ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xpeq2d Unicode version

Theorem xpeq2d 4628
Description: Equality deduction for cross product. (Contributed by Jeff Madsen, 17-Jun-2010.)
Hypothesis
Ref Expression
xpeq1d.1  |-  ( ph  ->  A  =  B )
Assertion
Ref Expression
xpeq2d  |-  ( ph  ->  ( C  X.  A
)  =  ( C  X.  B ) )

Proof of Theorem xpeq2d
StepHypRef Expression
1 xpeq1d.1 . 2  |-  ( ph  ->  A  =  B )
2 xpeq2 4619 . 2  |-  ( A  =  B  ->  ( C  X.  A )  =  ( C  X.  B
) )
31, 2syl 14 1  |-  ( ph  ->  ( C  X.  A
)  =  ( C  X.  B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1343    X. cxp 4602
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-11 1494  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-opab 4044  df-xp 4610
This theorem is referenced by:  csbresg  4887  fconstg  5384  fvdiagfn  6659  mapsncnv  6661  xpsneng  6788  exp3val  10457  reldvg  13288  dvfvalap  13290
  Copyright terms: Public domain W3C validator