ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ixpsnf1o Unicode version

Theorem ixpsnf1o 6623
Description: A bijection between a class and single-point functions to it. (Contributed by Stefan O'Rear, 24-Jan-2015.)
Hypothesis
Ref Expression
ixpsnf1o.f  |-  F  =  ( x  e.  A  |->  ( { I }  X.  { x } ) )
Assertion
Ref Expression
ixpsnf1o  |-  ( I  e.  V  ->  F : A -1-1-onto-> X_ y  e.  {
I } A )
Distinct variable groups:    x, I, y   
x, A, y    x, V, y    y, F
Allowed substitution hint:    F( x)

Proof of Theorem ixpsnf1o
Dummy variables  a  b  c are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ixpsnf1o.f . 2  |-  F  =  ( x  e.  A  |->  ( { I }  X.  { x } ) )
2 snexg 4103 . . . 4  |-  ( I  e.  V  ->  { I }  e.  _V )
3 vex 2684 . . . . 5  |-  x  e. 
_V
43snex 4104 . . . 4  |-  { x }  e.  _V
5 xpexg 4648 . . . 4  |-  ( ( { I }  e.  _V  /\  { x }  e.  _V )  ->  ( { I }  X.  { x } )  e.  _V )
62, 4, 5sylancl 409 . . 3  |-  ( I  e.  V  ->  ( { I }  X.  { x } )  e.  _V )
76adantr 274 . 2  |-  ( ( I  e.  V  /\  x  e.  A )  ->  ( { I }  X.  { x } )  e.  _V )
8 vex 2684 . . . . 5  |-  a  e. 
_V
98rnex 4801 . . . 4  |-  ran  a  e.  _V
109uniex 4354 . . 3  |-  U. ran  a  e.  _V
1110a1i 9 . 2  |-  ( ( I  e.  V  /\  a  e.  X_ y  e. 
{ I } A
)  ->  U. ran  a  e.  _V )
12 sneq 3533 . . . . . 6  |-  ( b  =  I  ->  { b }  =  { I } )
1312xpeq1d 4557 . . . . 5  |-  ( b  =  I  ->  ( { b }  X.  { x } )  =  ( { I }  X.  { x }
) )
1413eqeq2d 2149 . . . 4  |-  ( b  =  I  ->  (
a  =  ( { b }  X.  {
x } )  <->  a  =  ( { I }  X.  { x } ) ) )
1514anbi2d 459 . . 3  |-  ( b  =  I  ->  (
( x  e.  A  /\  a  =  ( { b }  X.  { x } ) )  <->  ( x  e.  A  /\  a  =  ( { I }  X.  { x } ) ) ) )
16 elixpsn 6622 . . . . . 6  |-  ( b  e.  _V  ->  (
a  e.  X_ y  e.  { b } A  <->  E. c  e.  A  a  =  { <. b ,  c >. } ) )
1716elv 2685 . . . . 5  |-  ( a  e.  X_ y  e.  {
b } A  <->  E. c  e.  A  a  =  { <. b ,  c
>. } )
1812ixpeq1d 6597 . . . . . 6  |-  ( b  =  I  ->  X_ y  e.  { b } A  =  X_ y  e.  {
I } A )
1918eleq2d 2207 . . . . 5  |-  ( b  =  I  ->  (
a  e.  X_ y  e.  { b } A  <->  a  e.  X_ y  e.  {
I } A ) )
2017, 19syl5bbr 193 . . . 4  |-  ( b  =  I  ->  ( E. c  e.  A  a  =  { <. b ,  c >. }  <->  a  e.  X_ y  e.  { I } A ) )
2120anbi1d 460 . . 3  |-  ( b  =  I  ->  (
( E. c  e.  A  a  =  { <. b ,  c >. }  /\  x  =  U. ran  a )  <->  ( a  e.  X_ y  e.  {
I } A  /\  x  =  U. ran  a
) ) )
22 vex 2684 . . . . . . 7  |-  b  e. 
_V
2322, 3xpsn 5589 . . . . . 6  |-  ( { b }  X.  {
x } )  =  { <. b ,  x >. }
2423eqeq2i 2148 . . . . 5  |-  ( a  =  ( { b }  X.  { x } )  <->  a  =  { <. b ,  x >. } )
2524anbi2i 452 . . . 4  |-  ( ( x  e.  A  /\  a  =  ( {
b }  X.  {
x } ) )  <-> 
( x  e.  A  /\  a  =  { <. b ,  x >. } ) )
26 eqid 2137 . . . . . . . . 9  |-  { <. b ,  x >. }  =  { <. b ,  x >. }
27 opeq2 3701 . . . . . . . . . . 11  |-  ( c  =  x  ->  <. b ,  c >.  =  <. b ,  x >. )
2827sneqd 3535 . . . . . . . . . 10  |-  ( c  =  x  ->  { <. b ,  c >. }  =  { <. b ,  x >. } )
2928rspceeqv 2802 . . . . . . . . 9  |-  ( ( x  e.  A  /\  {
<. b ,  x >. }  =  { <. b ,  x >. } )  ->  E. c  e.  A  { <. b ,  x >. }  =  { <. b ,  c >. } )
3026, 29mpan2 421 . . . . . . . 8  |-  ( x  e.  A  ->  E. c  e.  A  { <. b ,  x >. }  =  { <. b ,  c >. } )
3122, 3op2nda 5018 . . . . . . . . 9  |-  U. ran  {
<. b ,  x >. }  =  x
3231eqcomi 2141 . . . . . . . 8  |-  x  = 
U. ran  { <. b ,  x >. }
3330, 32jctir 311 . . . . . . 7  |-  ( x  e.  A  ->  ( E. c  e.  A  { <. b ,  x >. }  =  { <. b ,  c >. }  /\  x  =  U. ran  { <. b ,  x >. } ) )
34 eqeq1 2144 . . . . . . . . 9  |-  ( a  =  { <. b ,  x >. }  ->  (
a  =  { <. b ,  c >. }  <->  { <. b ,  x >. }  =  { <. b ,  c >. } ) )
3534rexbidv 2436 . . . . . . . 8  |-  ( a  =  { <. b ,  x >. }  ->  ( E. c  e.  A  a  =  { <. b ,  c >. }  <->  E. c  e.  A  { <. b ,  x >. }  =  { <. b ,  c >. } ) )
36 rneq 4761 . . . . . . . . . 10  |-  ( a  =  { <. b ,  x >. }  ->  ran  a  =  ran  { <. b ,  x >. } )
3736unieqd 3742 . . . . . . . . 9  |-  ( a  =  { <. b ,  x >. }  ->  U. ran  a  =  U. ran  { <. b ,  x >. } )
3837eqeq2d 2149 . . . . . . . 8  |-  ( a  =  { <. b ,  x >. }  ->  (
x  =  U. ran  a 
<->  x  =  U. ran  {
<. b ,  x >. } ) )
3935, 38anbi12d 464 . . . . . . 7  |-  ( a  =  { <. b ,  x >. }  ->  (
( E. c  e.  A  a  =  { <. b ,  c >. }  /\  x  =  U. ran  a )  <->  ( E. c  e.  A  { <. b ,  x >. }  =  { <. b ,  c >. }  /\  x  =  U. ran  { <. b ,  x >. } ) ) )
4033, 39syl5ibrcom 156 . . . . . 6  |-  ( x  e.  A  ->  (
a  =  { <. b ,  x >. }  ->  ( E. c  e.  A  a  =  { <. b ,  c >. }  /\  x  =  U. ran  a
) ) )
4140imp 123 . . . . 5  |-  ( ( x  e.  A  /\  a  =  { <. b ,  x >. } )  -> 
( E. c  e.  A  a  =  { <. b ,  c >. }  /\  x  =  U. ran  a ) )
42 vex 2684 . . . . . . . . . . 11  |-  c  e. 
_V
4322, 42op2nda 5018 . . . . . . . . . 10  |-  U. ran  {
<. b ,  c >. }  =  c
4443eqeq2i 2148 . . . . . . . . 9  |-  ( x  =  U. ran  { <. b ,  c >. } 
<->  x  =  c )
45 eqidd 2138 . . . . . . . . . . 11  |-  ( c  e.  A  ->  { <. b ,  c >. }  =  { <. b ,  c
>. } )
4645ancli 321 . . . . . . . . . 10  |-  ( c  e.  A  ->  (
c  e.  A  /\  {
<. b ,  c >. }  =  { <. b ,  c >. } ) )
47 eleq1w 2198 . . . . . . . . . . 11  |-  ( x  =  c  ->  (
x  e.  A  <->  c  e.  A ) )
48 opeq2 3701 . . . . . . . . . . . . 13  |-  ( x  =  c  ->  <. b ,  x >.  =  <. b ,  c >. )
4948sneqd 3535 . . . . . . . . . . . 12  |-  ( x  =  c  ->  { <. b ,  x >. }  =  { <. b ,  c
>. } )
5049eqeq2d 2149 . . . . . . . . . . 11  |-  ( x  =  c  ->  ( { <. b ,  c
>. }  =  { <. b ,  x >. }  <->  { <. b ,  c >. }  =  { <. b ,  c
>. } ) )
5147, 50anbi12d 464 . . . . . . . . . 10  |-  ( x  =  c  ->  (
( x  e.  A  /\  { <. b ,  c
>. }  =  { <. b ,  x >. } )  <-> 
( c  e.  A  /\  { <. b ,  c
>. }  =  { <. b ,  c >. } ) ) )
5246, 51syl5ibrcom 156 . . . . . . . . 9  |-  ( c  e.  A  ->  (
x  =  c  -> 
( x  e.  A  /\  { <. b ,  c
>. }  =  { <. b ,  x >. } ) ) )
5344, 52syl5bi 151 . . . . . . . 8  |-  ( c  e.  A  ->  (
x  =  U. ran  {
<. b ,  c >. }  ->  ( x  e.  A  /\  { <. b ,  c >. }  =  { <. b ,  x >. } ) ) )
54 rneq 4761 . . . . . . . . . . 11  |-  ( a  =  { <. b ,  c >. }  ->  ran  a  =  ran  { <. b ,  c >. } )
5554unieqd 3742 . . . . . . . . . 10  |-  ( a  =  { <. b ,  c >. }  ->  U.
ran  a  =  U. ran  { <. b ,  c
>. } )
5655eqeq2d 2149 . . . . . . . . 9  |-  ( a  =  { <. b ,  c >. }  ->  ( x  =  U. ran  a 
<->  x  =  U. ran  {
<. b ,  c >. } ) )
57 eqeq1 2144 . . . . . . . . . 10  |-  ( a  =  { <. b ,  c >. }  ->  ( a  =  { <. b ,  x >. }  <->  { <. b ,  c >. }  =  { <. b ,  x >. } ) )
5857anbi2d 459 . . . . . . . . 9  |-  ( a  =  { <. b ,  c >. }  ->  ( ( x  e.  A  /\  a  =  { <. b ,  x >. } )  <->  ( x  e.  A  /\  { <. b ,  c >. }  =  { <. b ,  x >. } ) ) )
5956, 58imbi12d 233 . . . . . . . 8  |-  ( a  =  { <. b ,  c >. }  ->  ( ( x  =  U. ran  a  ->  ( x  e.  A  /\  a  =  { <. b ,  x >. } ) )  <->  ( x  =  U. ran  { <. b ,  c >. }  ->  ( x  e.  A  /\  {
<. b ,  c >. }  =  { <. b ,  x >. } ) ) ) )
6053, 59syl5ibrcom 156 . . . . . . 7  |-  ( c  e.  A  ->  (
a  =  { <. b ,  c >. }  ->  ( x  =  U. ran  a  ->  ( x  e.  A  /\  a  =  { <. b ,  x >. } ) ) ) )
6160rexlimiv 2541 . . . . . 6  |-  ( E. c  e.  A  a  =  { <. b ,  c >. }  ->  ( x  =  U. ran  a  ->  ( x  e.  A  /\  a  =  { <. b ,  x >. } ) ) )
6261imp 123 . . . . 5  |-  ( ( E. c  e.  A  a  =  { <. b ,  c >. }  /\  x  =  U. ran  a
)  ->  ( x  e.  A  /\  a  =  { <. b ,  x >. } ) )
6341, 62impbii 125 . . . 4  |-  ( ( x  e.  A  /\  a  =  { <. b ,  x >. } )  <->  ( E. c  e.  A  a  =  { <. b ,  c
>. }  /\  x  = 
U. ran  a )
)
6425, 63bitri 183 . . 3  |-  ( ( x  e.  A  /\  a  =  ( {
b }  X.  {
x } ) )  <-> 
( E. c  e.  A  a  =  { <. b ,  c >. }  /\  x  =  U. ran  a ) )
6515, 21, 64vtoclbg 2742 . 2  |-  ( I  e.  V  ->  (
( x  e.  A  /\  a  =  ( { I }  X.  { x } ) )  <->  ( a  e.  X_ y  e.  { I } A  /\  x  =  U. ran  a ) ) )
661, 7, 11, 65f1od 5966 1  |-  ( I  e.  V  ->  F : A -1-1-onto-> X_ y  e.  {
I } A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1331    e. wcel 1480   E.wrex 2415   _Vcvv 2681   {csn 3522   <.cop 3525   U.cuni 3731    |-> cmpt 3984    X. cxp 4532   ran crn 4535   -1-1-onto->wf1o 5117   X_cixp 6585
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-sep 4041  ax-pow 4093  ax-pr 4126  ax-un 4350
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ral 2419  df-rex 2420  df-reu 2421  df-v 2683  df-sbc 2905  df-un 3070  df-in 3072  df-ss 3079  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-br 3925  df-opab 3985  df-mpt 3986  df-id 4210  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-rn 4545  df-res 4546  df-ima 4547  df-iota 5083  df-fun 5120  df-fn 5121  df-f 5122  df-f1 5123  df-fo 5124  df-f1o 5125  df-fv 5126  df-ixp 6586
This theorem is referenced by:  mapsnf1o  6624
  Copyright terms: Public domain W3C validator