ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ixpsnf1o Unicode version

Theorem ixpsnf1o 6714
Description: A bijection between a class and single-point functions to it. (Contributed by Stefan O'Rear, 24-Jan-2015.)
Hypothesis
Ref Expression
ixpsnf1o.f  |-  F  =  ( x  e.  A  |->  ( { I }  X.  { x } ) )
Assertion
Ref Expression
ixpsnf1o  |-  ( I  e.  V  ->  F : A -1-1-onto-> X_ y  e.  {
I } A )
Distinct variable groups:    x, I, y   
x, A, y    x, V, y    y, F
Allowed substitution hint:    F( x)

Proof of Theorem ixpsnf1o
Dummy variables  a  b  c are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ixpsnf1o.f . 2  |-  F  =  ( x  e.  A  |->  ( { I }  X.  { x } ) )
2 snexg 4170 . . . 4  |-  ( I  e.  V  ->  { I }  e.  _V )
3 vex 2733 . . . . 5  |-  x  e. 
_V
43snex 4171 . . . 4  |-  { x }  e.  _V
5 xpexg 4725 . . . 4  |-  ( ( { I }  e.  _V  /\  { x }  e.  _V )  ->  ( { I }  X.  { x } )  e.  _V )
62, 4, 5sylancl 411 . . 3  |-  ( I  e.  V  ->  ( { I }  X.  { x } )  e.  _V )
76adantr 274 . 2  |-  ( ( I  e.  V  /\  x  e.  A )  ->  ( { I }  X.  { x } )  e.  _V )
8 vex 2733 . . . . 5  |-  a  e. 
_V
98rnex 4878 . . . 4  |-  ran  a  e.  _V
109uniex 4422 . . 3  |-  U. ran  a  e.  _V
1110a1i 9 . 2  |-  ( ( I  e.  V  /\  a  e.  X_ y  e. 
{ I } A
)  ->  U. ran  a  e.  _V )
12 sneq 3594 . . . . . 6  |-  ( b  =  I  ->  { b }  =  { I } )
1312xpeq1d 4634 . . . . 5  |-  ( b  =  I  ->  ( { b }  X.  { x } )  =  ( { I }  X.  { x }
) )
1413eqeq2d 2182 . . . 4  |-  ( b  =  I  ->  (
a  =  ( { b }  X.  {
x } )  <->  a  =  ( { I }  X.  { x } ) ) )
1514anbi2d 461 . . 3  |-  ( b  =  I  ->  (
( x  e.  A  /\  a  =  ( { b }  X.  { x } ) )  <->  ( x  e.  A  /\  a  =  ( { I }  X.  { x } ) ) ) )
16 elixpsn 6713 . . . . . 6  |-  ( b  e.  _V  ->  (
a  e.  X_ y  e.  { b } A  <->  E. c  e.  A  a  =  { <. b ,  c >. } ) )
1716elv 2734 . . . . 5  |-  ( a  e.  X_ y  e.  {
b } A  <->  E. c  e.  A  a  =  { <. b ,  c
>. } )
1812ixpeq1d 6688 . . . . . 6  |-  ( b  =  I  ->  X_ y  e.  { b } A  =  X_ y  e.  {
I } A )
1918eleq2d 2240 . . . . 5  |-  ( b  =  I  ->  (
a  e.  X_ y  e.  { b } A  <->  a  e.  X_ y  e.  {
I } A ) )
2017, 19bitr3id 193 . . . 4  |-  ( b  =  I  ->  ( E. c  e.  A  a  =  { <. b ,  c >. }  <->  a  e.  X_ y  e.  { I } A ) )
2120anbi1d 462 . . 3  |-  ( b  =  I  ->  (
( E. c  e.  A  a  =  { <. b ,  c >. }  /\  x  =  U. ran  a )  <->  ( a  e.  X_ y  e.  {
I } A  /\  x  =  U. ran  a
) ) )
22 vex 2733 . . . . . . 7  |-  b  e. 
_V
2322, 3xpsn 5672 . . . . . 6  |-  ( { b }  X.  {
x } )  =  { <. b ,  x >. }
2423eqeq2i 2181 . . . . 5  |-  ( a  =  ( { b }  X.  { x } )  <->  a  =  { <. b ,  x >. } )
2524anbi2i 454 . . . 4  |-  ( ( x  e.  A  /\  a  =  ( {
b }  X.  {
x } ) )  <-> 
( x  e.  A  /\  a  =  { <. b ,  x >. } ) )
26 eqid 2170 . . . . . . . . 9  |-  { <. b ,  x >. }  =  { <. b ,  x >. }
27 opeq2 3766 . . . . . . . . . . 11  |-  ( c  =  x  ->  <. b ,  c >.  =  <. b ,  x >. )
2827sneqd 3596 . . . . . . . . . 10  |-  ( c  =  x  ->  { <. b ,  c >. }  =  { <. b ,  x >. } )
2928rspceeqv 2852 . . . . . . . . 9  |-  ( ( x  e.  A  /\  {
<. b ,  x >. }  =  { <. b ,  x >. } )  ->  E. c  e.  A  { <. b ,  x >. }  =  { <. b ,  c >. } )
3026, 29mpan2 423 . . . . . . . 8  |-  ( x  e.  A  ->  E. c  e.  A  { <. b ,  x >. }  =  { <. b ,  c >. } )
3122, 3op2nda 5095 . . . . . . . . 9  |-  U. ran  {
<. b ,  x >. }  =  x
3231eqcomi 2174 . . . . . . . 8  |-  x  = 
U. ran  { <. b ,  x >. }
3330, 32jctir 311 . . . . . . 7  |-  ( x  e.  A  ->  ( E. c  e.  A  { <. b ,  x >. }  =  { <. b ,  c >. }  /\  x  =  U. ran  { <. b ,  x >. } ) )
34 eqeq1 2177 . . . . . . . . 9  |-  ( a  =  { <. b ,  x >. }  ->  (
a  =  { <. b ,  c >. }  <->  { <. b ,  x >. }  =  { <. b ,  c >. } ) )
3534rexbidv 2471 . . . . . . . 8  |-  ( a  =  { <. b ,  x >. }  ->  ( E. c  e.  A  a  =  { <. b ,  c >. }  <->  E. c  e.  A  { <. b ,  x >. }  =  { <. b ,  c >. } ) )
36 rneq 4838 . . . . . . . . . 10  |-  ( a  =  { <. b ,  x >. }  ->  ran  a  =  ran  { <. b ,  x >. } )
3736unieqd 3807 . . . . . . . . 9  |-  ( a  =  { <. b ,  x >. }  ->  U. ran  a  =  U. ran  { <. b ,  x >. } )
3837eqeq2d 2182 . . . . . . . 8  |-  ( a  =  { <. b ,  x >. }  ->  (
x  =  U. ran  a 
<->  x  =  U. ran  {
<. b ,  x >. } ) )
3935, 38anbi12d 470 . . . . . . 7  |-  ( a  =  { <. b ,  x >. }  ->  (
( E. c  e.  A  a  =  { <. b ,  c >. }  /\  x  =  U. ran  a )  <->  ( E. c  e.  A  { <. b ,  x >. }  =  { <. b ,  c >. }  /\  x  =  U. ran  { <. b ,  x >. } ) ) )
4033, 39syl5ibrcom 156 . . . . . 6  |-  ( x  e.  A  ->  (
a  =  { <. b ,  x >. }  ->  ( E. c  e.  A  a  =  { <. b ,  c >. }  /\  x  =  U. ran  a
) ) )
4140imp 123 . . . . 5  |-  ( ( x  e.  A  /\  a  =  { <. b ,  x >. } )  -> 
( E. c  e.  A  a  =  { <. b ,  c >. }  /\  x  =  U. ran  a ) )
42 vex 2733 . . . . . . . . . . 11  |-  c  e. 
_V
4322, 42op2nda 5095 . . . . . . . . . 10  |-  U. ran  {
<. b ,  c >. }  =  c
4443eqeq2i 2181 . . . . . . . . 9  |-  ( x  =  U. ran  { <. b ,  c >. } 
<->  x  =  c )
45 eqidd 2171 . . . . . . . . . . 11  |-  ( c  e.  A  ->  { <. b ,  c >. }  =  { <. b ,  c
>. } )
4645ancli 321 . . . . . . . . . 10  |-  ( c  e.  A  ->  (
c  e.  A  /\  {
<. b ,  c >. }  =  { <. b ,  c >. } ) )
47 eleq1w 2231 . . . . . . . . . . 11  |-  ( x  =  c  ->  (
x  e.  A  <->  c  e.  A ) )
48 opeq2 3766 . . . . . . . . . . . . 13  |-  ( x  =  c  ->  <. b ,  x >.  =  <. b ,  c >. )
4948sneqd 3596 . . . . . . . . . . . 12  |-  ( x  =  c  ->  { <. b ,  x >. }  =  { <. b ,  c
>. } )
5049eqeq2d 2182 . . . . . . . . . . 11  |-  ( x  =  c  ->  ( { <. b ,  c
>. }  =  { <. b ,  x >. }  <->  { <. b ,  c >. }  =  { <. b ,  c
>. } ) )
5147, 50anbi12d 470 . . . . . . . . . 10  |-  ( x  =  c  ->  (
( x  e.  A  /\  { <. b ,  c
>. }  =  { <. b ,  x >. } )  <-> 
( c  e.  A  /\  { <. b ,  c
>. }  =  { <. b ,  c >. } ) ) )
5246, 51syl5ibrcom 156 . . . . . . . . 9  |-  ( c  e.  A  ->  (
x  =  c  -> 
( x  e.  A  /\  { <. b ,  c
>. }  =  { <. b ,  x >. } ) ) )
5344, 52syl5bi 151 . . . . . . . 8  |-  ( c  e.  A  ->  (
x  =  U. ran  {
<. b ,  c >. }  ->  ( x  e.  A  /\  { <. b ,  c >. }  =  { <. b ,  x >. } ) ) )
54 rneq 4838 . . . . . . . . . . 11  |-  ( a  =  { <. b ,  c >. }  ->  ran  a  =  ran  { <. b ,  c >. } )
5554unieqd 3807 . . . . . . . . . 10  |-  ( a  =  { <. b ,  c >. }  ->  U.
ran  a  =  U. ran  { <. b ,  c
>. } )
5655eqeq2d 2182 . . . . . . . . 9  |-  ( a  =  { <. b ,  c >. }  ->  ( x  =  U. ran  a 
<->  x  =  U. ran  {
<. b ,  c >. } ) )
57 eqeq1 2177 . . . . . . . . . 10  |-  ( a  =  { <. b ,  c >. }  ->  ( a  =  { <. b ,  x >. }  <->  { <. b ,  c >. }  =  { <. b ,  x >. } ) )
5857anbi2d 461 . . . . . . . . 9  |-  ( a  =  { <. b ,  c >. }  ->  ( ( x  e.  A  /\  a  =  { <. b ,  x >. } )  <->  ( x  e.  A  /\  { <. b ,  c >. }  =  { <. b ,  x >. } ) ) )
5956, 58imbi12d 233 . . . . . . . 8  |-  ( a  =  { <. b ,  c >. }  ->  ( ( x  =  U. ran  a  ->  ( x  e.  A  /\  a  =  { <. b ,  x >. } ) )  <->  ( x  =  U. ran  { <. b ,  c >. }  ->  ( x  e.  A  /\  {
<. b ,  c >. }  =  { <. b ,  x >. } ) ) ) )
6053, 59syl5ibrcom 156 . . . . . . 7  |-  ( c  e.  A  ->  (
a  =  { <. b ,  c >. }  ->  ( x  =  U. ran  a  ->  ( x  e.  A  /\  a  =  { <. b ,  x >. } ) ) ) )
6160rexlimiv 2581 . . . . . 6  |-  ( E. c  e.  A  a  =  { <. b ,  c >. }  ->  ( x  =  U. ran  a  ->  ( x  e.  A  /\  a  =  { <. b ,  x >. } ) ) )
6261imp 123 . . . . 5  |-  ( ( E. c  e.  A  a  =  { <. b ,  c >. }  /\  x  =  U. ran  a
)  ->  ( x  e.  A  /\  a  =  { <. b ,  x >. } ) )
6341, 62impbii 125 . . . 4  |-  ( ( x  e.  A  /\  a  =  { <. b ,  x >. } )  <->  ( E. c  e.  A  a  =  { <. b ,  c
>. }  /\  x  = 
U. ran  a )
)
6425, 63bitri 183 . . 3  |-  ( ( x  e.  A  /\  a  =  ( {
b }  X.  {
x } ) )  <-> 
( E. c  e.  A  a  =  { <. b ,  c >. }  /\  x  =  U. ran  a ) )
6515, 21, 64vtoclbg 2791 . 2  |-  ( I  e.  V  ->  (
( x  e.  A  /\  a  =  ( { I }  X.  { x } ) )  <->  ( a  e.  X_ y  e.  { I } A  /\  x  =  U. ran  a ) ) )
661, 7, 11, 65f1od 6052 1  |-  ( I  e.  V  ->  F : A -1-1-onto-> X_ y  e.  {
I } A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1348    e. wcel 2141   E.wrex 2449   _Vcvv 2730   {csn 3583   <.cop 3586   U.cuni 3796    |-> cmpt 4050    X. cxp 4609   ran crn 4612   -1-1-onto->wf1o 5197   X_cixp 6676
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-sep 4107  ax-pow 4160  ax-pr 4194  ax-un 4418
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ral 2453  df-rex 2454  df-reu 2455  df-v 2732  df-sbc 2956  df-un 3125  df-in 3127  df-ss 3134  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-br 3990  df-opab 4051  df-mpt 4052  df-id 4278  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-ixp 6677
This theorem is referenced by:  mapsnf1o  6715
  Copyright terms: Public domain W3C validator