ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xpeq1 Unicode version

Theorem xpeq1 4733
Description: Equality theorem for cross product. (Contributed by NM, 4-Jul-1994.)
Assertion
Ref Expression
xpeq1  |-  ( A  =  B  ->  ( A  X.  C )  =  ( B  X.  C
) )

Proof of Theorem xpeq1
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eleq2 2293 . . . 4  |-  ( A  =  B  ->  (
x  e.  A  <->  x  e.  B ) )
21anbi1d 465 . . 3  |-  ( A  =  B  ->  (
( x  e.  A  /\  y  e.  C
)  <->  ( x  e.  B  /\  y  e.  C ) ) )
32opabbidv 4150 . 2  |-  ( A  =  B  ->  { <. x ,  y >.  |  ( x  e.  A  /\  y  e.  C ) }  =  { <. x ,  y >.  |  ( x  e.  B  /\  y  e.  C ) } )
4 df-xp 4725 . 2  |-  ( A  X.  C )  =  { <. x ,  y
>.  |  ( x  e.  A  /\  y  e.  C ) }
5 df-xp 4725 . 2  |-  ( B  X.  C )  =  { <. x ,  y
>.  |  ( x  e.  B  /\  y  e.  C ) }
63, 4, 53eqtr4g 2287 1  |-  ( A  =  B  ->  ( A  X.  C )  =  ( B  X.  C
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1395    e. wcel 2200   {copab 4144    X. cxp 4717
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-11 1552  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-opab 4146  df-xp 4725
This theorem is referenced by:  xpeq12  4738  xpeq1i  4739  xpeq1d  4742  opthprc  4770  reseq2  5000  xpeq0r  5151  xpdisj1  5153  xpima1  5175  pmvalg  6806  xpsneng  6981  xpcomeng  6987  xpdom2g  6991  xpfi  7094  exmidomni  7309  exmidfodomrlemim  7379  hashxp  11048  txuni2  14930  txbas  14932  txopn  14939  txrest  14950  txdis  14951  txdis1cn  14952  xmettxlem  15183  xmettx  15184  dvmptid  15390  incistruhgr  15890
  Copyright terms: Public domain W3C validator