ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  hashxp Unicode version

Theorem hashxp 10739
Description: The size of the Cartesian product of two finite sets is the product of their sizes. (Contributed by Paul Chapman, 30-Nov-2012.)
Assertion
Ref Expression
hashxp  |-  ( ( A  e.  Fin  /\  B  e.  Fin )  ->  ( `  ( A  X.  B ) )  =  ( ( `  A
)  x.  ( `  B
) ) )

Proof of Theorem hashxp
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xpeq1 4618 . . . 4  |-  ( x  =  (/)  ->  ( x  X.  B )  =  ( (/)  X.  B
) )
21fveq2d 5490 . . 3  |-  ( x  =  (/)  ->  ( `  (
x  X.  B ) )  =  ( `  ( (/) 
X.  B ) ) )
3 fveq2 5486 . . . 4  |-  ( x  =  (/)  ->  ( `  x
)  =  ( `  (/) ) )
43oveq1d 5857 . . 3  |-  ( x  =  (/)  ->  ( ( `  x )  x.  ( `  B ) )  =  ( ( `  (/) )  x.  ( `  B )
) )
52, 4eqeq12d 2180 . 2  |-  ( x  =  (/)  ->  ( ( `  ( x  X.  B
) )  =  ( ( `  x )  x.  ( `  B )
)  <->  ( `  ( (/)  X.  B
) )  =  ( ( `  (/) )  x.  ( `  B )
) ) )
6 xpeq1 4618 . . . 4  |-  ( x  =  y  ->  (
x  X.  B )  =  ( y  X.  B ) )
76fveq2d 5490 . . 3  |-  ( x  =  y  ->  ( `  ( x  X.  B
) )  =  ( `  ( y  X.  B
) ) )
8 fveq2 5486 . . . 4  |-  ( x  =  y  ->  ( `  x )  =  ( `  y ) )
98oveq1d 5857 . . 3  |-  ( x  =  y  ->  (
( `  x )  x.  ( `  B )
)  =  ( ( `  y )  x.  ( `  B ) ) )
107, 9eqeq12d 2180 . 2  |-  ( x  =  y  ->  (
( `  ( x  X.  B ) )  =  ( ( `  x
)  x.  ( `  B
) )  <->  ( `  (
y  X.  B ) )  =  ( ( `  y )  x.  ( `  B ) ) ) )
11 xpeq1 4618 . . . 4  |-  ( x  =  ( y  u. 
{ z } )  ->  ( x  X.  B )  =  ( ( y  u.  {
z } )  X.  B ) )
1211fveq2d 5490 . . 3  |-  ( x  =  ( y  u. 
{ z } )  ->  ( `  ( x  X.  B ) )  =  ( `  ( (
y  u.  { z } )  X.  B
) ) )
13 fveq2 5486 . . . 4  |-  ( x  =  ( y  u. 
{ z } )  ->  ( `  x )  =  ( `  ( y  u.  { z } ) ) )
1413oveq1d 5857 . . 3  |-  ( x  =  ( y  u. 
{ z } )  ->  ( ( `  x
)  x.  ( `  B
) )  =  ( ( `  ( y  u.  { z } ) )  x.  ( `  B
) ) )
1512, 14eqeq12d 2180 . 2  |-  ( x  =  ( y  u. 
{ z } )  ->  ( ( `  (
x  X.  B ) )  =  ( ( `  x )  x.  ( `  B ) )  <->  ( `  (
( y  u.  {
z } )  X.  B ) )  =  ( ( `  (
y  u.  { z } ) )  x.  ( `  B )
) ) )
16 xpeq1 4618 . . . 4  |-  ( x  =  A  ->  (
x  X.  B )  =  ( A  X.  B ) )
1716fveq2d 5490 . . 3  |-  ( x  =  A  ->  ( `  ( x  X.  B
) )  =  ( `  ( A  X.  B
) ) )
18 fveq2 5486 . . . 4  |-  ( x  =  A  ->  ( `  x )  =  ( `  A ) )
1918oveq1d 5857 . . 3  |-  ( x  =  A  ->  (
( `  x )  x.  ( `  B )
)  =  ( ( `  A )  x.  ( `  B ) ) )
2017, 19eqeq12d 2180 . 2  |-  ( x  =  A  ->  (
( `  ( x  X.  B ) )  =  ( ( `  x
)  x.  ( `  B
) )  <->  ( `  ( A  X.  B ) )  =  ( ( `  A
)  x.  ( `  B
) ) ) )
21 0xp 4684 . . . . 5  |-  ( (/)  X.  B )  =  (/)
2221fveq2i 5489 . . . 4  |-  ( `  ( (/) 
X.  B ) )  =  ( `  (/) )
23 hash0 10710 . . . 4  |-  ( `  (/) )  =  0
2422, 23eqtri 2186 . . 3  |-  ( `  ( (/) 
X.  B ) )  =  0
2523oveq1i 5852 . . . 4  |-  ( ( `  (/) )  x.  ( `  B ) )  =  ( 0  x.  ( `  B ) )
26 hashcl 10694 . . . . . . 7  |-  ( B  e.  Fin  ->  ( `  B )  e.  NN0 )
2726nn0cnd 9169 . . . . . 6  |-  ( B  e.  Fin  ->  ( `  B )  e.  CC )
2827mul02d 8290 . . . . 5  |-  ( B  e.  Fin  ->  (
0  x.  ( `  B
) )  =  0 )
2928adantl 275 . . . 4  |-  ( ( A  e.  Fin  /\  B  e.  Fin )  ->  ( 0  x.  ( `  B ) )  =  0 )
3025, 29syl5eq 2211 . . 3  |-  ( ( A  e.  Fin  /\  B  e.  Fin )  ->  ( ( `  (/) )  x.  ( `  B )
)  =  0 )
3124, 30eqtr4id 2218 . 2  |-  ( ( A  e.  Fin  /\  B  e.  Fin )  ->  ( `  ( (/)  X.  B
) )  =  ( ( `  (/) )  x.  ( `  B )
) )
32 oveq1 5849 . . . . 5  |-  ( ( `  ( y  X.  B
) )  =  ( ( `  y )  x.  ( `  B )
)  ->  ( ( `  ( y  X.  B
) )  +  ( `  B ) )  =  ( ( ( `  y
)  x.  ( `  B
) )  +  ( `  B ) ) )
3332adantl 275 . . . 4  |-  ( ( ( ( ( A  e.  Fin  /\  B  e.  Fin )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  ( `  (
y  X.  B ) )  =  ( ( `  y )  x.  ( `  B ) ) )  ->  ( ( `  (
y  X.  B ) )  +  ( `  B
) )  =  ( ( ( `  y
)  x.  ( `  B
) )  +  ( `  B ) ) )
34 xpundir 4661 . . . . . . 7  |-  ( ( y  u.  { z } )  X.  B
)  =  ( ( y  X.  B )  u.  ( { z }  X.  B ) )
3534fveq2i 5489 . . . . . 6  |-  ( `  (
( y  u.  {
z } )  X.  B ) )  =  ( `  ( (
y  X.  B )  u.  ( { z }  X.  B ) ) )
36 simplr 520 . . . . . . . . 9  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  Fin )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  y  e.  Fin )
37 simpllr 524 . . . . . . . . 9  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  Fin )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  B  e.  Fin )
38 xpfi 6895 . . . . . . . . 9  |-  ( ( y  e.  Fin  /\  B  e.  Fin )  ->  ( y  X.  B
)  e.  Fin )
3936, 37, 38syl2anc 409 . . . . . . . 8  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  Fin )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  ( y  X.  B )  e.  Fin )
40 vex 2729 . . . . . . . . . . 11  |-  z  e. 
_V
41 snfig 6780 . . . . . . . . . . 11  |-  ( z  e.  _V  ->  { z }  e.  Fin )
4240, 41ax-mp 5 . . . . . . . . . 10  |-  { z }  e.  Fin
43 xpfi 6895 . . . . . . . . . 10  |-  ( ( { z }  e.  Fin  /\  B  e.  Fin )  ->  ( { z }  X.  B )  e.  Fin )
4442, 43mpan 421 . . . . . . . . 9  |-  ( B  e.  Fin  ->  ( { z }  X.  B )  e.  Fin )
4544ad3antlr 485 . . . . . . . 8  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  Fin )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  ( { z }  X.  B )  e.  Fin )
46 simprr 522 . . . . . . . . . 10  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  Fin )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  z  e.  ( A  \  y ) )
4746eldifbd 3128 . . . . . . . . 9  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  Fin )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  -.  z  e.  y )
48 inxp 4738 . . . . . . . . . 10  |-  ( ( y  X.  B )  i^i  ( { z }  X.  B ) )  =  ( ( y  i^i  { z } )  X.  ( B  i^i  B ) )
49 disjsn 3638 . . . . . . . . . . . . 13  |-  ( ( y  i^i  { z } )  =  (/)  <->  -.  z  e.  y )
5049biimpri 132 . . . . . . . . . . . 12  |-  ( -.  z  e.  y  -> 
( y  i^i  {
z } )  =  (/) )
5150xpeq1d 4627 . . . . . . . . . . 11  |-  ( -.  z  e.  y  -> 
( ( y  i^i 
{ z } )  X.  ( B  i^i  B ) )  =  (
(/)  X.  ( B  i^i  B ) ) )
52 0xp 4684 . . . . . . . . . . 11  |-  ( (/)  X.  ( B  i^i  B
) )  =  (/)
5351, 52eqtrdi 2215 . . . . . . . . . 10  |-  ( -.  z  e.  y  -> 
( ( y  i^i 
{ z } )  X.  ( B  i^i  B ) )  =  (/) )
5448, 53syl5eq 2211 . . . . . . . . 9  |-  ( -.  z  e.  y  -> 
( ( y  X.  B )  i^i  ( { z }  X.  B ) )  =  (/) )
5547, 54syl 14 . . . . . . . 8  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  Fin )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  ( ( y  X.  B )  i^i  ( { z }  X.  B ) )  =  (/) )
56 hashun 10718 . . . . . . . 8  |-  ( ( ( y  X.  B
)  e.  Fin  /\  ( { z }  X.  B )  e.  Fin  /\  ( ( y  X.  B )  i^i  ( { z }  X.  B ) )  =  (/) )  ->  ( `  (
( y  X.  B
)  u.  ( { z }  X.  B
) ) )  =  ( ( `  (
y  X.  B ) )  +  ( `  ( { z }  X.  B ) ) ) )
5739, 45, 55, 56syl3anc 1228 . . . . . . 7  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  Fin )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  ( `  ( (
y  X.  B )  u.  ( { z }  X.  B ) ) )  =  ( ( `  ( y  X.  B ) )  +  ( `  ( {
z }  X.  B
) ) ) )
5840snex 4164 . . . . . . . . . . . 12  |-  { z }  e.  _V
5958a1i 9 . . . . . . . . . . 11  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  Fin )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  { z }  e.  _V )
60 xpcomeng 6794 . . . . . . . . . . 11  |-  ( ( { z }  e.  _V  /\  B  e.  Fin )  ->  ( { z }  X.  B ) 
~~  ( B  X.  { z } ) )
6159, 37, 60syl2anc 409 . . . . . . . . . 10  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  Fin )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  ( { z }  X.  B ) 
~~  ( B  X.  { z } ) )
6240a1i 9 . . . . . . . . . . 11  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  Fin )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  z  e.  _V )
63 xpsneng 6788 . . . . . . . . . . 11  |-  ( ( B  e.  Fin  /\  z  e.  _V )  ->  ( B  X.  {
z } )  ~~  B )
6437, 62, 63syl2anc 409 . . . . . . . . . 10  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  Fin )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  ( B  X.  { z } ) 
~~  B )
65 entr 6750 . . . . . . . . . 10  |-  ( ( ( { z }  X.  B )  ~~  ( B  X.  { z } )  /\  ( B  X.  { z } )  ~~  B )  ->  ( { z }  X.  B ) 
~~  B )
6661, 64, 65syl2anc 409 . . . . . . . . 9  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  Fin )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  ( { z }  X.  B ) 
~~  B )
67 hashen 10697 . . . . . . . . . 10  |-  ( ( ( { z }  X.  B )  e. 
Fin  /\  B  e.  Fin )  ->  ( ( `  ( { z }  X.  B ) )  =  ( `  B
)  <->  ( { z }  X.  B ) 
~~  B ) )
6845, 37, 67syl2anc 409 . . . . . . . . 9  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  Fin )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  ( ( `  ( { z }  X.  B ) )  =  ( `  B )  <->  ( { z }  X.  B )  ~~  B
) )
6966, 68mpbird 166 . . . . . . . 8  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  Fin )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  ( `  ( {
z }  X.  B
) )  =  ( `  B ) )
7069oveq2d 5858 . . . . . . 7  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  Fin )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  ( ( `  (
y  X.  B ) )  +  ( `  ( { z }  X.  B ) ) )  =  ( ( `  (
y  X.  B ) )  +  ( `  B
) ) )
7157, 70eqtrd 2198 . . . . . 6  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  Fin )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  ( `  ( (
y  X.  B )  u.  ( { z }  X.  B ) ) )  =  ( ( `  ( y  X.  B ) )  +  ( `  B )
) )
7235, 71syl5eq 2211 . . . . 5  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  Fin )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  ( `  ( (
y  u.  { z } )  X.  B
) )  =  ( ( `  ( y  X.  B ) )  +  ( `  B )
) )
7372adantr 274 . . . 4  |-  ( ( ( ( ( A  e.  Fin  /\  B  e.  Fin )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  ( `  (
y  X.  B ) )  =  ( ( `  y )  x.  ( `  B ) ) )  ->  ( `  ( (
y  u.  { z } )  X.  B
) )  =  ( ( `  ( y  X.  B ) )  +  ( `  B )
) )
74 hashunsng 10720 . . . . . . . . 9  |-  ( z  e.  _V  ->  (
( y  e.  Fin  /\ 
-.  z  e.  y )  ->  ( `  (
y  u.  { z } ) )  =  ( ( `  y
)  +  1 ) ) )
7540, 74ax-mp 5 . . . . . . . 8  |-  ( ( y  e.  Fin  /\  -.  z  e.  y
)  ->  ( `  (
y  u.  { z } ) )  =  ( ( `  y
)  +  1 ) )
7675oveq1d 5857 . . . . . . 7  |-  ( ( y  e.  Fin  /\  -.  z  e.  y
)  ->  ( ( `  ( y  u.  {
z } ) )  x.  ( `  B
) )  =  ( ( ( `  y
)  +  1 )  x.  ( `  B
) ) )
7736, 47, 76syl2anc 409 . . . . . 6  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  Fin )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  ( ( `  (
y  u.  { z } ) )  x.  ( `  B )
)  =  ( ( ( `  y )  +  1 )  x.  ( `  B )
) )
78 hashcl 10694 . . . . . . . . 9  |-  ( y  e.  Fin  ->  ( `  y )  e.  NN0 )
7978nn0cnd 9169 . . . . . . . 8  |-  ( y  e.  Fin  ->  ( `  y )  e.  CC )
8036, 79syl 14 . . . . . . 7  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  Fin )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  ( `  y )  e.  CC )
8137, 27syl 14 . . . . . . 7  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  Fin )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  ( `  B )  e.  CC )
8280, 81adddirp1d 7925 . . . . . 6  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  Fin )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  ( ( ( `  y )  +  1 )  x.  ( `  B
) )  =  ( ( ( `  y
)  x.  ( `  B
) )  +  ( `  B ) ) )
8377, 82eqtrd 2198 . . . . 5  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  Fin )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  ( ( `  (
y  u.  { z } ) )  x.  ( `  B )
)  =  ( ( ( `  y )  x.  ( `  B )
)  +  ( `  B
) ) )
8483adantr 274 . . . 4  |-  ( ( ( ( ( A  e.  Fin  /\  B  e.  Fin )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  ( `  (
y  X.  B ) )  =  ( ( `  y )  x.  ( `  B ) ) )  ->  ( ( `  (
y  u.  { z } ) )  x.  ( `  B )
)  =  ( ( ( `  y )  x.  ( `  B )
)  +  ( `  B
) ) )
8533, 73, 843eqtr4d 2208 . . 3  |-  ( ( ( ( ( A  e.  Fin  /\  B  e.  Fin )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  ( `  (
y  X.  B ) )  =  ( ( `  y )  x.  ( `  B ) ) )  ->  ( `  ( (
y  u.  { z } )  X.  B
) )  =  ( ( `  ( y  u.  { z } ) )  x.  ( `  B
) ) )
8685ex 114 . 2  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  Fin )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  ( ( `  (
y  X.  B ) )  =  ( ( `  y )  x.  ( `  B ) )  -> 
( `  ( ( y  u.  { z } )  X.  B ) )  =  ( ( `  ( y  u.  {
z } ) )  x.  ( `  B
) ) ) )
87 simpl 108 . 2  |-  ( ( A  e.  Fin  /\  B  e.  Fin )  ->  A  e.  Fin )
885, 10, 15, 20, 31, 86, 87findcard2sd 6858 1  |-  ( ( A  e.  Fin  /\  B  e.  Fin )  ->  ( `  ( A  X.  B ) )  =  ( ( `  A
)  x.  ( `  B
) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1343    e. wcel 2136   _Vcvv 2726    \ cdif 3113    u. cun 3114    i^i cin 3115    C_ wss 3116   (/)c0 3409   {csn 3576   class class class wbr 3982    X. cxp 4602   ` cfv 5188  (class class class)co 5842    ~~ cen 6704   Fincfn 6706   CCcc 7751   0cc0 7753   1c1 7754    + caddc 7756    x. cmul 7758  ♯chash 10688
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411  ax-setind 4514  ax-iinf 4565  ax-cnex 7844  ax-resscn 7845  ax-1cn 7846  ax-1re 7847  ax-icn 7848  ax-addcl 7849  ax-addrcl 7850  ax-mulcl 7851  ax-addcom 7853  ax-mulcom 7854  ax-addass 7855  ax-mulass 7856  ax-distr 7857  ax-i2m1 7858  ax-0lt1 7859  ax-1rid 7860  ax-0id 7861  ax-rnegex 7862  ax-cnre 7864  ax-pre-ltirr 7865  ax-pre-ltwlin 7866  ax-pre-lttrn 7867  ax-pre-apti 7868  ax-pre-ltadd 7869
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 969  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-nel 2432  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-if 3521  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-iord 4344  df-on 4346  df-ilim 4347  df-suc 4349  df-iom 4568  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-riota 5798  df-ov 5845  df-oprab 5846  df-mpo 5847  df-1st 6108  df-2nd 6109  df-recs 6273  df-irdg 6338  df-frec 6359  df-1o 6384  df-oadd 6388  df-er 6501  df-en 6707  df-dom 6708  df-fin 6709  df-pnf 7935  df-mnf 7936  df-xr 7937  df-ltxr 7938  df-le 7939  df-sub 8071  df-neg 8072  df-inn 8858  df-n0 9115  df-z 9192  df-uz 9467  df-fz 9945  df-ihash 10689
This theorem is referenced by:  crth  12156  phimullem  12157
  Copyright terms: Public domain W3C validator