Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > ixpsnf1o | Unicode version |
Description: A bijection between a class and single-point functions to it. (Contributed by Stefan O'Rear, 24-Jan-2015.) |
Ref | Expression |
---|---|
ixpsnf1o.f |
Ref | Expression |
---|---|
ixpsnf1o |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ixpsnf1o.f | . 2 | |
2 | snexg 4170 | . . . 4 | |
3 | vex 2733 | . . . . 5 | |
4 | 3 | snex 4171 | . . . 4 |
5 | xpexg 4725 | . . . 4 | |
6 | 2, 4, 5 | sylancl 411 | . . 3 |
7 | 6 | adantr 274 | . 2 |
8 | vex 2733 | . . . . 5 | |
9 | 8 | rnex 4878 | . . . 4 |
10 | 9 | uniex 4422 | . . 3 |
11 | 10 | a1i 9 | . 2 |
12 | sneq 3594 | . . . . . 6 | |
13 | 12 | xpeq1d 4634 | . . . . 5 |
14 | 13 | eqeq2d 2182 | . . . 4 |
15 | 14 | anbi2d 461 | . . 3 |
16 | elixpsn 6713 | . . . . . 6 | |
17 | 16 | elv 2734 | . . . . 5 |
18 | 12 | ixpeq1d 6688 | . . . . . 6 |
19 | 18 | eleq2d 2240 | . . . . 5 |
20 | 17, 19 | bitr3id 193 | . . . 4 |
21 | 20 | anbi1d 462 | . . 3 |
22 | vex 2733 | . . . . . . 7 | |
23 | 22, 3 | xpsn 5672 | . . . . . 6 |
24 | 23 | eqeq2i 2181 | . . . . 5 |
25 | 24 | anbi2i 454 | . . . 4 |
26 | eqid 2170 | . . . . . . . . 9 | |
27 | opeq2 3766 | . . . . . . . . . . 11 | |
28 | 27 | sneqd 3596 | . . . . . . . . . 10 |
29 | 28 | rspceeqv 2852 | . . . . . . . . 9 |
30 | 26, 29 | mpan2 423 | . . . . . . . 8 |
31 | 22, 3 | op2nda 5095 | . . . . . . . . 9 |
32 | 31 | eqcomi 2174 | . . . . . . . 8 |
33 | 30, 32 | jctir 311 | . . . . . . 7 |
34 | eqeq1 2177 | . . . . . . . . 9 | |
35 | 34 | rexbidv 2471 | . . . . . . . 8 |
36 | rneq 4838 | . . . . . . . . . 10 | |
37 | 36 | unieqd 3807 | . . . . . . . . 9 |
38 | 37 | eqeq2d 2182 | . . . . . . . 8 |
39 | 35, 38 | anbi12d 470 | . . . . . . 7 |
40 | 33, 39 | syl5ibrcom 156 | . . . . . 6 |
41 | 40 | imp 123 | . . . . 5 |
42 | vex 2733 | . . . . . . . . . . 11 | |
43 | 22, 42 | op2nda 5095 | . . . . . . . . . 10 |
44 | 43 | eqeq2i 2181 | . . . . . . . . 9 |
45 | eqidd 2171 | . . . . . . . . . . 11 | |
46 | 45 | ancli 321 | . . . . . . . . . 10 |
47 | eleq1w 2231 | . . . . . . . . . . 11 | |
48 | opeq2 3766 | . . . . . . . . . . . . 13 | |
49 | 48 | sneqd 3596 | . . . . . . . . . . . 12 |
50 | 49 | eqeq2d 2182 | . . . . . . . . . . 11 |
51 | 47, 50 | anbi12d 470 | . . . . . . . . . 10 |
52 | 46, 51 | syl5ibrcom 156 | . . . . . . . . 9 |
53 | 44, 52 | syl5bi 151 | . . . . . . . 8 |
54 | rneq 4838 | . . . . . . . . . . 11 | |
55 | 54 | unieqd 3807 | . . . . . . . . . 10 |
56 | 55 | eqeq2d 2182 | . . . . . . . . 9 |
57 | eqeq1 2177 | . . . . . . . . . 10 | |
58 | 57 | anbi2d 461 | . . . . . . . . 9 |
59 | 56, 58 | imbi12d 233 | . . . . . . . 8 |
60 | 53, 59 | syl5ibrcom 156 | . . . . . . 7 |
61 | 60 | rexlimiv 2581 | . . . . . 6 |
62 | 61 | imp 123 | . . . . 5 |
63 | 41, 62 | impbii 125 | . . . 4 |
64 | 25, 63 | bitri 183 | . . 3 |
65 | 15, 21, 64 | vtoclbg 2791 | . 2 |
66 | 1, 7, 11, 65 | f1od 6052 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1348 wcel 2141 wrex 2449 cvv 2730 csn 3583 cop 3586 cuni 3796 cmpt 4050 cxp 4609 crn 4612 wf1o 5197 cixp 6676 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-sep 4107 ax-pow 4160 ax-pr 4194 ax-un 4418 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-reu 2455 df-v 2732 df-sbc 2956 df-un 3125 df-in 3127 df-ss 3134 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-br 3990 df-opab 4051 df-mpt 4052 df-id 4278 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-ixp 6677 |
This theorem is referenced by: mapsnf1o 6715 |
Copyright terms: Public domain | W3C validator |