ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  hashxp Unicode version

Theorem hashxp 10790
Description: The size of the Cartesian product of two finite sets is the product of their sizes. (Contributed by Paul Chapman, 30-Nov-2012.)
Assertion
Ref Expression
hashxp  |-  ( ( A  e.  Fin  /\  B  e.  Fin )  ->  ( `  ( A  X.  B ) )  =  ( ( `  A
)  x.  ( `  B
) ) )

Proof of Theorem hashxp
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xpeq1 4637 . . . 4  |-  ( x  =  (/)  ->  ( x  X.  B )  =  ( (/)  X.  B
) )
21fveq2d 5515 . . 3  |-  ( x  =  (/)  ->  ( `  (
x  X.  B ) )  =  ( `  ( (/) 
X.  B ) ) )
3 fveq2 5511 . . . 4  |-  ( x  =  (/)  ->  ( `  x
)  =  ( `  (/) ) )
43oveq1d 5884 . . 3  |-  ( x  =  (/)  ->  ( ( `  x )  x.  ( `  B ) )  =  ( ( `  (/) )  x.  ( `  B )
) )
52, 4eqeq12d 2192 . 2  |-  ( x  =  (/)  ->  ( ( `  ( x  X.  B
) )  =  ( ( `  x )  x.  ( `  B )
)  <->  ( `  ( (/)  X.  B
) )  =  ( ( `  (/) )  x.  ( `  B )
) ) )
6 xpeq1 4637 . . . 4  |-  ( x  =  y  ->  (
x  X.  B )  =  ( y  X.  B ) )
76fveq2d 5515 . . 3  |-  ( x  =  y  ->  ( `  ( x  X.  B
) )  =  ( `  ( y  X.  B
) ) )
8 fveq2 5511 . . . 4  |-  ( x  =  y  ->  ( `  x )  =  ( `  y ) )
98oveq1d 5884 . . 3  |-  ( x  =  y  ->  (
( `  x )  x.  ( `  B )
)  =  ( ( `  y )  x.  ( `  B ) ) )
107, 9eqeq12d 2192 . 2  |-  ( x  =  y  ->  (
( `  ( x  X.  B ) )  =  ( ( `  x
)  x.  ( `  B
) )  <->  ( `  (
y  X.  B ) )  =  ( ( `  y )  x.  ( `  B ) ) ) )
11 xpeq1 4637 . . . 4  |-  ( x  =  ( y  u. 
{ z } )  ->  ( x  X.  B )  =  ( ( y  u.  {
z } )  X.  B ) )
1211fveq2d 5515 . . 3  |-  ( x  =  ( y  u. 
{ z } )  ->  ( `  ( x  X.  B ) )  =  ( `  ( (
y  u.  { z } )  X.  B
) ) )
13 fveq2 5511 . . . 4  |-  ( x  =  ( y  u. 
{ z } )  ->  ( `  x )  =  ( `  ( y  u.  { z } ) ) )
1413oveq1d 5884 . . 3  |-  ( x  =  ( y  u. 
{ z } )  ->  ( ( `  x
)  x.  ( `  B
) )  =  ( ( `  ( y  u.  { z } ) )  x.  ( `  B
) ) )
1512, 14eqeq12d 2192 . 2  |-  ( x  =  ( y  u. 
{ z } )  ->  ( ( `  (
x  X.  B ) )  =  ( ( `  x )  x.  ( `  B ) )  <->  ( `  (
( y  u.  {
z } )  X.  B ) )  =  ( ( `  (
y  u.  { z } ) )  x.  ( `  B )
) ) )
16 xpeq1 4637 . . . 4  |-  ( x  =  A  ->  (
x  X.  B )  =  ( A  X.  B ) )
1716fveq2d 5515 . . 3  |-  ( x  =  A  ->  ( `  ( x  X.  B
) )  =  ( `  ( A  X.  B
) ) )
18 fveq2 5511 . . . 4  |-  ( x  =  A  ->  ( `  x )  =  ( `  A ) )
1918oveq1d 5884 . . 3  |-  ( x  =  A  ->  (
( `  x )  x.  ( `  B )
)  =  ( ( `  A )  x.  ( `  B ) ) )
2017, 19eqeq12d 2192 . 2  |-  ( x  =  A  ->  (
( `  ( x  X.  B ) )  =  ( ( `  x
)  x.  ( `  B
) )  <->  ( `  ( A  X.  B ) )  =  ( ( `  A
)  x.  ( `  B
) ) ) )
21 0xp 4703 . . . . 5  |-  ( (/)  X.  B )  =  (/)
2221fveq2i 5514 . . . 4  |-  ( `  ( (/) 
X.  B ) )  =  ( `  (/) )
23 hash0 10760 . . . 4  |-  ( `  (/) )  =  0
2422, 23eqtri 2198 . . 3  |-  ( `  ( (/) 
X.  B ) )  =  0
2523oveq1i 5879 . . . 4  |-  ( ( `  (/) )  x.  ( `  B ) )  =  ( 0  x.  ( `  B ) )
26 hashcl 10745 . . . . . . 7  |-  ( B  e.  Fin  ->  ( `  B )  e.  NN0 )
2726nn0cnd 9220 . . . . . 6  |-  ( B  e.  Fin  ->  ( `  B )  e.  CC )
2827mul02d 8339 . . . . 5  |-  ( B  e.  Fin  ->  (
0  x.  ( `  B
) )  =  0 )
2928adantl 277 . . . 4  |-  ( ( A  e.  Fin  /\  B  e.  Fin )  ->  ( 0  x.  ( `  B ) )  =  0 )
3025, 29eqtrid 2222 . . 3  |-  ( ( A  e.  Fin  /\  B  e.  Fin )  ->  ( ( `  (/) )  x.  ( `  B )
)  =  0 )
3124, 30eqtr4id 2229 . 2  |-  ( ( A  e.  Fin  /\  B  e.  Fin )  ->  ( `  ( (/)  X.  B
) )  =  ( ( `  (/) )  x.  ( `  B )
) )
32 oveq1 5876 . . . . 5  |-  ( ( `  ( y  X.  B
) )  =  ( ( `  y )  x.  ( `  B )
)  ->  ( ( `  ( y  X.  B
) )  +  ( `  B ) )  =  ( ( ( `  y
)  x.  ( `  B
) )  +  ( `  B ) ) )
3332adantl 277 . . . 4  |-  ( ( ( ( ( A  e.  Fin  /\  B  e.  Fin )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  ( `  (
y  X.  B ) )  =  ( ( `  y )  x.  ( `  B ) ) )  ->  ( ( `  (
y  X.  B ) )  +  ( `  B
) )  =  ( ( ( `  y
)  x.  ( `  B
) )  +  ( `  B ) ) )
34 xpundir 4680 . . . . . . 7  |-  ( ( y  u.  { z } )  X.  B
)  =  ( ( y  X.  B )  u.  ( { z }  X.  B ) )
3534fveq2i 5514 . . . . . 6  |-  ( `  (
( y  u.  {
z } )  X.  B ) )  =  ( `  ( (
y  X.  B )  u.  ( { z }  X.  B ) ) )
36 simplr 528 . . . . . . . . 9  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  Fin )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  y  e.  Fin )
37 simpllr 534 . . . . . . . . 9  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  Fin )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  B  e.  Fin )
38 xpfi 6923 . . . . . . . . 9  |-  ( ( y  e.  Fin  /\  B  e.  Fin )  ->  ( y  X.  B
)  e.  Fin )
3936, 37, 38syl2anc 411 . . . . . . . 8  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  Fin )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  ( y  X.  B )  e.  Fin )
40 vex 2740 . . . . . . . . . . 11  |-  z  e. 
_V
41 snfig 6808 . . . . . . . . . . 11  |-  ( z  e.  _V  ->  { z }  e.  Fin )
4240, 41ax-mp 5 . . . . . . . . . 10  |-  { z }  e.  Fin
43 xpfi 6923 . . . . . . . . . 10  |-  ( ( { z }  e.  Fin  /\  B  e.  Fin )  ->  ( { z }  X.  B )  e.  Fin )
4442, 43mpan 424 . . . . . . . . 9  |-  ( B  e.  Fin  ->  ( { z }  X.  B )  e.  Fin )
4544ad3antlr 493 . . . . . . . 8  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  Fin )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  ( { z }  X.  B )  e.  Fin )
46 simprr 531 . . . . . . . . . 10  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  Fin )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  z  e.  ( A  \  y ) )
4746eldifbd 3141 . . . . . . . . 9  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  Fin )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  -.  z  e.  y )
48 inxp 4757 . . . . . . . . . 10  |-  ( ( y  X.  B )  i^i  ( { z }  X.  B ) )  =  ( ( y  i^i  { z } )  X.  ( B  i^i  B ) )
49 disjsn 3653 . . . . . . . . . . . . 13  |-  ( ( y  i^i  { z } )  =  (/)  <->  -.  z  e.  y )
5049biimpri 133 . . . . . . . . . . . 12  |-  ( -.  z  e.  y  -> 
( y  i^i  {
z } )  =  (/) )
5150xpeq1d 4646 . . . . . . . . . . 11  |-  ( -.  z  e.  y  -> 
( ( y  i^i 
{ z } )  X.  ( B  i^i  B ) )  =  (
(/)  X.  ( B  i^i  B ) ) )
52 0xp 4703 . . . . . . . . . . 11  |-  ( (/)  X.  ( B  i^i  B
) )  =  (/)
5351, 52eqtrdi 2226 . . . . . . . . . 10  |-  ( -.  z  e.  y  -> 
( ( y  i^i 
{ z } )  X.  ( B  i^i  B ) )  =  (/) )
5448, 53eqtrid 2222 . . . . . . . . 9  |-  ( -.  z  e.  y  -> 
( ( y  X.  B )  i^i  ( { z }  X.  B ) )  =  (/) )
5547, 54syl 14 . . . . . . . 8  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  Fin )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  ( ( y  X.  B )  i^i  ( { z }  X.  B ) )  =  (/) )
56 hashun 10769 . . . . . . . 8  |-  ( ( ( y  X.  B
)  e.  Fin  /\  ( { z }  X.  B )  e.  Fin  /\  ( ( y  X.  B )  i^i  ( { z }  X.  B ) )  =  (/) )  ->  ( `  (
( y  X.  B
)  u.  ( { z }  X.  B
) ) )  =  ( ( `  (
y  X.  B ) )  +  ( `  ( { z }  X.  B ) ) ) )
5739, 45, 55, 56syl3anc 1238 . . . . . . 7  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  Fin )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  ( `  ( (
y  X.  B )  u.  ( { z }  X.  B ) ) )  =  ( ( `  ( y  X.  B ) )  +  ( `  ( {
z }  X.  B
) ) ) )
5840snex 4182 . . . . . . . . . . . 12  |-  { z }  e.  _V
5958a1i 9 . . . . . . . . . . 11  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  Fin )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  { z }  e.  _V )
60 xpcomeng 6822 . . . . . . . . . . 11  |-  ( ( { z }  e.  _V  /\  B  e.  Fin )  ->  ( { z }  X.  B ) 
~~  ( B  X.  { z } ) )
6159, 37, 60syl2anc 411 . . . . . . . . . 10  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  Fin )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  ( { z }  X.  B ) 
~~  ( B  X.  { z } ) )
6240a1i 9 . . . . . . . . . . 11  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  Fin )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  z  e.  _V )
63 xpsneng 6816 . . . . . . . . . . 11  |-  ( ( B  e.  Fin  /\  z  e.  _V )  ->  ( B  X.  {
z } )  ~~  B )
6437, 62, 63syl2anc 411 . . . . . . . . . 10  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  Fin )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  ( B  X.  { z } ) 
~~  B )
65 entr 6778 . . . . . . . . . 10  |-  ( ( ( { z }  X.  B )  ~~  ( B  X.  { z } )  /\  ( B  X.  { z } )  ~~  B )  ->  ( { z }  X.  B ) 
~~  B )
6661, 64, 65syl2anc 411 . . . . . . . . 9  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  Fin )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  ( { z }  X.  B ) 
~~  B )
67 hashen 10748 . . . . . . . . . 10  |-  ( ( ( { z }  X.  B )  e. 
Fin  /\  B  e.  Fin )  ->  ( ( `  ( { z }  X.  B ) )  =  ( `  B
)  <->  ( { z }  X.  B ) 
~~  B ) )
6845, 37, 67syl2anc 411 . . . . . . . . 9  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  Fin )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  ( ( `  ( { z }  X.  B ) )  =  ( `  B )  <->  ( { z }  X.  B )  ~~  B
) )
6966, 68mpbird 167 . . . . . . . 8  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  Fin )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  ( `  ( {
z }  X.  B
) )  =  ( `  B ) )
7069oveq2d 5885 . . . . . . 7  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  Fin )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  ( ( `  (
y  X.  B ) )  +  ( `  ( { z }  X.  B ) ) )  =  ( ( `  (
y  X.  B ) )  +  ( `  B
) ) )
7157, 70eqtrd 2210 . . . . . 6  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  Fin )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  ( `  ( (
y  X.  B )  u.  ( { z }  X.  B ) ) )  =  ( ( `  ( y  X.  B ) )  +  ( `  B )
) )
7235, 71eqtrid 2222 . . . . 5  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  Fin )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  ( `  ( (
y  u.  { z } )  X.  B
) )  =  ( ( `  ( y  X.  B ) )  +  ( `  B )
) )
7372adantr 276 . . . 4  |-  ( ( ( ( ( A  e.  Fin  /\  B  e.  Fin )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  ( `  (
y  X.  B ) )  =  ( ( `  y )  x.  ( `  B ) ) )  ->  ( `  ( (
y  u.  { z } )  X.  B
) )  =  ( ( `  ( y  X.  B ) )  +  ( `  B )
) )
74 hashunsng 10771 . . . . . . . . 9  |-  ( z  e.  _V  ->  (
( y  e.  Fin  /\ 
-.  z  e.  y )  ->  ( `  (
y  u.  { z } ) )  =  ( ( `  y
)  +  1 ) ) )
7540, 74ax-mp 5 . . . . . . . 8  |-  ( ( y  e.  Fin  /\  -.  z  e.  y
)  ->  ( `  (
y  u.  { z } ) )  =  ( ( `  y
)  +  1 ) )
7675oveq1d 5884 . . . . . . 7  |-  ( ( y  e.  Fin  /\  -.  z  e.  y
)  ->  ( ( `  ( y  u.  {
z } ) )  x.  ( `  B
) )  =  ( ( ( `  y
)  +  1 )  x.  ( `  B
) ) )
7736, 47, 76syl2anc 411 . . . . . 6  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  Fin )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  ( ( `  (
y  u.  { z } ) )  x.  ( `  B )
)  =  ( ( ( `  y )  +  1 )  x.  ( `  B )
) )
78 hashcl 10745 . . . . . . . . 9  |-  ( y  e.  Fin  ->  ( `  y )  e.  NN0 )
7978nn0cnd 9220 . . . . . . . 8  |-  ( y  e.  Fin  ->  ( `  y )  e.  CC )
8036, 79syl 14 . . . . . . 7  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  Fin )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  ( `  y )  e.  CC )
8137, 27syl 14 . . . . . . 7  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  Fin )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  ( `  B )  e.  CC )
8280, 81adddirp1d 7974 . . . . . 6  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  Fin )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  ( ( ( `  y )  +  1 )  x.  ( `  B
) )  =  ( ( ( `  y
)  x.  ( `  B
) )  +  ( `  B ) ) )
8377, 82eqtrd 2210 . . . . 5  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  Fin )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  ( ( `  (
y  u.  { z } ) )  x.  ( `  B )
)  =  ( ( ( `  y )  x.  ( `  B )
)  +  ( `  B
) ) )
8483adantr 276 . . . 4  |-  ( ( ( ( ( A  e.  Fin  /\  B  e.  Fin )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  ( `  (
y  X.  B ) )  =  ( ( `  y )  x.  ( `  B ) ) )  ->  ( ( `  (
y  u.  { z } ) )  x.  ( `  B )
)  =  ( ( ( `  y )  x.  ( `  B )
)  +  ( `  B
) ) )
8533, 73, 843eqtr4d 2220 . . 3  |-  ( ( ( ( ( A  e.  Fin  /\  B  e.  Fin )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  ( `  (
y  X.  B ) )  =  ( ( `  y )  x.  ( `  B ) ) )  ->  ( `  ( (
y  u.  { z } )  X.  B
) )  =  ( ( `  ( y  u.  { z } ) )  x.  ( `  B
) ) )
8685ex 115 . 2  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  Fin )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  ( ( `  (
y  X.  B ) )  =  ( ( `  y )  x.  ( `  B ) )  -> 
( `  ( ( y  u.  { z } )  X.  B ) )  =  ( ( `  ( y  u.  {
z } ) )  x.  ( `  B
) ) ) )
87 simpl 109 . 2  |-  ( ( A  e.  Fin  /\  B  e.  Fin )  ->  A  e.  Fin )
885, 10, 15, 20, 31, 86, 87findcard2sd 6886 1  |-  ( ( A  e.  Fin  /\  B  e.  Fin )  ->  ( `  ( A  X.  B ) )  =  ( ( `  A
)  x.  ( `  B
) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1353    e. wcel 2148   _Vcvv 2737    \ cdif 3126    u. cun 3127    i^i cin 3128    C_ wss 3129   (/)c0 3422   {csn 3591   class class class wbr 4000    X. cxp 4621   ` cfv 5212  (class class class)co 5869    ~~ cen 6732   Fincfn 6734   CCcc 7800   0cc0 7802   1c1 7803    + caddc 7805    x. cmul 7807  ♯chash 10739
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4115  ax-sep 4118  ax-nul 4126  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-iinf 4584  ax-cnex 7893  ax-resscn 7894  ax-1cn 7895  ax-1re 7896  ax-icn 7897  ax-addcl 7898  ax-addrcl 7899  ax-mulcl 7900  ax-addcom 7902  ax-mulcom 7903  ax-addass 7904  ax-mulass 7905  ax-distr 7906  ax-i2m1 7907  ax-0lt1 7908  ax-1rid 7909  ax-0id 7910  ax-rnegex 7911  ax-cnre 7913  ax-pre-ltirr 7914  ax-pre-ltwlin 7915  ax-pre-lttrn 7916  ax-pre-apti 7917  ax-pre-ltadd 7918
This theorem depends on definitions:  df-bi 117  df-dc 835  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2739  df-sbc 2963  df-csb 3058  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-nul 3423  df-if 3535  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-iun 3886  df-br 4001  df-opab 4062  df-mpt 4063  df-tr 4099  df-id 4290  df-iord 4363  df-on 4365  df-ilim 4366  df-suc 4368  df-iom 4587  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-rn 4634  df-res 4635  df-ima 4636  df-iota 5174  df-fun 5214  df-fn 5215  df-f 5216  df-f1 5217  df-fo 5218  df-f1o 5219  df-fv 5220  df-riota 5825  df-ov 5872  df-oprab 5873  df-mpo 5874  df-1st 6135  df-2nd 6136  df-recs 6300  df-irdg 6365  df-frec 6386  df-1o 6411  df-oadd 6415  df-er 6529  df-en 6735  df-dom 6736  df-fin 6737  df-pnf 7984  df-mnf 7985  df-xr 7986  df-ltxr 7987  df-le 7988  df-sub 8120  df-neg 8121  df-inn 8909  df-n0 9166  df-z 9243  df-uz 9518  df-fz 9996  df-ihash 10740
This theorem is referenced by:  crth  12207  phimullem  12208
  Copyright terms: Public domain W3C validator