869 . . . . . . . . . . . . 13  |-  ( ( ( { w }  X.  B )  e.  _V  /\  B  e.  Fin  /\  ( 2nd  |`  ( {
w }  X.  B
) ) : ( { w }  X.  B ) -1-1-onto-> B )  ->  ( { w }  X.  B )  ~~  B
)
3732, 33, 35, 36syl3anc 1250 . . . . . . . . . . . 12  |-  ( B  e.  Fin  ->  ( { w }  X.  B )  ~~  B
)
38 enfii 6997 . . . . . . . . . . . 12  |-  ( ( B  e.  Fin  /\  ( { w }  X.  B )  ~~  B
)  ->  ( {
w }  X.  B
)  e.  Fin )
3937, 38mpdan 421 . . . . . . . . . . 11  |-  ( B  e.  Fin  ->  ( { w }  X.  B )  e.  Fin )
4039ad2antlr 489 . . . . . . . . . 10  |-  ( ( ( y  e.  Fin  /\  B  e.  Fin )  /\  w  e.  y
)  ->  ( {
w }  X.  B
)  e.  Fin )
41 incom 3373 . . . . . . . . . . . . . 14  |-  ( { w }  i^i  (
y  \  { w } ) )  =  ( ( y  \  { w } )  i^i  { w }
)
42 disjdif 3541 . . . . . . . . . . . . . 14  |-  ( { w }  i^i  (
y  \  { w } ) )  =  (/)
4341, 42eqtr3i 2230 . . . . . . . . . . . . 13  |-  ( ( y  \  { w } )  i^i  {
w } )  =  (/)
44 xpdisj1 5126 . . . . . . . . . . . . 13  |-  ( ( ( y  \  {
w } )  i^i 
{ w } )  =  (/)  ->  ( ( ( y  \  {
w } )  X.  B )  i^i  ( { w }  X.  B ) )  =  (/) )
4543, 44ax-mp 5 . . . . . . . . . . . 12  |-  ( ( ( y  \  {
w } )  X.  B )  i^i  ( { w }  X.  B ) )  =  (/)
46 unfidisj 7045 . . . . . . . . . . . 12  |-  ( ( ( ( y  \  { w } )  X.  B )  e. 
Fin  /\  ( {
w }  X.  B
)  e.  Fin  /\  ( ( ( y 
\  { w }
)  X.  B )  i^i  ( { w }  X.  B ) )  =  (/) )  ->  (
( ( y  \  { w } )  X.  B )  u.  ( { w }  X.  B ) )  e. 
Fin )
4745, 46mp3an3 1339 . . . . . . . . . . 11  |-  ( ( ( ( y  \  { w } )  X.  B )  e. 
Fin  /\  ( {
w }  X.  B
)  e.  Fin )  ->  ( ( ( y 
\  { w }
)  X.  B )  u.  ( { w }  X.  B ) )  e.  Fin )
48 xpundir 4750 . . . . . . . . . . . . 13  |-  ( ( ( y  \  {
w } )  u. 
{ w } )  X.  B )  =  ( ( ( y 
\  { w }
)  X.  B )  u.  ( { w }  X.  B ) )
49 fidifsnid 6994 . . . . . . . . . . . . . . 15  |-  ( ( y  e.  Fin  /\  w  e.  y )  ->  ( ( y  \  { w } )  u.  { w }
)  =  y )
5049adantlr 477 . . . . . . . . . . . . . 14  |-  ( ( ( y  e.  Fin  /\  B  e.  Fin )  /\  w  e.  y
)  ->  ( (
y  \  { w } )  u.  {
w } )  =  y )
5150xpeq1d 4716 . . . . . . . . . . . . 13  |-  ( ( ( y  e.  Fin  /\  B  e.  Fin )  /\  w  e.  y
)  ->  ( (
( y  \  {
w } )  u. 
{ w } )  X.  B )  =  ( y  X.  B
) )
5248, 51eqtr3id 2254 . . . . . . . . . . . 12  |-  ( ( ( y  e.  Fin  /\  B  e.  Fin )  /\  w  e.  y
)  ->  ( (
( y  \  {
w } )  X.  B )  u.  ( { w }  X.  B ) )  =  ( y  X.  B
) )
5352eleq1d 2276 . . . . . . . . . . 11  |-  ( ( ( y  e.  Fin  /\  B  e.  Fin )  /\  w  e.  y
)  ->  ( (
( ( y  \  { w } )  X.  B )  u.  ( { w }  X.  B ) )  e. 
Fin 
<->  ( y  X.  B
)  e.  Fin )
)
5447, 53imbitrid 154 . . . . . . . . . 10  |-  ( ( ( y  e.  Fin  /\  B  e.  Fin )  /\  w  e.  y
)  ->  ( (
( ( y  \  { w } )  X.  B )  e. 
Fin  /\  ( {
w }  X.  B
)  e.  Fin )  ->  ( y  X.  B
)  e.  Fin )
)
5540, 54mpan2d 428 . . . . . . . . 9  |-  ( ( ( y  e.  Fin  /\  B  e.  Fin )  /\  w  e.  y
)  ->  ( (
( y  \  {
w } )  X.  B )  e.  Fin  ->  ( y  X.  B
)  e.  Fin )
)
5626, 28, 553syld 57 . . . . . . . 8  |-  ( ( ( y  e.  Fin  /\  B  e.  Fin )  /\  w  e.  y
)  ->  ( A. z  e.  y  ( B  e.  Fin  ->  (
( y  \  {
z } )  X.  B )  e.  Fin )  ->  ( y  X.  B )  e.  Fin ) )
5756ex 115 . . . . . . 7  |-  ( ( y  e.  Fin  /\  B  e.  Fin )  ->  ( w  e.  y  ->  ( A. z  e.  y  ( B  e.  Fin  ->  ( (
y  \  { z } )  X.  B
)  e.  Fin )  ->  ( y  X.  B
)  e.  Fin )
) )
5857exlimdv 1843 . . . . . 6  |-  ( ( y  e.  Fin  /\  B  e.  Fin )  ->  ( E. w  w  e.  y  ->  ( A. z  e.  y 
( B  e.  Fin  ->  ( ( y  \  { z } )  X.  B )  e. 
Fin )  ->  (
y  X.  B )  e.  Fin ) ) )
59 fin0or 7009 . . . . . . 7  |-  ( y  e.  Fin  ->  (
y  =  (/)  \/  E. w  w  e.  y
) )
6059adantr 276 . . . . . 6  |-  ( ( y  e.  Fin  /\  B  e.  Fin )  ->  ( y  =  (/)  \/ 
E. w  w  e.  y ) )
6119, 58, 60mpjaod 720 . . . . 5  |-  ( ( y  e.  Fin  /\  B  e.  Fin )  ->  ( A. z  e.  y  ( B  e. 
Fin  ->  ( ( y 
\  { z } )  X.  B )  e.  Fin )  -> 
( y  X.  B
)  e.  Fin )
)
6261ex 115 . . . 4  |-  ( y  e.  Fin  ->  ( B  e.  Fin  ->  ( A. z  e.  y 
( B  e.  Fin  ->  ( ( y  \  { z } )  X.  B )  e. 
Fin )  ->  (
y  X.  B )  e.  Fin ) ) )
6362com23 78 . . 3  |-  ( y  e.  Fin  ->  ( A. z  e.  y 
( B  e.  Fin  ->  ( ( y  \  { z } )  X.  B )  e. 
Fin )  ->  ( B  e.  Fin  ->  (
y  X.  B )  e.  Fin ) ) )
643, 6, 9, 12, 16, 63findcard 7011 . 2  |-  ( A  e.  Fin  ->  ( B  e.  Fin  ->  ( A  X.  B )  e. 
Fin ) )
6564imp 124 1  |-  ( ( A  e.  Fin  /\  B  e.  Fin )  ->  ( A  X.  B
)  e.  Fin )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    \/ wo 710    = wceq 1373   E.wex 1516    e. wcel 2178   A.wral 2486   _Vcvv 2776    \ cdif 3171    u. cun 3172    i^i cin 3173   (/)c0 3468   {csn 3643   class class class wbr 4059    X. cxp 4691    |` cres 4695   -1-1-onto->wf1o 5289   2ndc2nd 6248    ~~ cen 6848   Fincfn 6850
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-coll 4175  ax-sep 4178  ax-nul 4186  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-iinf 4654
This theorem depends on definitions:  df-bi 117  df-dc 837  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-ral 2491  df-rex 2492  df-reu 2493  df-rab 2495  df-v 2778  df-sbc 3006  df-csb 3102  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-nul 3469  df-if 3580  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-iun 3943  df-br 4060  df-opab 4122  df-mpt 4123  df-tr 4159  df-id 4358  df-iord 4431  df-on 4433  df-suc 4436  df-iom 4657  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-f1 5295  df-fo 5296  df-f1o 5297  df-fv 5298  df-1st 6249  df-2nd 6250  df-1o 6525  df-er 6643  df-en 6851  df-fin 6853
This theorem is referenced by:  3xpfi  7056  opabfi  7061  hashxp  11008  fsum2dlemstep  11860  fisumcom2  11864  fprod2dlemstep  12048  fprodcom2fi  12052  crth  12661  phimullem  12662  fsumdvdsmul  15578  lgsquadlem2  15670
  Copyright terms: Public domain W3C validator