ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xpfi Unicode version

Theorem xpfi 6919
Description: The Cartesian product of two finite sets is finite. Lemma 8.1.16 of [AczelRathjen], p. 74. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 12-Mar-2015.)
Assertion
Ref Expression
xpfi  |-  ( ( A  e.  Fin  /\  B  e.  Fin )  ->  ( A  X.  B
)  e.  Fin )

Proof of Theorem xpfi
Dummy variables  w  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xpeq1 4634 . . . . 5  |-  ( x  =  (/)  ->  ( x  X.  B )  =  ( (/)  X.  B
) )
21eleq1d 2244 . . . 4  |-  ( x  =  (/)  ->  ( ( x  X.  B )  e.  Fin  <->  ( (/)  X.  B
)  e.  Fin )
)
32imbi2d 230 . . 3  |-  ( x  =  (/)  ->  ( ( B  e.  Fin  ->  ( x  X.  B )  e.  Fin )  <->  ( B  e.  Fin  ->  ( (/)  X.  B
)  e.  Fin )
) )
4 xpeq1 4634 . . . . 5  |-  ( x  =  ( y  \  { z } )  ->  ( x  X.  B )  =  ( ( y  \  {
z } )  X.  B ) )
54eleq1d 2244 . . . 4  |-  ( x  =  ( y  \  { z } )  ->  ( ( x  X.  B )  e. 
Fin 
<->  ( ( y  \  { z } )  X.  B )  e. 
Fin ) )
65imbi2d 230 . . 3  |-  ( x  =  ( y  \  { z } )  ->  ( ( B  e.  Fin  ->  (
x  X.  B )  e.  Fin )  <->  ( B  e.  Fin  ->  ( (
y  \  { z } )  X.  B
)  e.  Fin )
) )
7 xpeq1 4634 . . . . 5  |-  ( x  =  y  ->  (
x  X.  B )  =  ( y  X.  B ) )
87eleq1d 2244 . . . 4  |-  ( x  =  y  ->  (
( x  X.  B
)  e.  Fin  <->  ( y  X.  B )  e.  Fin ) )
98imbi2d 230 . . 3  |-  ( x  =  y  ->  (
( B  e.  Fin  ->  ( x  X.  B
)  e.  Fin )  <->  ( B  e.  Fin  ->  ( y  X.  B )  e.  Fin ) ) )
10 xpeq1 4634 . . . . 5  |-  ( x  =  A  ->  (
x  X.  B )  =  ( A  X.  B ) )
1110eleq1d 2244 . . . 4  |-  ( x  =  A  ->  (
( x  X.  B
)  e.  Fin  <->  ( A  X.  B )  e.  Fin ) )
1211imbi2d 230 . . 3  |-  ( x  =  A  ->  (
( B  e.  Fin  ->  ( x  X.  B
)  e.  Fin )  <->  ( B  e.  Fin  ->  ( A  X.  B )  e.  Fin ) ) )
13 0xp 4700 . . . . 5  |-  ( (/)  X.  B )  =  (/)
14 0fin 6874 . . . . 5  |-  (/)  e.  Fin
1513, 14eqeltri 2248 . . . 4  |-  ( (/)  X.  B )  e.  Fin
1615a1i 9 . . 3  |-  ( B  e.  Fin  ->  ( (/) 
X.  B )  e. 
Fin )
17 xpeq1 4634 . . . . . . . 8  |-  ( y  =  (/)  ->  ( y  X.  B )  =  ( (/)  X.  B
) )
1817, 15eqeltrdi 2266 . . . . . . 7  |-  ( y  =  (/)  ->  ( y  X.  B )  e. 
Fin )
1918a1i13 24 . . . . . 6  |-  ( ( y  e.  Fin  /\  B  e.  Fin )  ->  ( y  =  (/)  ->  ( A. z  e.  y  ( B  e. 
Fin  ->  ( ( y 
\  { z } )  X.  B )  e.  Fin )  -> 
( y  X.  B
)  e.  Fin )
) )
20 sneq 3600 . . . . . . . . . . . . . . 15  |-  ( z  =  w  ->  { z }  =  { w } )
2120difeq2d 3251 . . . . . . . . . . . . . 14  |-  ( z  =  w  ->  (
y  \  { z } )  =  ( y  \  { w } ) )
2221xpeq1d 4643 . . . . . . . . . . . . 13  |-  ( z  =  w  ->  (
( y  \  {
z } )  X.  B )  =  ( ( y  \  {
w } )  X.  B ) )
2322eleq1d 2244 . . . . . . . . . . . 12  |-  ( z  =  w  ->  (
( ( y  \  { z } )  X.  B )  e. 
Fin 
<->  ( ( y  \  { w } )  X.  B )  e. 
Fin ) )
2423imbi2d 230 . . . . . . . . . . 11  |-  ( z  =  w  ->  (
( B  e.  Fin  ->  ( ( y  \  { z } )  X.  B )  e. 
Fin )  <->  ( B  e.  Fin  ->  ( (
y  \  { w } )  X.  B
)  e.  Fin )
) )
2524rspcv 2835 . . . . . . . . . 10  |-  ( w  e.  y  ->  ( A. z  e.  y 
( B  e.  Fin  ->  ( ( y  \  { z } )  X.  B )  e. 
Fin )  ->  ( B  e.  Fin  ->  (
( y  \  {
w } )  X.  B )  e.  Fin ) ) )
2625adantl 277 . . . . . . . . 9  |-  ( ( ( y  e.  Fin  /\  B  e.  Fin )  /\  w  e.  y
)  ->  ( A. z  e.  y  ( B  e.  Fin  ->  (
( y  \  {
z } )  X.  B )  e.  Fin )  ->  ( B  e. 
Fin  ->  ( ( y 
\  { w }
)  X.  B )  e.  Fin ) ) )
27 pm2.27 40 . . . . . . . . . 10  |-  ( B  e.  Fin  ->  (
( B  e.  Fin  ->  ( ( y  \  { w } )  X.  B )  e. 
Fin )  ->  (
( y  \  {
w } )  X.  B )  e.  Fin ) )
2827ad2antlr 489 . . . . . . . . 9  |-  ( ( ( y  e.  Fin  /\  B  e.  Fin )  /\  w  e.  y
)  ->  ( ( B  e.  Fin  ->  (
( y  \  {
w } )  X.  B )  e.  Fin )  ->  ( ( y 
\  { w }
)  X.  B )  e.  Fin ) )
29 vex 2738 . . . . . . . . . . . . . . 15  |-  w  e. 
_V
3029snex 4180 . . . . . . . . . . . . . 14  |-  { w }  e.  _V
31 xpexg 4734 . . . . . . . . . . . . . 14  |-  ( ( { w }  e.  _V  /\  B  e.  Fin )  ->  ( { w }  X.  B )  e. 
_V )
3230, 31mpan 424 . . . . . . . . . . . . 13  |-  ( B  e.  Fin  ->  ( { w }  X.  B )  e.  _V )
33 id 19 . . . . . . . . . . . . 13  |-  ( B  e.  Fin  ->  B  e.  Fin )
34 2ndconst 6213 . . . . . . . . . . . . . 14  |-  ( w  e.  _V  ->  ( 2nd  |`  ( { w }  X.  B ) ) : ( { w }  X.  B ) -1-1-onto-> B )
3529, 34mp1i 10 . . . . . . . . . . . . 13  |-  ( B  e.  Fin  ->  ( 2nd  |`  ( { w }  X.  B ) ) : ( { w }  X.  B ) -1-1-onto-> B )
36 f1oen2g 6745 . . . . . . . . . . . . 13  |-  ( ( ( { w }  X.  B )  e.  _V  /\  B  e.  Fin  /\  ( 2nd  |`  ( {
w }  X.  B
) ) : ( { w }  X.  B ) -1-1-onto-> B )  ->  ( { w }  X.  B )  ~~  B
)
3732, 33, 35, 36syl3anc 1238 . . . . . . . . . . . 12  |-  ( B  e.  Fin  ->  ( { w }  X.  B )  ~~  B
)
38 enfii 6864 . . . . . . . . . . . 12  |-  ( ( B  e.  Fin  /\  ( { w }  X.  B )  ~~  B
)  ->  ( {
w }  X.  B
)  e.  Fin )
3937, 38mpdan 421 . . . . . . . . . . 11  |-  ( B  e.  Fin  ->  ( { w }  X.  B )  e.  Fin )
4039ad2antlr 489 . . . . . . . . . 10  |-  ( ( ( y  e.  Fin  /\  B  e.  Fin )  /\  w  e.  y
)  ->  ( {
w }  X.  B
)  e.  Fin )
41 incom 3325 . . . . . . . . . . . . . 14  |-  ( { w }  i^i  (
y  \  { w } ) )  =  ( ( y  \  { w } )  i^i  { w }
)
42 disjdif 3493 . . . . . . . . . . . . . 14  |-  ( { w }  i^i  (
y  \  { w } ) )  =  (/)
4341, 42eqtr3i 2198 . . . . . . . . . . . . 13  |-  ( ( y  \  { w } )  i^i  {
w } )  =  (/)
44 xpdisj1 5045 . . . . . . . . . . . . 13  |-  ( ( ( y  \  {
w } )  i^i 
{ w } )  =  (/)  ->  ( ( ( y  \  {
w } )  X.  B )  i^i  ( { w }  X.  B ) )  =  (/) )
4543, 44ax-mp 5 . . . . . . . . . . . 12  |-  ( ( ( y  \  {
w } )  X.  B )  i^i  ( { w }  X.  B ) )  =  (/)
46 unfidisj 6911 . . . . . . . . . . . 12  |-  ( ( ( ( y  \  { w } )  X.  B )  e. 
Fin  /\  ( {
w }  X.  B
)  e.  Fin  /\  ( ( ( y 
\  { w }
)  X.  B )  i^i  ( { w }  X.  B ) )  =  (/) )  ->  (
( ( y  \  { w } )  X.  B )  u.  ( { w }  X.  B ) )  e. 
Fin )
4745, 46mp3an3 1326 . . . . . . . . . . 11  |-  ( ( ( ( y  \  { w } )  X.  B )  e. 
Fin  /\  ( {
w }  X.  B
)  e.  Fin )  ->  ( ( ( y 
\  { w }
)  X.  B )  u.  ( { w }  X.  B ) )  e.  Fin )
48 xpundir 4677 . . . . . . . . . . . . 13  |-  ( ( ( y  \  {
w } )  u. 
{ w } )  X.  B )  =  ( ( ( y 
\  { w }
)  X.  B )  u.  ( { w }  X.  B ) )
49 fidifsnid 6861 . . . . . . . . . . . . . . 15  |-  ( ( y  e.  Fin  /\  w  e.  y )  ->  ( ( y  \  { w } )  u.  { w }
)  =  y )
5049adantlr 477 . . . . . . . . . . . . . 14  |-  ( ( ( y  e.  Fin  /\  B  e.  Fin )  /\  w  e.  y
)  ->  ( (
y  \  { w } )  u.  {
w } )  =  y )
5150xpeq1d 4643 . . . . . . . . . . . . 13  |-  ( ( ( y  e.  Fin  /\  B  e.  Fin )  /\  w  e.  y
)  ->  ( (
( y  \  {
w } )  u. 
{ w } )  X.  B )  =  ( y  X.  B
) )
5248, 51eqtr3id 2222 . . . . . . . . . . . 12  |-  ( ( ( y  e.  Fin  /\  B  e.  Fin )  /\  w  e.  y
)  ->  ( (
( y  \  {
w } )  X.  B )  u.  ( { w }  X.  B ) )  =  ( y  X.  B
) )
5352eleq1d 2244 . . . . . . . . . . 11  |-  ( ( ( y  e.  Fin  /\  B  e.  Fin )  /\  w  e.  y
)  ->  ( (
( ( y  \  { w } )  X.  B )  u.  ( { w }  X.  B ) )  e. 
Fin 
<->  ( y  X.  B
)  e.  Fin )
)
5447, 53syl5ib 154 . . . . . . . . . 10  |-  ( ( ( y  e.  Fin  /\  B  e.  Fin )  /\  w  e.  y
)  ->  ( (
( ( y  \  { w } )  X.  B )  e. 
Fin  /\  ( {
w }  X.  B
)  e.  Fin )  ->  ( y  X.  B
)  e.  Fin )
)
5540, 54mpan2d 428 . . . . . . . . 9  |-  ( ( ( y  e.  Fin  /\  B  e.  Fin )  /\  w  e.  y
)  ->  ( (
( y  \  {
w } )  X.  B )  e.  Fin  ->  ( y  X.  B
)  e.  Fin )
)
5626, 28, 553syld 57 . . . . . . . 8  |-  ( ( ( y  e.  Fin  /\  B  e.  Fin )  /\  w  e.  y
)  ->  ( A. z  e.  y  ( B  e.  Fin  ->  (
( y  \  {
z } )  X.  B )  e.  Fin )  ->  ( y  X.  B )  e.  Fin ) )
5756ex 115 . . . . . . 7  |-  ( ( y  e.  Fin  /\  B  e.  Fin )  ->  ( w  e.  y  ->  ( A. z  e.  y  ( B  e.  Fin  ->  ( (
y  \  { z } )  X.  B
)  e.  Fin )  ->  ( y  X.  B
)  e.  Fin )
) )
5857exlimdv 1817 . . . . . 6  |-  ( ( y  e.  Fin  /\  B  e.  Fin )  ->  ( E. w  w  e.  y  ->  ( A. z  e.  y 
( B  e.  Fin  ->  ( ( y  \  { z } )  X.  B )  e. 
Fin )  ->  (
y  X.  B )  e.  Fin ) ) )
59 fin0or 6876 . . . . . . 7  |-  ( y  e.  Fin  ->  (
y  =  (/)  \/  E. w  w  e.  y
) )
6059adantr 276 . . . . . 6  |-  ( ( y  e.  Fin  /\  B  e.  Fin )  ->  ( y  =  (/)  \/ 
E. w  w  e.  y ) )
6119, 58, 60mpjaod 718 . . . . 5  |-  ( ( y  e.  Fin  /\  B  e.  Fin )  ->  ( A. z  e.  y  ( B  e. 
Fin  ->  ( ( y 
\  { z } )  X.  B )  e.  Fin )  -> 
( y  X.  B
)  e.  Fin )
)
6261ex 115 . . . 4  |-  ( y  e.  Fin  ->  ( B  e.  Fin  ->  ( A. z  e.  y 
( B  e.  Fin  ->  ( ( y  \  { z } )  X.  B )  e. 
Fin )  ->  (
y  X.  B )  e.  Fin ) ) )
6362com23 78 . . 3  |-  ( y  e.  Fin  ->  ( A. z  e.  y 
( B  e.  Fin  ->  ( ( y  \  { z } )  X.  B )  e. 
Fin )  ->  ( B  e.  Fin  ->  (
y  X.  B )  e.  Fin ) ) )
643, 6, 9, 12, 16, 63findcard 6878 . 2  |-  ( A  e.  Fin  ->  ( B  e.  Fin  ->  ( A  X.  B )  e. 
Fin ) )
6564imp 124 1  |-  ( ( A  e.  Fin  /\  B  e.  Fin )  ->  ( A  X.  B
)  e.  Fin )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    \/ wo 708    = wceq 1353   E.wex 1490    e. wcel 2146   A.wral 2453   _Vcvv 2735    \ cdif 3124    u. cun 3125    i^i cin 3126   (/)c0 3420   {csn 3589   class class class wbr 3998    X. cxp 4618    |` cres 4622   -1-1-onto->wf1o 5207   2ndc2nd 6130    ~~ cen 6728   Fincfn 6730
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1445  ax-7 1446  ax-gen 1447  ax-ie1 1491  ax-ie2 1492  ax-8 1502  ax-10 1503  ax-11 1504  ax-i12 1505  ax-bndl 1507  ax-4 1508  ax-17 1524  ax-i9 1528  ax-ial 1532  ax-i5r 1533  ax-13 2148  ax-14 2149  ax-ext 2157  ax-coll 4113  ax-sep 4116  ax-nul 4124  ax-pow 4169  ax-pr 4203  ax-un 4427  ax-setind 4530  ax-iinf 4581
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1459  df-sb 1761  df-eu 2027  df-mo 2028  df-clab 2162  df-cleq 2168  df-clel 2171  df-nfc 2306  df-ne 2346  df-ral 2458  df-rex 2459  df-reu 2460  df-rab 2462  df-v 2737  df-sbc 2961  df-csb 3056  df-dif 3129  df-un 3131  df-in 3133  df-ss 3140  df-nul 3421  df-if 3533  df-pw 3574  df-sn 3595  df-pr 3596  df-op 3598  df-uni 3806  df-int 3841  df-iun 3884  df-br 3999  df-opab 4060  df-mpt 4061  df-tr 4097  df-id 4287  df-iord 4360  df-on 4362  df-suc 4365  df-iom 4584  df-xp 4626  df-rel 4627  df-cnv 4628  df-co 4629  df-dm 4630  df-rn 4631  df-res 4632  df-ima 4633  df-iota 5170  df-fun 5210  df-fn 5211  df-f 5212  df-f1 5213  df-fo 5214  df-f1o 5215  df-fv 5216  df-1st 6131  df-2nd 6132  df-1o 6407  df-er 6525  df-en 6731  df-fin 6733
This theorem is referenced by:  3xpfi  6920  hashxp  10772  fsum2dlemstep  11408  fisumcom2  11412  fprod2dlemstep  11596  fprodcom2fi  11600  crth  12189  phimullem  12190
  Copyright terms: Public domain W3C validator