ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xpeq2d Unicode version

Theorem xpeq2d 4491
Description: Equality deduction for cross product. (Contributed by Jeff Madsen, 17-Jun-2010.)
Hypothesis
Ref Expression
xpeq1d.1  |-  ( ph  ->  A  =  B )
Assertion
Ref Expression
xpeq2d  |-  ( ph  ->  ( C  X.  A
)  =  ( C  X.  B ) )

Proof of Theorem xpeq2d
StepHypRef Expression
1 xpeq1d.1 . 2  |-  ( ph  ->  A  =  B )
2 xpeq2 4482 . 2  |-  ( A  =  B  ->  ( C  X.  A )  =  ( C  X.  B
) )
31, 2syl 14 1  |-  ( ph  ->  ( C  X.  A
)  =  ( C  X.  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1296    X. cxp 4465
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1388  ax-7 1389  ax-gen 1390  ax-ie1 1434  ax-ie2 1435  ax-8 1447  ax-11 1449  ax-4 1452  ax-17 1471  ax-i9 1475  ax-ial 1479  ax-i5r 1480  ax-ext 2077
This theorem depends on definitions:  df-bi 116  df-tru 1299  df-nf 1402  df-sb 1700  df-clab 2082  df-cleq 2088  df-clel 2091  df-opab 3922  df-xp 4473
This theorem is referenced by:  csbresg  4748  fconstg  5242  fvdiagfn  6490  mapsncnv  6492  xpsneng  6618  exp3val  10072
  Copyright terms: Public domain W3C validator