| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > xpeq1 | Unicode version | ||
| Description: Equality theorem for cross product. (Contributed by NM, 4-Jul-1994.) |
| Ref | Expression |
|---|---|
| xpeq1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq2 2293 |
. . . 4
| |
| 2 | 1 | anbi1d 465 |
. . 3
|
| 3 | 2 | opabbidv 4150 |
. 2
|
| 4 | df-xp 4725 |
. 2
| |
| 5 | df-xp 4725 |
. 2
| |
| 6 | 3, 4, 5 | 3eqtr4g 2287 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-11 1552 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-tru 1398 df-nf 1507 df-sb 1809 df-clab 2216 df-cleq 2222 df-clel 2225 df-opab 4146 df-xp 4725 |
| This theorem is referenced by: xpeq12 4738 xpeq1i 4739 xpeq1d 4742 opthprc 4770 reseq2 5000 xpeq0r 5151 xpdisj1 5153 xpima1 5175 pmvalg 6806 xpsneng 6981 xpcomeng 6987 xpdom2g 6991 xpfi 7094 exmidomni 7309 exmidfodomrlemim 7379 hashxp 11048 txuni2 14930 txbas 14932 txopn 14939 txrest 14950 txdis 14951 txdis1cn 14952 xmettxlem 15183 xmettx 15184 dvmptid 15390 incistruhgr 15890 |
| Copyright terms: Public domain | W3C validator |