| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > ixpsnf1o | Unicode version | ||
| Description: A bijection between a class and single-point functions to it. (Contributed by Stefan O'Rear, 24-Jan-2015.) | 
| Ref | Expression | 
|---|---|
| ixpsnf1o.f | 
 | 
| Ref | Expression | 
|---|---|
| ixpsnf1o | 
 | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ixpsnf1o.f | 
. 2
 | |
| 2 | snexg 4217 | 
. . . 4
 | |
| 3 | vex 2766 | 
. . . . 5
 | |
| 4 | 3 | snex 4218 | 
. . . 4
 | 
| 5 | xpexg 4777 | 
. . . 4
 | |
| 6 | 2, 4, 5 | sylancl 413 | 
. . 3
 | 
| 7 | 6 | adantr 276 | 
. 2
 | 
| 8 | vex 2766 | 
. . . . 5
 | |
| 9 | 8 | rnex 4933 | 
. . . 4
 | 
| 10 | 9 | uniex 4472 | 
. . 3
 | 
| 11 | 10 | a1i 9 | 
. 2
 | 
| 12 | sneq 3633 | 
. . . . . 6
 | |
| 13 | 12 | xpeq1d 4686 | 
. . . . 5
 | 
| 14 | 13 | eqeq2d 2208 | 
. . . 4
 | 
| 15 | 14 | anbi2d 464 | 
. . 3
 | 
| 16 | elixpsn 6794 | 
. . . . . 6
 | |
| 17 | 16 | elv 2767 | 
. . . . 5
 | 
| 18 | 12 | ixpeq1d 6769 | 
. . . . . 6
 | 
| 19 | 18 | eleq2d 2266 | 
. . . . 5
 | 
| 20 | 17, 19 | bitr3id 194 | 
. . . 4
 | 
| 21 | 20 | anbi1d 465 | 
. . 3
 | 
| 22 | vex 2766 | 
. . . . . . 7
 | |
| 23 | 22, 3 | xpsn 5738 | 
. . . . . 6
 | 
| 24 | 23 | eqeq2i 2207 | 
. . . . 5
 | 
| 25 | 24 | anbi2i 457 | 
. . . 4
 | 
| 26 | eqid 2196 | 
. . . . . . . . 9
 | |
| 27 | opeq2 3809 | 
. . . . . . . . . . 11
 | |
| 28 | 27 | sneqd 3635 | 
. . . . . . . . . 10
 | 
| 29 | 28 | rspceeqv 2886 | 
. . . . . . . . 9
 | 
| 30 | 26, 29 | mpan2 425 | 
. . . . . . . 8
 | 
| 31 | 22, 3 | op2nda 5154 | 
. . . . . . . . 9
 | 
| 32 | 31 | eqcomi 2200 | 
. . . . . . . 8
 | 
| 33 | 30, 32 | jctir 313 | 
. . . . . . 7
 | 
| 34 | eqeq1 2203 | 
. . . . . . . . 9
 | |
| 35 | 34 | rexbidv 2498 | 
. . . . . . . 8
 | 
| 36 | rneq 4893 | 
. . . . . . . . . 10
 | |
| 37 | 36 | unieqd 3850 | 
. . . . . . . . 9
 | 
| 38 | 37 | eqeq2d 2208 | 
. . . . . . . 8
 | 
| 39 | 35, 38 | anbi12d 473 | 
. . . . . . 7
 | 
| 40 | 33, 39 | syl5ibrcom 157 | 
. . . . . 6
 | 
| 41 | 40 | imp 124 | 
. . . . 5
 | 
| 42 | vex 2766 | 
. . . . . . . . . . 11
 | |
| 43 | 22, 42 | op2nda 5154 | 
. . . . . . . . . 10
 | 
| 44 | 43 | eqeq2i 2207 | 
. . . . . . . . 9
 | 
| 45 | eqidd 2197 | 
. . . . . . . . . . 11
 | |
| 46 | 45 | ancli 323 | 
. . . . . . . . . 10
 | 
| 47 | eleq1w 2257 | 
. . . . . . . . . . 11
 | |
| 48 | opeq2 3809 | 
. . . . . . . . . . . . 13
 | |
| 49 | 48 | sneqd 3635 | 
. . . . . . . . . . . 12
 | 
| 50 | 49 | eqeq2d 2208 | 
. . . . . . . . . . 11
 | 
| 51 | 47, 50 | anbi12d 473 | 
. . . . . . . . . 10
 | 
| 52 | 46, 51 | syl5ibrcom 157 | 
. . . . . . . . 9
 | 
| 53 | 44, 52 | biimtrid 152 | 
. . . . . . . 8
 | 
| 54 | rneq 4893 | 
. . . . . . . . . . 11
 | |
| 55 | 54 | unieqd 3850 | 
. . . . . . . . . 10
 | 
| 56 | 55 | eqeq2d 2208 | 
. . . . . . . . 9
 | 
| 57 | eqeq1 2203 | 
. . . . . . . . . 10
 | |
| 58 | 57 | anbi2d 464 | 
. . . . . . . . 9
 | 
| 59 | 56, 58 | imbi12d 234 | 
. . . . . . . 8
 | 
| 60 | 53, 59 | syl5ibrcom 157 | 
. . . . . . 7
 | 
| 61 | 60 | rexlimiv 2608 | 
. . . . . 6
 | 
| 62 | 61 | imp 124 | 
. . . . 5
 | 
| 63 | 41, 62 | impbii 126 | 
. . . 4
 | 
| 64 | 25, 63 | bitri 184 | 
. . 3
 | 
| 65 | 15, 21, 64 | vtoclbg 2825 | 
. 2
 | 
| 66 | 1, 7, 11, 65 | f1od 6126 | 
1
 | 
| Colors of variables: wff set class | 
| Syntax hints:     | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-reu 2482 df-v 2765 df-sbc 2990 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-f1 5263 df-fo 5264 df-f1o 5265 df-fv 5266 df-ixp 6758 | 
| This theorem is referenced by: mapsnf1o 6796 | 
| Copyright terms: Public domain | W3C validator |