| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > xpeq1 | Unicode version | ||
| Description: Equality theorem for cross product. (Contributed by NM, 4-Jul-1994.) |
| Ref | Expression |
|---|---|
| xpeq1 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq2 2269 |
. . . 4
| |
| 2 | 1 | anbi1d 465 |
. . 3
|
| 3 | 2 | opabbidv 4111 |
. 2
|
| 4 | df-xp 4682 |
. 2
| |
| 5 | df-xp 4682 |
. 2
| |
| 6 | 3, 4, 5 | 3eqtr4g 2263 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-11 1529 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-opab 4107 df-xp 4682 |
| This theorem is referenced by: xpeq12 4695 xpeq1i 4696 xpeq1d 4699 opthprc 4727 reseq2 4955 xpeq0r 5106 xpdisj1 5108 xpima1 5130 pmvalg 6748 xpsneng 6919 xpcomeng 6925 xpdom2g 6929 xpfi 7031 exmidomni 7246 exmidfodomrlemim 7311 hashxp 10973 txuni2 14761 txbas 14763 txopn 14770 txrest 14781 txdis 14782 txdis1cn 14783 xmettxlem 15014 xmettx 15015 dvmptid 15221 |
| Copyright terms: Public domain | W3C validator |