ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ixpsnf1o Unicode version

Theorem ixpsnf1o 6795
Description: A bijection between a class and single-point functions to it. (Contributed by Stefan O'Rear, 24-Jan-2015.)
Hypothesis
Ref Expression
ixpsnf1o.f  |-  F  =  ( x  e.  A  |->  ( { I }  X.  { x } ) )
Assertion
Ref Expression
ixpsnf1o  |-  ( I  e.  V  ->  F : A -1-1-onto-> X_ y  e.  {
I } A )
Distinct variable groups:    x, I, y   
x, A, y    x, V, y    y, F
Allowed substitution hint:    F( x)

Proof of Theorem ixpsnf1o
Dummy variables  a  b  c are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ixpsnf1o.f . 2  |-  F  =  ( x  e.  A  |->  ( { I }  X.  { x } ) )
2 snexg 4217 . . . 4  |-  ( I  e.  V  ->  { I }  e.  _V )
3 vex 2766 . . . . 5  |-  x  e. 
_V
43snex 4218 . . . 4  |-  { x }  e.  _V
5 xpexg 4777 . . . 4  |-  ( ( { I }  e.  _V  /\  { x }  e.  _V )  ->  ( { I }  X.  { x } )  e.  _V )
62, 4, 5sylancl 413 . . 3  |-  ( I  e.  V  ->  ( { I }  X.  { x } )  e.  _V )
76adantr 276 . 2  |-  ( ( I  e.  V  /\  x  e.  A )  ->  ( { I }  X.  { x } )  e.  _V )
8 vex 2766 . . . . 5  |-  a  e. 
_V
98rnex 4933 . . . 4  |-  ran  a  e.  _V
109uniex 4472 . . 3  |-  U. ran  a  e.  _V
1110a1i 9 . 2  |-  ( ( I  e.  V  /\  a  e.  X_ y  e. 
{ I } A
)  ->  U. ran  a  e.  _V )
12 sneq 3633 . . . . . 6  |-  ( b  =  I  ->  { b }  =  { I } )
1312xpeq1d 4686 . . . . 5  |-  ( b  =  I  ->  ( { b }  X.  { x } )  =  ( { I }  X.  { x }
) )
1413eqeq2d 2208 . . . 4  |-  ( b  =  I  ->  (
a  =  ( { b }  X.  {
x } )  <->  a  =  ( { I }  X.  { x } ) ) )
1514anbi2d 464 . . 3  |-  ( b  =  I  ->  (
( x  e.  A  /\  a  =  ( { b }  X.  { x } ) )  <->  ( x  e.  A  /\  a  =  ( { I }  X.  { x } ) ) ) )
16 elixpsn 6794 . . . . . 6  |-  ( b  e.  _V  ->  (
a  e.  X_ y  e.  { b } A  <->  E. c  e.  A  a  =  { <. b ,  c >. } ) )
1716elv 2767 . . . . 5  |-  ( a  e.  X_ y  e.  {
b } A  <->  E. c  e.  A  a  =  { <. b ,  c
>. } )
1812ixpeq1d 6769 . . . . . 6  |-  ( b  =  I  ->  X_ y  e.  { b } A  =  X_ y  e.  {
I } A )
1918eleq2d 2266 . . . . 5  |-  ( b  =  I  ->  (
a  e.  X_ y  e.  { b } A  <->  a  e.  X_ y  e.  {
I } A ) )
2017, 19bitr3id 194 . . . 4  |-  ( b  =  I  ->  ( E. c  e.  A  a  =  { <. b ,  c >. }  <->  a  e.  X_ y  e.  { I } A ) )
2120anbi1d 465 . . 3  |-  ( b  =  I  ->  (
( E. c  e.  A  a  =  { <. b ,  c >. }  /\  x  =  U. ran  a )  <->  ( a  e.  X_ y  e.  {
I } A  /\  x  =  U. ran  a
) ) )
22 vex 2766 . . . . . . 7  |-  b  e. 
_V
2322, 3xpsn 5738 . . . . . 6  |-  ( { b }  X.  {
x } )  =  { <. b ,  x >. }
2423eqeq2i 2207 . . . . 5  |-  ( a  =  ( { b }  X.  { x } )  <->  a  =  { <. b ,  x >. } )
2524anbi2i 457 . . . 4  |-  ( ( x  e.  A  /\  a  =  ( {
b }  X.  {
x } ) )  <-> 
( x  e.  A  /\  a  =  { <. b ,  x >. } ) )
26 eqid 2196 . . . . . . . . 9  |-  { <. b ,  x >. }  =  { <. b ,  x >. }
27 opeq2 3809 . . . . . . . . . . 11  |-  ( c  =  x  ->  <. b ,  c >.  =  <. b ,  x >. )
2827sneqd 3635 . . . . . . . . . 10  |-  ( c  =  x  ->  { <. b ,  c >. }  =  { <. b ,  x >. } )
2928rspceeqv 2886 . . . . . . . . 9  |-  ( ( x  e.  A  /\  {
<. b ,  x >. }  =  { <. b ,  x >. } )  ->  E. c  e.  A  { <. b ,  x >. }  =  { <. b ,  c >. } )
3026, 29mpan2 425 . . . . . . . 8  |-  ( x  e.  A  ->  E. c  e.  A  { <. b ,  x >. }  =  { <. b ,  c >. } )
3122, 3op2nda 5154 . . . . . . . . 9  |-  U. ran  {
<. b ,  x >. }  =  x
3231eqcomi 2200 . . . . . . . 8  |-  x  = 
U. ran  { <. b ,  x >. }
3330, 32jctir 313 . . . . . . 7  |-  ( x  e.  A  ->  ( E. c  e.  A  { <. b ,  x >. }  =  { <. b ,  c >. }  /\  x  =  U. ran  { <. b ,  x >. } ) )
34 eqeq1 2203 . . . . . . . . 9  |-  ( a  =  { <. b ,  x >. }  ->  (
a  =  { <. b ,  c >. }  <->  { <. b ,  x >. }  =  { <. b ,  c >. } ) )
3534rexbidv 2498 . . . . . . . 8  |-  ( a  =  { <. b ,  x >. }  ->  ( E. c  e.  A  a  =  { <. b ,  c >. }  <->  E. c  e.  A  { <. b ,  x >. }  =  { <. b ,  c >. } ) )
36 rneq 4893 . . . . . . . . . 10  |-  ( a  =  { <. b ,  x >. }  ->  ran  a  =  ran  { <. b ,  x >. } )
3736unieqd 3850 . . . . . . . . 9  |-  ( a  =  { <. b ,  x >. }  ->  U. ran  a  =  U. ran  { <. b ,  x >. } )
3837eqeq2d 2208 . . . . . . . 8  |-  ( a  =  { <. b ,  x >. }  ->  (
x  =  U. ran  a 
<->  x  =  U. ran  {
<. b ,  x >. } ) )
3935, 38anbi12d 473 . . . . . . 7  |-  ( a  =  { <. b ,  x >. }  ->  (
( E. c  e.  A  a  =  { <. b ,  c >. }  /\  x  =  U. ran  a )  <->  ( E. c  e.  A  { <. b ,  x >. }  =  { <. b ,  c >. }  /\  x  =  U. ran  { <. b ,  x >. } ) ) )
4033, 39syl5ibrcom 157 . . . . . 6  |-  ( x  e.  A  ->  (
a  =  { <. b ,  x >. }  ->  ( E. c  e.  A  a  =  { <. b ,  c >. }  /\  x  =  U. ran  a
) ) )
4140imp 124 . . . . 5  |-  ( ( x  e.  A  /\  a  =  { <. b ,  x >. } )  -> 
( E. c  e.  A  a  =  { <. b ,  c >. }  /\  x  =  U. ran  a ) )
42 vex 2766 . . . . . . . . . . 11  |-  c  e. 
_V
4322, 42op2nda 5154 . . . . . . . . . 10  |-  U. ran  {
<. b ,  c >. }  =  c
4443eqeq2i 2207 . . . . . . . . 9  |-  ( x  =  U. ran  { <. b ,  c >. } 
<->  x  =  c )
45 eqidd 2197 . . . . . . . . . . 11  |-  ( c  e.  A  ->  { <. b ,  c >. }  =  { <. b ,  c
>. } )
4645ancli 323 . . . . . . . . . 10  |-  ( c  e.  A  ->  (
c  e.  A  /\  {
<. b ,  c >. }  =  { <. b ,  c >. } ) )
47 eleq1w 2257 . . . . . . . . . . 11  |-  ( x  =  c  ->  (
x  e.  A  <->  c  e.  A ) )
48 opeq2 3809 . . . . . . . . . . . . 13  |-  ( x  =  c  ->  <. b ,  x >.  =  <. b ,  c >. )
4948sneqd 3635 . . . . . . . . . . . 12  |-  ( x  =  c  ->  { <. b ,  x >. }  =  { <. b ,  c
>. } )
5049eqeq2d 2208 . . . . . . . . . . 11  |-  ( x  =  c  ->  ( { <. b ,  c
>. }  =  { <. b ,  x >. }  <->  { <. b ,  c >. }  =  { <. b ,  c
>. } ) )
5147, 50anbi12d 473 . . . . . . . . . 10  |-  ( x  =  c  ->  (
( x  e.  A  /\  { <. b ,  c
>. }  =  { <. b ,  x >. } )  <-> 
( c  e.  A  /\  { <. b ,  c
>. }  =  { <. b ,  c >. } ) ) )
5246, 51syl5ibrcom 157 . . . . . . . . 9  |-  ( c  e.  A  ->  (
x  =  c  -> 
( x  e.  A  /\  { <. b ,  c
>. }  =  { <. b ,  x >. } ) ) )
5344, 52biimtrid 152 . . . . . . . 8  |-  ( c  e.  A  ->  (
x  =  U. ran  {
<. b ,  c >. }  ->  ( x  e.  A  /\  { <. b ,  c >. }  =  { <. b ,  x >. } ) ) )
54 rneq 4893 . . . . . . . . . . 11  |-  ( a  =  { <. b ,  c >. }  ->  ran  a  =  ran  { <. b ,  c >. } )
5554unieqd 3850 . . . . . . . . . 10  |-  ( a  =  { <. b ,  c >. }  ->  U.
ran  a  =  U. ran  { <. b ,  c
>. } )
5655eqeq2d 2208 . . . . . . . . 9  |-  ( a  =  { <. b ,  c >. }  ->  ( x  =  U. ran  a 
<->  x  =  U. ran  {
<. b ,  c >. } ) )
57 eqeq1 2203 . . . . . . . . . 10  |-  ( a  =  { <. b ,  c >. }  ->  ( a  =  { <. b ,  x >. }  <->  { <. b ,  c >. }  =  { <. b ,  x >. } ) )
5857anbi2d 464 . . . . . . . . 9  |-  ( a  =  { <. b ,  c >. }  ->  ( ( x  e.  A  /\  a  =  { <. b ,  x >. } )  <->  ( x  e.  A  /\  { <. b ,  c >. }  =  { <. b ,  x >. } ) ) )
5956, 58imbi12d 234 . . . . . . . 8  |-  ( a  =  { <. b ,  c >. }  ->  ( ( x  =  U. ran  a  ->  ( x  e.  A  /\  a  =  { <. b ,  x >. } ) )  <->  ( x  =  U. ran  { <. b ,  c >. }  ->  ( x  e.  A  /\  {
<. b ,  c >. }  =  { <. b ,  x >. } ) ) ) )
6053, 59syl5ibrcom 157 . . . . . . 7  |-  ( c  e.  A  ->  (
a  =  { <. b ,  c >. }  ->  ( x  =  U. ran  a  ->  ( x  e.  A  /\  a  =  { <. b ,  x >. } ) ) ) )
6160rexlimiv 2608 . . . . . 6  |-  ( E. c  e.  A  a  =  { <. b ,  c >. }  ->  ( x  =  U. ran  a  ->  ( x  e.  A  /\  a  =  { <. b ,  x >. } ) ) )
6261imp 124 . . . . 5  |-  ( ( E. c  e.  A  a  =  { <. b ,  c >. }  /\  x  =  U. ran  a
)  ->  ( x  e.  A  /\  a  =  { <. b ,  x >. } ) )
6341, 62impbii 126 . . . 4  |-  ( ( x  e.  A  /\  a  =  { <. b ,  x >. } )  <->  ( E. c  e.  A  a  =  { <. b ,  c
>. }  /\  x  = 
U. ran  a )
)
6425, 63bitri 184 . . 3  |-  ( ( x  e.  A  /\  a  =  ( {
b }  X.  {
x } ) )  <-> 
( E. c  e.  A  a  =  { <. b ,  c >. }  /\  x  =  U. ran  a ) )
6515, 21, 64vtoclbg 2825 . 2  |-  ( I  e.  V  ->  (
( x  e.  A  /\  a  =  ( { I }  X.  { x } ) )  <->  ( a  e.  X_ y  e.  { I } A  /\  x  =  U. ran  a ) ) )
661, 7, 11, 65f1od 6126 1  |-  ( I  e.  V  ->  F : A -1-1-onto-> X_ y  e.  {
I } A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2167   E.wrex 2476   _Vcvv 2763   {csn 3622   <.cop 3625   U.cuni 3839    |-> cmpt 4094    X. cxp 4661   ran crn 4664   -1-1-onto->wf1o 5257   X_cixp 6757
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-reu 2482  df-v 2765  df-sbc 2990  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-iota 5219  df-fun 5260  df-fn 5261  df-f 5262  df-f1 5263  df-fo 5264  df-f1o 5265  df-fv 5266  df-ixp 6758
This theorem is referenced by:  mapsnf1o  6796
  Copyright terms: Public domain W3C validator