| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > xpeq1 | Unicode version | ||
| Description: Equality theorem for cross product. (Contributed by NM, 4-Jul-1994.) |
| Ref | Expression |
|---|---|
| xpeq1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq2 2269 |
. . . 4
| |
| 2 | 1 | anbi1d 465 |
. . 3
|
| 3 | 2 | opabbidv 4110 |
. 2
|
| 4 | df-xp 4681 |
. 2
| |
| 5 | df-xp 4681 |
. 2
| |
| 6 | 3, 4, 5 | 3eqtr4g 2263 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-11 1529 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-opab 4106 df-xp 4681 |
| This theorem is referenced by: xpeq12 4694 xpeq1i 4695 xpeq1d 4698 opthprc 4726 reseq2 4954 xpeq0r 5105 xpdisj1 5107 xpima1 5129 pmvalg 6746 xpsneng 6917 xpcomeng 6923 xpdom2g 6927 xpfi 7029 exmidomni 7244 exmidfodomrlemim 7309 hashxp 10971 txuni2 14728 txbas 14730 txopn 14737 txrest 14748 txdis 14749 txdis1cn 14750 xmettxlem 14981 xmettx 14982 dvmptid 15188 |
| Copyright terms: Public domain | W3C validator |