Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > hashxp | Unicode version |
Description: The size of the Cartesian product of two finite sets is the product of their sizes. (Contributed by Paul Chapman, 30-Nov-2012.) |
Ref | Expression |
---|---|
hashxp | ♯ ♯ ♯ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpeq1 4599 | . . . 4 | |
2 | 1 | fveq2d 5471 | . . 3 ♯ ♯ |
3 | fveq2 5467 | . . . 4 ♯ ♯ | |
4 | 3 | oveq1d 5836 | . . 3 ♯ ♯ ♯ ♯ |
5 | 2, 4 | eqeq12d 2172 | . 2 ♯ ♯ ♯ ♯ ♯ ♯ |
6 | xpeq1 4599 | . . . 4 | |
7 | 6 | fveq2d 5471 | . . 3 ♯ ♯ |
8 | fveq2 5467 | . . . 4 ♯ ♯ | |
9 | 8 | oveq1d 5836 | . . 3 ♯ ♯ ♯ ♯ |
10 | 7, 9 | eqeq12d 2172 | . 2 ♯ ♯ ♯ ♯ ♯ ♯ |
11 | xpeq1 4599 | . . . 4 | |
12 | 11 | fveq2d 5471 | . . 3 ♯ ♯ |
13 | fveq2 5467 | . . . 4 ♯ ♯ | |
14 | 13 | oveq1d 5836 | . . 3 ♯ ♯ ♯ ♯ |
15 | 12, 14 | eqeq12d 2172 | . 2 ♯ ♯ ♯ ♯ ♯ ♯ |
16 | xpeq1 4599 | . . . 4 | |
17 | 16 | fveq2d 5471 | . . 3 ♯ ♯ |
18 | fveq2 5467 | . . . 4 ♯ ♯ | |
19 | 18 | oveq1d 5836 | . . 3 ♯ ♯ ♯ ♯ |
20 | 17, 19 | eqeq12d 2172 | . 2 ♯ ♯ ♯ ♯ ♯ ♯ |
21 | 0xp 4665 | . . . . 5 | |
22 | 21 | fveq2i 5470 | . . . 4 ♯ ♯ |
23 | hash0 10664 | . . . 4 ♯ | |
24 | 22, 23 | eqtri 2178 | . . 3 ♯ |
25 | 23 | oveq1i 5831 | . . . 4 ♯ ♯ ♯ |
26 | hashcl 10648 | . . . . . . 7 ♯ | |
27 | 26 | nn0cnd 9139 | . . . . . 6 ♯ |
28 | 27 | mul02d 8261 | . . . . 5 ♯ |
29 | 28 | adantl 275 | . . . 4 ♯ |
30 | 25, 29 | syl5eq 2202 | . . 3 ♯ ♯ |
31 | 24, 30 | eqtr4id 2209 | . 2 ♯ ♯ ♯ |
32 | oveq1 5828 | . . . . 5 ♯ ♯ ♯ ♯ ♯ ♯ ♯ ♯ | |
33 | 32 | adantl 275 | . . . 4 ♯ ♯ ♯ ♯ ♯ ♯ ♯ ♯ |
34 | xpundir 4642 | . . . . . . 7 | |
35 | 34 | fveq2i 5470 | . . . . . 6 ♯ ♯ |
36 | simplr 520 | . . . . . . . . 9 | |
37 | simpllr 524 | . . . . . . . . 9 | |
38 | xpfi 6871 | . . . . . . . . 9 | |
39 | 36, 37, 38 | syl2anc 409 | . . . . . . . 8 |
40 | vex 2715 | . . . . . . . . . . 11 | |
41 | snfig 6756 | . . . . . . . . . . 11 | |
42 | 40, 41 | ax-mp 5 | . . . . . . . . . 10 |
43 | xpfi 6871 | . . . . . . . . . 10 | |
44 | 42, 43 | mpan 421 | . . . . . . . . 9 |
45 | 44 | ad3antlr 485 | . . . . . . . 8 |
46 | simprr 522 | . . . . . . . . . 10 | |
47 | 46 | eldifbd 3114 | . . . . . . . . 9 |
48 | inxp 4719 | . . . . . . . . . 10 | |
49 | disjsn 3621 | . . . . . . . . . . . . 13 | |
50 | 49 | biimpri 132 | . . . . . . . . . . . 12 |
51 | 50 | xpeq1d 4608 | . . . . . . . . . . 11 |
52 | 0xp 4665 | . . . . . . . . . . 11 | |
53 | 51, 52 | eqtrdi 2206 | . . . . . . . . . 10 |
54 | 48, 53 | syl5eq 2202 | . . . . . . . . 9 |
55 | 47, 54 | syl 14 | . . . . . . . 8 |
56 | hashun 10672 | . . . . . . . 8 ♯ ♯ ♯ | |
57 | 39, 45, 55, 56 | syl3anc 1220 | . . . . . . 7 ♯ ♯ ♯ |
58 | 40 | snex 4146 | . . . . . . . . . . . 12 |
59 | 58 | a1i 9 | . . . . . . . . . . 11 |
60 | xpcomeng 6770 | . . . . . . . . . . 11 | |
61 | 59, 37, 60 | syl2anc 409 | . . . . . . . . . 10 |
62 | 40 | a1i 9 | . . . . . . . . . . 11 |
63 | xpsneng 6764 | . . . . . . . . . . 11 | |
64 | 37, 62, 63 | syl2anc 409 | . . . . . . . . . 10 |
65 | entr 6726 | . . . . . . . . . 10 | |
66 | 61, 64, 65 | syl2anc 409 | . . . . . . . . 9 |
67 | hashen 10651 | . . . . . . . . . 10 ♯ ♯ | |
68 | 45, 37, 67 | syl2anc 409 | . . . . . . . . 9 ♯ ♯ |
69 | 66, 68 | mpbird 166 | . . . . . . . 8 ♯ ♯ |
70 | 69 | oveq2d 5837 | . . . . . . 7 ♯ ♯ ♯ ♯ |
71 | 57, 70 | eqtrd 2190 | . . . . . 6 ♯ ♯ ♯ |
72 | 35, 71 | syl5eq 2202 | . . . . 5 ♯ ♯ ♯ |
73 | 72 | adantr 274 | . . . 4 ♯ ♯ ♯ ♯ ♯ ♯ |
74 | hashunsng 10674 | . . . . . . . . 9 ♯ ♯ | |
75 | 40, 74 | ax-mp 5 | . . . . . . . 8 ♯ ♯ |
76 | 75 | oveq1d 5836 | . . . . . . 7 ♯ ♯ ♯ ♯ |
77 | 36, 47, 76 | syl2anc 409 | . . . . . 6 ♯ ♯ ♯ ♯ |
78 | hashcl 10648 | . . . . . . . . 9 ♯ | |
79 | 78 | nn0cnd 9139 | . . . . . . . 8 ♯ |
80 | 36, 79 | syl 14 | . . . . . . 7 ♯ |
81 | 37, 27 | syl 14 | . . . . . . 7 ♯ |
82 | 80, 81 | adddirp1d 7898 | . . . . . 6 ♯ ♯ ♯ ♯ ♯ |
83 | 77, 82 | eqtrd 2190 | . . . . 5 ♯ ♯ ♯ ♯ ♯ |
84 | 83 | adantr 274 | . . . 4 ♯ ♯ ♯ ♯ ♯ ♯ ♯ ♯ |
85 | 33, 73, 84 | 3eqtr4d 2200 | . . 3 ♯ ♯ ♯ ♯ ♯ ♯ |
86 | 85 | ex 114 | . 2 ♯ ♯ ♯ ♯ ♯ ♯ |
87 | simpl 108 | . 2 | |
88 | 5, 10, 15, 20, 31, 86, 87 | findcard2sd 6834 | 1 ♯ ♯ ♯ |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wb 104 wceq 1335 wcel 2128 cvv 2712 cdif 3099 cun 3100 cin 3101 wss 3102 c0 3394 csn 3560 class class class wbr 3965 cxp 4583 cfv 5169 (class class class)co 5821 cen 6680 cfn 6682 cc 7724 cc0 7726 c1 7727 caddc 7729 cmul 7731 ♯chash 10642 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 ax-13 2130 ax-14 2131 ax-ext 2139 ax-coll 4079 ax-sep 4082 ax-nul 4090 ax-pow 4135 ax-pr 4169 ax-un 4393 ax-setind 4495 ax-iinf 4546 ax-cnex 7817 ax-resscn 7818 ax-1cn 7819 ax-1re 7820 ax-icn 7821 ax-addcl 7822 ax-addrcl 7823 ax-mulcl 7824 ax-addcom 7826 ax-mulcom 7827 ax-addass 7828 ax-mulass 7829 ax-distr 7830 ax-i2m1 7831 ax-0lt1 7832 ax-1rid 7833 ax-0id 7834 ax-rnegex 7835 ax-cnre 7837 ax-pre-ltirr 7838 ax-pre-ltwlin 7839 ax-pre-lttrn 7840 ax-pre-apti 7841 ax-pre-ltadd 7842 |
This theorem depends on definitions: df-bi 116 df-dc 821 df-3or 964 df-3an 965 df-tru 1338 df-fal 1341 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 df-clab 2144 df-cleq 2150 df-clel 2153 df-nfc 2288 df-ne 2328 df-nel 2423 df-ral 2440 df-rex 2441 df-reu 2442 df-rab 2444 df-v 2714 df-sbc 2938 df-csb 3032 df-dif 3104 df-un 3106 df-in 3108 df-ss 3115 df-nul 3395 df-if 3506 df-pw 3545 df-sn 3566 df-pr 3567 df-op 3569 df-uni 3773 df-int 3808 df-iun 3851 df-br 3966 df-opab 4026 df-mpt 4027 df-tr 4063 df-id 4253 df-iord 4326 df-on 4328 df-ilim 4329 df-suc 4331 df-iom 4549 df-xp 4591 df-rel 4592 df-cnv 4593 df-co 4594 df-dm 4595 df-rn 4596 df-res 4597 df-ima 4598 df-iota 5134 df-fun 5171 df-fn 5172 df-f 5173 df-f1 5174 df-fo 5175 df-f1o 5176 df-fv 5177 df-riota 5777 df-ov 5824 df-oprab 5825 df-mpo 5826 df-1st 6085 df-2nd 6086 df-recs 6249 df-irdg 6314 df-frec 6335 df-1o 6360 df-oadd 6364 df-er 6477 df-en 6683 df-dom 6684 df-fin 6685 df-pnf 7908 df-mnf 7909 df-xr 7910 df-ltxr 7911 df-le 7912 df-sub 8042 df-neg 8043 df-inn 8828 df-n0 9085 df-z 9162 df-uz 9434 df-fz 9906 df-ihash 10643 |
This theorem is referenced by: crth 12087 phimullem 12088 |
Copyright terms: Public domain | W3C validator |