| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > hashxp | Unicode version | ||
| Description: The size of the Cartesian product of two finite sets is the product of their sizes. (Contributed by Paul Chapman, 30-Nov-2012.) |
| Ref | Expression |
|---|---|
| hashxp |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpeq1 4689 |
. . . 4
| |
| 2 | 1 | fveq2d 5580 |
. . 3
|
| 3 | fveq2 5576 |
. . . 4
| |
| 4 | 3 | oveq1d 5959 |
. . 3
|
| 5 | 2, 4 | eqeq12d 2220 |
. 2
|
| 6 | xpeq1 4689 |
. . . 4
| |
| 7 | 6 | fveq2d 5580 |
. . 3
|
| 8 | fveq2 5576 |
. . . 4
| |
| 9 | 8 | oveq1d 5959 |
. . 3
|
| 10 | 7, 9 | eqeq12d 2220 |
. 2
|
| 11 | xpeq1 4689 |
. . . 4
| |
| 12 | 11 | fveq2d 5580 |
. . 3
|
| 13 | fveq2 5576 |
. . . 4
| |
| 14 | 13 | oveq1d 5959 |
. . 3
|
| 15 | 12, 14 | eqeq12d 2220 |
. 2
|
| 16 | xpeq1 4689 |
. . . 4
| |
| 17 | 16 | fveq2d 5580 |
. . 3
|
| 18 | fveq2 5576 |
. . . 4
| |
| 19 | 18 | oveq1d 5959 |
. . 3
|
| 20 | 17, 19 | eqeq12d 2220 |
. 2
|
| 21 | 0xp 4755 |
. . . . 5
| |
| 22 | 21 | fveq2i 5579 |
. . . 4
|
| 23 | hash0 10941 |
. . . 4
| |
| 24 | 22, 23 | eqtri 2226 |
. . 3
|
| 25 | 23 | oveq1i 5954 |
. . . 4
|
| 26 | hashcl 10926 |
. . . . . . 7
| |
| 27 | 26 | nn0cnd 9350 |
. . . . . 6
|
| 28 | 27 | mul02d 8464 |
. . . . 5
|
| 29 | 28 | adantl 277 |
. . . 4
|
| 30 | 25, 29 | eqtrid 2250 |
. . 3
|
| 31 | 24, 30 | eqtr4id 2257 |
. 2
|
| 32 | oveq1 5951 |
. . . . 5
| |
| 33 | 32 | adantl 277 |
. . . 4
|
| 34 | xpundir 4732 |
. . . . . . 7
| |
| 35 | 34 | fveq2i 5579 |
. . . . . 6
|
| 36 | simplr 528 |
. . . . . . . . 9
| |
| 37 | simpllr 534 |
. . . . . . . . 9
| |
| 38 | xpfi 7029 |
. . . . . . . . 9
| |
| 39 | 36, 37, 38 | syl2anc 411 |
. . . . . . . 8
|
| 40 | vex 2775 |
. . . . . . . . . . 11
| |
| 41 | snfig 6906 |
. . . . . . . . . . 11
| |
| 42 | 40, 41 | ax-mp 5 |
. . . . . . . . . 10
|
| 43 | xpfi 7029 |
. . . . . . . . . 10
| |
| 44 | 42, 43 | mpan 424 |
. . . . . . . . 9
|
| 45 | 44 | ad3antlr 493 |
. . . . . . . 8
|
| 46 | simprr 531 |
. . . . . . . . . 10
| |
| 47 | 46 | eldifbd 3178 |
. . . . . . . . 9
|
| 48 | inxp 4812 |
. . . . . . . . . 10
| |
| 49 | disjsn 3695 |
. . . . . . . . . . . . 13
| |
| 50 | 49 | biimpri 133 |
. . . . . . . . . . . 12
|
| 51 | 50 | xpeq1d 4698 |
. . . . . . . . . . 11
|
| 52 | 0xp 4755 |
. . . . . . . . . . 11
| |
| 53 | 51, 52 | eqtrdi 2254 |
. . . . . . . . . 10
|
| 54 | 48, 53 | eqtrid 2250 |
. . . . . . . . 9
|
| 55 | 47, 54 | syl 14 |
. . . . . . . 8
|
| 56 | hashun 10950 |
. . . . . . . 8
| |
| 57 | 39, 45, 55, 56 | syl3anc 1250 |
. . . . . . 7
|
| 58 | 40 | snex 4229 |
. . . . . . . . . . . 12
|
| 59 | 58 | a1i 9 |
. . . . . . . . . . 11
|
| 60 | xpcomeng 6923 |
. . . . . . . . . . 11
| |
| 61 | 59, 37, 60 | syl2anc 411 |
. . . . . . . . . 10
|
| 62 | 40 | a1i 9 |
. . . . . . . . . . 11
|
| 63 | xpsneng 6917 |
. . . . . . . . . . 11
| |
| 64 | 37, 62, 63 | syl2anc 411 |
. . . . . . . . . 10
|
| 65 | entr 6876 |
. . . . . . . . . 10
| |
| 66 | 61, 64, 65 | syl2anc 411 |
. . . . . . . . 9
|
| 67 | hashen 10929 |
. . . . . . . . . 10
| |
| 68 | 45, 37, 67 | syl2anc 411 |
. . . . . . . . 9
|
| 69 | 66, 68 | mpbird 167 |
. . . . . . . 8
|
| 70 | 69 | oveq2d 5960 |
. . . . . . 7
|
| 71 | 57, 70 | eqtrd 2238 |
. . . . . 6
|
| 72 | 35, 71 | eqtrid 2250 |
. . . . 5
|
| 73 | 72 | adantr 276 |
. . . 4
|
| 74 | hashunsng 10952 |
. . . . . . . . 9
| |
| 75 | 40, 74 | ax-mp 5 |
. . . . . . . 8
|
| 76 | 75 | oveq1d 5959 |
. . . . . . 7
|
| 77 | 36, 47, 76 | syl2anc 411 |
. . . . . 6
|
| 78 | hashcl 10926 |
. . . . . . . . 9
| |
| 79 | 78 | nn0cnd 9350 |
. . . . . . . 8
|
| 80 | 36, 79 | syl 14 |
. . . . . . 7
|
| 81 | 37, 27 | syl 14 |
. . . . . . 7
|
| 82 | 80, 81 | adddirp1d 8099 |
. . . . . 6
|
| 83 | 77, 82 | eqtrd 2238 |
. . . . 5
|
| 84 | 83 | adantr 276 |
. . . 4
|
| 85 | 33, 73, 84 | 3eqtr4d 2248 |
. . 3
|
| 86 | 85 | ex 115 |
. 2
|
| 87 | simpl 109 |
. 2
| |
| 88 | 5, 10, 15, 20, 31, 86, 87 | findcard2sd 6989 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-coll 4159 ax-sep 4162 ax-nul 4170 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-setind 4585 ax-iinf 4636 ax-cnex 8016 ax-resscn 8017 ax-1cn 8018 ax-1re 8019 ax-icn 8020 ax-addcl 8021 ax-addrcl 8022 ax-mulcl 8023 ax-addcom 8025 ax-mulcom 8026 ax-addass 8027 ax-mulass 8028 ax-distr 8029 ax-i2m1 8030 ax-0lt1 8031 ax-1rid 8032 ax-0id 8033 ax-rnegex 8034 ax-cnre 8036 ax-pre-ltirr 8037 ax-pre-ltwlin 8038 ax-pre-lttrn 8039 ax-pre-apti 8040 ax-pre-ltadd 8041 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-nel 2472 df-ral 2489 df-rex 2490 df-reu 2491 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-if 3572 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-iun 3929 df-br 4045 df-opab 4106 df-mpt 4107 df-tr 4143 df-id 4340 df-iord 4413 df-on 4415 df-ilim 4416 df-suc 4418 df-iom 4639 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-res 4687 df-ima 4688 df-iota 5232 df-fun 5273 df-fn 5274 df-f 5275 df-f1 5276 df-fo 5277 df-f1o 5278 df-fv 5279 df-riota 5899 df-ov 5947 df-oprab 5948 df-mpo 5949 df-1st 6226 df-2nd 6227 df-recs 6391 df-irdg 6456 df-frec 6477 df-1o 6502 df-oadd 6506 df-er 6620 df-en 6828 df-dom 6829 df-fin 6830 df-pnf 8109 df-mnf 8110 df-xr 8111 df-ltxr 8112 df-le 8113 df-sub 8245 df-neg 8246 df-inn 9037 df-n0 9296 df-z 9373 df-uz 9649 df-fz 10131 df-ihash 10921 |
| This theorem is referenced by: crth 12546 phimullem 12547 lgsquadlem3 15556 |
| Copyright terms: Public domain | W3C validator |