| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > xpeq1 | Unicode version | ||
| Description: Equality theorem for cross product. (Contributed by NM, 4-Jul-1994.) |
| Ref | Expression |
|---|---|
| xpeq1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq2 2271 |
. . . 4
| |
| 2 | 1 | anbi1d 465 |
. . 3
|
| 3 | 2 | opabbidv 4126 |
. 2
|
| 4 | df-xp 4699 |
. 2
| |
| 5 | df-xp 4699 |
. 2
| |
| 6 | 3, 4, 5 | 3eqtr4g 2265 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-11 1530 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2189 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2194 df-cleq 2200 df-clel 2203 df-opab 4122 df-xp 4699 |
| This theorem is referenced by: xpeq12 4712 xpeq1i 4713 xpeq1d 4716 opthprc 4744 reseq2 4973 xpeq0r 5124 xpdisj1 5126 xpima1 5148 pmvalg 6769 xpsneng 6942 xpcomeng 6948 xpdom2g 6952 xpfi 7055 exmidomni 7270 exmidfodomrlemim 7340 hashxp 11008 txuni2 14843 txbas 14845 txopn 14852 txrest 14863 txdis 14864 txdis1cn 14865 xmettxlem 15096 xmettx 15097 dvmptid 15303 incistruhgr 15801 |
| Copyright terms: Public domain | W3C validator |