ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ixpsnf1o Unicode version

Theorem ixpsnf1o 6823
Description: A bijection between a class and single-point functions to it. (Contributed by Stefan O'Rear, 24-Jan-2015.)
Hypothesis
Ref Expression
ixpsnf1o.f  |-  F  =  ( x  e.  A  |->  ( { I }  X.  { x } ) )
Assertion
Ref Expression
ixpsnf1o  |-  ( I  e.  V  ->  F : A -1-1-onto-> X_ y  e.  {
I } A )
Distinct variable groups:    x, I, y   
x, A, y    x, V, y    y, F
Allowed substitution hint:    F( x)

Proof of Theorem ixpsnf1o
Dummy variables  a  b  c are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ixpsnf1o.f . 2  |-  F  =  ( x  e.  A  |->  ( { I }  X.  { x } ) )
2 snexg 4228 . . . 4  |-  ( I  e.  V  ->  { I }  e.  _V )
3 vex 2775 . . . . 5  |-  x  e. 
_V
43snex 4229 . . . 4  |-  { x }  e.  _V
5 xpexg 4789 . . . 4  |-  ( ( { I }  e.  _V  /\  { x }  e.  _V )  ->  ( { I }  X.  { x } )  e.  _V )
62, 4, 5sylancl 413 . . 3  |-  ( I  e.  V  ->  ( { I }  X.  { x } )  e.  _V )
76adantr 276 . 2  |-  ( ( I  e.  V  /\  x  e.  A )  ->  ( { I }  X.  { x } )  e.  _V )
8 vex 2775 . . . . 5  |-  a  e. 
_V
98rnex 4946 . . . 4  |-  ran  a  e.  _V
109uniex 4484 . . 3  |-  U. ran  a  e.  _V
1110a1i 9 . 2  |-  ( ( I  e.  V  /\  a  e.  X_ y  e. 
{ I } A
)  ->  U. ran  a  e.  _V )
12 sneq 3644 . . . . . 6  |-  ( b  =  I  ->  { b }  =  { I } )
1312xpeq1d 4698 . . . . 5  |-  ( b  =  I  ->  ( { b }  X.  { x } )  =  ( { I }  X.  { x }
) )
1413eqeq2d 2217 . . . 4  |-  ( b  =  I  ->  (
a  =  ( { b }  X.  {
x } )  <->  a  =  ( { I }  X.  { x } ) ) )
1514anbi2d 464 . . 3  |-  ( b  =  I  ->  (
( x  e.  A  /\  a  =  ( { b }  X.  { x } ) )  <->  ( x  e.  A  /\  a  =  ( { I }  X.  { x } ) ) ) )
16 elixpsn 6822 . . . . . 6  |-  ( b  e.  _V  ->  (
a  e.  X_ y  e.  { b } A  <->  E. c  e.  A  a  =  { <. b ,  c >. } ) )
1716elv 2776 . . . . 5  |-  ( a  e.  X_ y  e.  {
b } A  <->  E. c  e.  A  a  =  { <. b ,  c
>. } )
1812ixpeq1d 6797 . . . . . 6  |-  ( b  =  I  ->  X_ y  e.  { b } A  =  X_ y  e.  {
I } A )
1918eleq2d 2275 . . . . 5  |-  ( b  =  I  ->  (
a  e.  X_ y  e.  { b } A  <->  a  e.  X_ y  e.  {
I } A ) )
2017, 19bitr3id 194 . . . 4  |-  ( b  =  I  ->  ( E. c  e.  A  a  =  { <. b ,  c >. }  <->  a  e.  X_ y  e.  { I } A ) )
2120anbi1d 465 . . 3  |-  ( b  =  I  ->  (
( E. c  e.  A  a  =  { <. b ,  c >. }  /\  x  =  U. ran  a )  <->  ( a  e.  X_ y  e.  {
I } A  /\  x  =  U. ran  a
) ) )
22 vex 2775 . . . . . . 7  |-  b  e. 
_V
2322, 3xpsn 5756 . . . . . 6  |-  ( { b }  X.  {
x } )  =  { <. b ,  x >. }
2423eqeq2i 2216 . . . . 5  |-  ( a  =  ( { b }  X.  { x } )  <->  a  =  { <. b ,  x >. } )
2524anbi2i 457 . . . 4  |-  ( ( x  e.  A  /\  a  =  ( {
b }  X.  {
x } ) )  <-> 
( x  e.  A  /\  a  =  { <. b ,  x >. } ) )
26 eqid 2205 . . . . . . . . 9  |-  { <. b ,  x >. }  =  { <. b ,  x >. }
27 opeq2 3820 . . . . . . . . . . 11  |-  ( c  =  x  ->  <. b ,  c >.  =  <. b ,  x >. )
2827sneqd 3646 . . . . . . . . . 10  |-  ( c  =  x  ->  { <. b ,  c >. }  =  { <. b ,  x >. } )
2928rspceeqv 2895 . . . . . . . . 9  |-  ( ( x  e.  A  /\  {
<. b ,  x >. }  =  { <. b ,  x >. } )  ->  E. c  e.  A  { <. b ,  x >. }  =  { <. b ,  c >. } )
3026, 29mpan2 425 . . . . . . . 8  |-  ( x  e.  A  ->  E. c  e.  A  { <. b ,  x >. }  =  { <. b ,  c >. } )
3122, 3op2nda 5167 . . . . . . . . 9  |-  U. ran  {
<. b ,  x >. }  =  x
3231eqcomi 2209 . . . . . . . 8  |-  x  = 
U. ran  { <. b ,  x >. }
3330, 32jctir 313 . . . . . . 7  |-  ( x  e.  A  ->  ( E. c  e.  A  { <. b ,  x >. }  =  { <. b ,  c >. }  /\  x  =  U. ran  { <. b ,  x >. } ) )
34 eqeq1 2212 . . . . . . . . 9  |-  ( a  =  { <. b ,  x >. }  ->  (
a  =  { <. b ,  c >. }  <->  { <. b ,  x >. }  =  { <. b ,  c >. } ) )
3534rexbidv 2507 . . . . . . . 8  |-  ( a  =  { <. b ,  x >. }  ->  ( E. c  e.  A  a  =  { <. b ,  c >. }  <->  E. c  e.  A  { <. b ,  x >. }  =  { <. b ,  c >. } ) )
36 rneq 4905 . . . . . . . . . 10  |-  ( a  =  { <. b ,  x >. }  ->  ran  a  =  ran  { <. b ,  x >. } )
3736unieqd 3861 . . . . . . . . 9  |-  ( a  =  { <. b ,  x >. }  ->  U. ran  a  =  U. ran  { <. b ,  x >. } )
3837eqeq2d 2217 . . . . . . . 8  |-  ( a  =  { <. b ,  x >. }  ->  (
x  =  U. ran  a 
<->  x  =  U. ran  {
<. b ,  x >. } ) )
3935, 38anbi12d 473 . . . . . . 7  |-  ( a  =  { <. b ,  x >. }  ->  (
( E. c  e.  A  a  =  { <. b ,  c >. }  /\  x  =  U. ran  a )  <->  ( E. c  e.  A  { <. b ,  x >. }  =  { <. b ,  c >. }  /\  x  =  U. ran  { <. b ,  x >. } ) ) )
4033, 39syl5ibrcom 157 . . . . . 6  |-  ( x  e.  A  ->  (
a  =  { <. b ,  x >. }  ->  ( E. c  e.  A  a  =  { <. b ,  c >. }  /\  x  =  U. ran  a
) ) )
4140imp 124 . . . . 5  |-  ( ( x  e.  A  /\  a  =  { <. b ,  x >. } )  -> 
( E. c  e.  A  a  =  { <. b ,  c >. }  /\  x  =  U. ran  a ) )
42 vex 2775 . . . . . . . . . . 11  |-  c  e. 
_V
4322, 42op2nda 5167 . . . . . . . . . 10  |-  U. ran  {
<. b ,  c >. }  =  c
4443eqeq2i 2216 . . . . . . . . 9  |-  ( x  =  U. ran  { <. b ,  c >. } 
<->  x  =  c )
45 eqidd 2206 . . . . . . . . . . 11  |-  ( c  e.  A  ->  { <. b ,  c >. }  =  { <. b ,  c
>. } )
4645ancli 323 . . . . . . . . . 10  |-  ( c  e.  A  ->  (
c  e.  A  /\  {
<. b ,  c >. }  =  { <. b ,  c >. } ) )
47 eleq1w 2266 . . . . . . . . . . 11  |-  ( x  =  c  ->  (
x  e.  A  <->  c  e.  A ) )
48 opeq2 3820 . . . . . . . . . . . . 13  |-  ( x  =  c  ->  <. b ,  x >.  =  <. b ,  c >. )
4948sneqd 3646 . . . . . . . . . . . 12  |-  ( x  =  c  ->  { <. b ,  x >. }  =  { <. b ,  c
>. } )
5049eqeq2d 2217 . . . . . . . . . . 11  |-  ( x  =  c  ->  ( { <. b ,  c
>. }  =  { <. b ,  x >. }  <->  { <. b ,  c >. }  =  { <. b ,  c
>. } ) )
5147, 50anbi12d 473 . . . . . . . . . 10  |-  ( x  =  c  ->  (
( x  e.  A  /\  { <. b ,  c
>. }  =  { <. b ,  x >. } )  <-> 
( c  e.  A  /\  { <. b ,  c
>. }  =  { <. b ,  c >. } ) ) )
5246, 51syl5ibrcom 157 . . . . . . . . 9  |-  ( c  e.  A  ->  (
x  =  c  -> 
( x  e.  A  /\  { <. b ,  c
>. }  =  { <. b ,  x >. } ) ) )
5344, 52biimtrid 152 . . . . . . . 8  |-  ( c  e.  A  ->  (
x  =  U. ran  {
<. b ,  c >. }  ->  ( x  e.  A  /\  { <. b ,  c >. }  =  { <. b ,  x >. } ) ) )
54 rneq 4905 . . . . . . . . . . 11  |-  ( a  =  { <. b ,  c >. }  ->  ran  a  =  ran  { <. b ,  c >. } )
5554unieqd 3861 . . . . . . . . . 10  |-  ( a  =  { <. b ,  c >. }  ->  U.
ran  a  =  U. ran  { <. b ,  c
>. } )
5655eqeq2d 2217 . . . . . . . . 9  |-  ( a  =  { <. b ,  c >. }  ->  ( x  =  U. ran  a 
<->  x  =  U. ran  {
<. b ,  c >. } ) )
57 eqeq1 2212 . . . . . . . . . 10  |-  ( a  =  { <. b ,  c >. }  ->  ( a  =  { <. b ,  x >. }  <->  { <. b ,  c >. }  =  { <. b ,  x >. } ) )
5857anbi2d 464 . . . . . . . . 9  |-  ( a  =  { <. b ,  c >. }  ->  ( ( x  e.  A  /\  a  =  { <. b ,  x >. } )  <->  ( x  e.  A  /\  { <. b ,  c >. }  =  { <. b ,  x >. } ) ) )
5956, 58imbi12d 234 . . . . . . . 8  |-  ( a  =  { <. b ,  c >. }  ->  ( ( x  =  U. ran  a  ->  ( x  e.  A  /\  a  =  { <. b ,  x >. } ) )  <->  ( x  =  U. ran  { <. b ,  c >. }  ->  ( x  e.  A  /\  {
<. b ,  c >. }  =  { <. b ,  x >. } ) ) ) )
6053, 59syl5ibrcom 157 . . . . . . 7  |-  ( c  e.  A  ->  (
a  =  { <. b ,  c >. }  ->  ( x  =  U. ran  a  ->  ( x  e.  A  /\  a  =  { <. b ,  x >. } ) ) ) )
6160rexlimiv 2617 . . . . . 6  |-  ( E. c  e.  A  a  =  { <. b ,  c >. }  ->  ( x  =  U. ran  a  ->  ( x  e.  A  /\  a  =  { <. b ,  x >. } ) ) )
6261imp 124 . . . . 5  |-  ( ( E. c  e.  A  a  =  { <. b ,  c >. }  /\  x  =  U. ran  a
)  ->  ( x  e.  A  /\  a  =  { <. b ,  x >. } ) )
6341, 62impbii 126 . . . 4  |-  ( ( x  e.  A  /\  a  =  { <. b ,  x >. } )  <->  ( E. c  e.  A  a  =  { <. b ,  c
>. }  /\  x  = 
U. ran  a )
)
6425, 63bitri 184 . . 3  |-  ( ( x  e.  A  /\  a  =  ( {
b }  X.  {
x } ) )  <-> 
( E. c  e.  A  a  =  { <. b ,  c >. }  /\  x  =  U. ran  a ) )
6515, 21, 64vtoclbg 2834 . 2  |-  ( I  e.  V  ->  (
( x  e.  A  /\  a  =  ( { I }  X.  { x } ) )  <->  ( a  e.  X_ y  e.  { I } A  /\  x  =  U. ran  a ) ) )
661, 7, 11, 65f1od 6149 1  |-  ( I  e.  V  ->  F : A -1-1-onto-> X_ y  e.  {
I } A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1373    e. wcel 2176   E.wrex 2485   _Vcvv 2772   {csn 3633   <.cop 3636   U.cuni 3850    |-> cmpt 4105    X. cxp 4673   ran crn 4676   -1-1-onto->wf1o 5270   X_cixp 6785
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-reu 2491  df-v 2774  df-sbc 2999  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-br 4045  df-opab 4106  df-mpt 4107  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-ixp 6786
This theorem is referenced by:  mapsnf1o  6824
  Copyright terms: Public domain W3C validator