| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > xpeq1 | Unicode version | ||
| Description: Equality theorem for cross product. (Contributed by NM, 4-Jul-1994.) | 
| Ref | Expression | 
|---|---|
| xpeq1 | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | eleq2 2260 | 
. . . 4
 | |
| 2 | 1 | anbi1d 465 | 
. . 3
 | 
| 3 | 2 | opabbidv 4099 | 
. 2
 | 
| 4 | df-xp 4669 | 
. 2
 | |
| 5 | df-xp 4669 | 
. 2
 | |
| 6 | 3, 4, 5 | 3eqtr4g 2254 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-opab 4095 df-xp 4669 | 
| This theorem is referenced by: xpeq12 4682 xpeq1i 4683 xpeq1d 4686 opthprc 4714 reseq2 4941 xpeq0r 5092 xpdisj1 5094 xpima1 5116 pmvalg 6718 xpsneng 6881 xpcomeng 6887 xpdom2g 6891 xpfi 6993 exmidomni 7208 exmidfodomrlemim 7268 hashxp 10918 txuni2 14492 txbas 14494 txopn 14501 txrest 14512 txdis 14513 txdis1cn 14514 xmettxlem 14745 xmettx 14746 dvmptid 14952 | 
| Copyright terms: Public domain | W3C validator |