ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  hashxp Unicode version

Theorem hashxp 10565
Description: The size of the Cartesian product of two finite sets is the product of their sizes. (Contributed by Paul Chapman, 30-Nov-2012.)
Assertion
Ref Expression
hashxp  |-  ( ( A  e.  Fin  /\  B  e.  Fin )  ->  ( `  ( A  X.  B ) )  =  ( ( `  A
)  x.  ( `  B
) ) )

Proof of Theorem hashxp
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xpeq1 4548 . . . 4  |-  ( x  =  (/)  ->  ( x  X.  B )  =  ( (/)  X.  B
) )
21fveq2d 5418 . . 3  |-  ( x  =  (/)  ->  ( `  (
x  X.  B ) )  =  ( `  ( (/) 
X.  B ) ) )
3 fveq2 5414 . . . 4  |-  ( x  =  (/)  ->  ( `  x
)  =  ( `  (/) ) )
43oveq1d 5782 . . 3  |-  ( x  =  (/)  ->  ( ( `  x )  x.  ( `  B ) )  =  ( ( `  (/) )  x.  ( `  B )
) )
52, 4eqeq12d 2152 . 2  |-  ( x  =  (/)  ->  ( ( `  ( x  X.  B
) )  =  ( ( `  x )  x.  ( `  B )
)  <->  ( `  ( (/)  X.  B
) )  =  ( ( `  (/) )  x.  ( `  B )
) ) )
6 xpeq1 4548 . . . 4  |-  ( x  =  y  ->  (
x  X.  B )  =  ( y  X.  B ) )
76fveq2d 5418 . . 3  |-  ( x  =  y  ->  ( `  ( x  X.  B
) )  =  ( `  ( y  X.  B
) ) )
8 fveq2 5414 . . . 4  |-  ( x  =  y  ->  ( `  x )  =  ( `  y ) )
98oveq1d 5782 . . 3  |-  ( x  =  y  ->  (
( `  x )  x.  ( `  B )
)  =  ( ( `  y )  x.  ( `  B ) ) )
107, 9eqeq12d 2152 . 2  |-  ( x  =  y  ->  (
( `  ( x  X.  B ) )  =  ( ( `  x
)  x.  ( `  B
) )  <->  ( `  (
y  X.  B ) )  =  ( ( `  y )  x.  ( `  B ) ) ) )
11 xpeq1 4548 . . . 4  |-  ( x  =  ( y  u. 
{ z } )  ->  ( x  X.  B )  =  ( ( y  u.  {
z } )  X.  B ) )
1211fveq2d 5418 . . 3  |-  ( x  =  ( y  u. 
{ z } )  ->  ( `  ( x  X.  B ) )  =  ( `  ( (
y  u.  { z } )  X.  B
) ) )
13 fveq2 5414 . . . 4  |-  ( x  =  ( y  u. 
{ z } )  ->  ( `  x )  =  ( `  ( y  u.  { z } ) ) )
1413oveq1d 5782 . . 3  |-  ( x  =  ( y  u. 
{ z } )  ->  ( ( `  x
)  x.  ( `  B
) )  =  ( ( `  ( y  u.  { z } ) )  x.  ( `  B
) ) )
1512, 14eqeq12d 2152 . 2  |-  ( x  =  ( y  u. 
{ z } )  ->  ( ( `  (
x  X.  B ) )  =  ( ( `  x )  x.  ( `  B ) )  <->  ( `  (
( y  u.  {
z } )  X.  B ) )  =  ( ( `  (
y  u.  { z } ) )  x.  ( `  B )
) ) )
16 xpeq1 4548 . . . 4  |-  ( x  =  A  ->  (
x  X.  B )  =  ( A  X.  B ) )
1716fveq2d 5418 . . 3  |-  ( x  =  A  ->  ( `  ( x  X.  B
) )  =  ( `  ( A  X.  B
) ) )
18 fveq2 5414 . . . 4  |-  ( x  =  A  ->  ( `  x )  =  ( `  A ) )
1918oveq1d 5782 . . 3  |-  ( x  =  A  ->  (
( `  x )  x.  ( `  B )
)  =  ( ( `  A )  x.  ( `  B ) ) )
2017, 19eqeq12d 2152 . 2  |-  ( x  =  A  ->  (
( `  ( x  X.  B ) )  =  ( ( `  x
)  x.  ( `  B
) )  <->  ( `  ( A  X.  B ) )  =  ( ( `  A
)  x.  ( `  B
) ) ) )
21 hash0 10536 . . . . 5  |-  ( `  (/) )  =  0
2221oveq1i 5777 . . . 4  |-  ( ( `  (/) )  x.  ( `  B ) )  =  ( 0  x.  ( `  B ) )
23 hashcl 10520 . . . . . . 7  |-  ( B  e.  Fin  ->  ( `  B )  e.  NN0 )
2423nn0cnd 9025 . . . . . 6  |-  ( B  e.  Fin  ->  ( `  B )  e.  CC )
2524mul02d 8147 . . . . 5  |-  ( B  e.  Fin  ->  (
0  x.  ( `  B
) )  =  0 )
2625adantl 275 . . . 4  |-  ( ( A  e.  Fin  /\  B  e.  Fin )  ->  ( 0  x.  ( `  B ) )  =  0 )
2722, 26syl5eq 2182 . . 3  |-  ( ( A  e.  Fin  /\  B  e.  Fin )  ->  ( ( `  (/) )  x.  ( `  B )
)  =  0 )
28 0xp 4614 . . . . 5  |-  ( (/)  X.  B )  =  (/)
2928fveq2i 5417 . . . 4  |-  ( `  ( (/) 
X.  B ) )  =  ( `  (/) )
3029, 21eqtri 2158 . . 3  |-  ( `  ( (/) 
X.  B ) )  =  0
3127, 30syl6reqr 2189 . 2  |-  ( ( A  e.  Fin  /\  B  e.  Fin )  ->  ( `  ( (/)  X.  B
) )  =  ( ( `  (/) )  x.  ( `  B )
) )
32 oveq1 5774 . . . . 5  |-  ( ( `  ( y  X.  B
) )  =  ( ( `  y )  x.  ( `  B )
)  ->  ( ( `  ( y  X.  B
) )  +  ( `  B ) )  =  ( ( ( `  y
)  x.  ( `  B
) )  +  ( `  B ) ) )
3332adantl 275 . . . 4  |-  ( ( ( ( ( A  e.  Fin  /\  B  e.  Fin )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  ( `  (
y  X.  B ) )  =  ( ( `  y )  x.  ( `  B ) ) )  ->  ( ( `  (
y  X.  B ) )  +  ( `  B
) )  =  ( ( ( `  y
)  x.  ( `  B
) )  +  ( `  B ) ) )
34 xpundir 4591 . . . . . . 7  |-  ( ( y  u.  { z } )  X.  B
)  =  ( ( y  X.  B )  u.  ( { z }  X.  B ) )
3534fveq2i 5417 . . . . . 6  |-  ( `  (
( y  u.  {
z } )  X.  B ) )  =  ( `  ( (
y  X.  B )  u.  ( { z }  X.  B ) ) )
36 simplr 519 . . . . . . . . 9  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  Fin )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  y  e.  Fin )
37 simpllr 523 . . . . . . . . 9  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  Fin )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  B  e.  Fin )
38 xpfi 6811 . . . . . . . . 9  |-  ( ( y  e.  Fin  /\  B  e.  Fin )  ->  ( y  X.  B
)  e.  Fin )
3936, 37, 38syl2anc 408 . . . . . . . 8  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  Fin )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  ( y  X.  B )  e.  Fin )
40 vex 2684 . . . . . . . . . . 11  |-  z  e. 
_V
41 snfig 6701 . . . . . . . . . . 11  |-  ( z  e.  _V  ->  { z }  e.  Fin )
4240, 41ax-mp 5 . . . . . . . . . 10  |-  { z }  e.  Fin
43 xpfi 6811 . . . . . . . . . 10  |-  ( ( { z }  e.  Fin  /\  B  e.  Fin )  ->  ( { z }  X.  B )  e.  Fin )
4442, 43mpan 420 . . . . . . . . 9  |-  ( B  e.  Fin  ->  ( { z }  X.  B )  e.  Fin )
4544ad3antlr 484 . . . . . . . 8  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  Fin )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  ( { z }  X.  B )  e.  Fin )
46 simprr 521 . . . . . . . . . 10  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  Fin )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  z  e.  ( A  \  y ) )
4746eldifbd 3078 . . . . . . . . 9  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  Fin )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  -.  z  e.  y )
48 inxp 4668 . . . . . . . . . 10  |-  ( ( y  X.  B )  i^i  ( { z }  X.  B ) )  =  ( ( y  i^i  { z } )  X.  ( B  i^i  B ) )
49 disjsn 3580 . . . . . . . . . . . . 13  |-  ( ( y  i^i  { z } )  =  (/)  <->  -.  z  e.  y )
5049biimpri 132 . . . . . . . . . . . 12  |-  ( -.  z  e.  y  -> 
( y  i^i  {
z } )  =  (/) )
5150xpeq1d 4557 . . . . . . . . . . 11  |-  ( -.  z  e.  y  -> 
( ( y  i^i 
{ z } )  X.  ( B  i^i  B ) )  =  (
(/)  X.  ( B  i^i  B ) ) )
52 0xp 4614 . . . . . . . . . . 11  |-  ( (/)  X.  ( B  i^i  B
) )  =  (/)
5351, 52syl6eq 2186 . . . . . . . . . 10  |-  ( -.  z  e.  y  -> 
( ( y  i^i 
{ z } )  X.  ( B  i^i  B ) )  =  (/) )
5448, 53syl5eq 2182 . . . . . . . . 9  |-  ( -.  z  e.  y  -> 
( ( y  X.  B )  i^i  ( { z }  X.  B ) )  =  (/) )
5547, 54syl 14 . . . . . . . 8  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  Fin )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  ( ( y  X.  B )  i^i  ( { z }  X.  B ) )  =  (/) )
56 hashun 10544 . . . . . . . 8  |-  ( ( ( y  X.  B
)  e.  Fin  /\  ( { z }  X.  B )  e.  Fin  /\  ( ( y  X.  B )  i^i  ( { z }  X.  B ) )  =  (/) )  ->  ( `  (
( y  X.  B
)  u.  ( { z }  X.  B
) ) )  =  ( ( `  (
y  X.  B ) )  +  ( `  ( { z }  X.  B ) ) ) )
5739, 45, 55, 56syl3anc 1216 . . . . . . 7  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  Fin )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  ( `  ( (
y  X.  B )  u.  ( { z }  X.  B ) ) )  =  ( ( `  ( y  X.  B ) )  +  ( `  ( {
z }  X.  B
) ) ) )
5840snex 4104 . . . . . . . . . . . 12  |-  { z }  e.  _V
5958a1i 9 . . . . . . . . . . 11  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  Fin )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  { z }  e.  _V )
60 xpcomeng 6715 . . . . . . . . . . 11  |-  ( ( { z }  e.  _V  /\  B  e.  Fin )  ->  ( { z }  X.  B ) 
~~  ( B  X.  { z } ) )
6159, 37, 60syl2anc 408 . . . . . . . . . 10  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  Fin )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  ( { z }  X.  B ) 
~~  ( B  X.  { z } ) )
6240a1i 9 . . . . . . . . . . 11  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  Fin )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  z  e.  _V )
63 xpsneng 6709 . . . . . . . . . . 11  |-  ( ( B  e.  Fin  /\  z  e.  _V )  ->  ( B  X.  {
z } )  ~~  B )
6437, 62, 63syl2anc 408 . . . . . . . . . 10  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  Fin )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  ( B  X.  { z } ) 
~~  B )
65 entr 6671 . . . . . . . . . 10  |-  ( ( ( { z }  X.  B )  ~~  ( B  X.  { z } )  /\  ( B  X.  { z } )  ~~  B )  ->  ( { z }  X.  B ) 
~~  B )
6661, 64, 65syl2anc 408 . . . . . . . . 9  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  Fin )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  ( { z }  X.  B ) 
~~  B )
67 hashen 10523 . . . . . . . . . 10  |-  ( ( ( { z }  X.  B )  e. 
Fin  /\  B  e.  Fin )  ->  ( ( `  ( { z }  X.  B ) )  =  ( `  B
)  <->  ( { z }  X.  B ) 
~~  B ) )
6845, 37, 67syl2anc 408 . . . . . . . . 9  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  Fin )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  ( ( `  ( { z }  X.  B ) )  =  ( `  B )  <->  ( { z }  X.  B )  ~~  B
) )
6966, 68mpbird 166 . . . . . . . 8  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  Fin )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  ( `  ( {
z }  X.  B
) )  =  ( `  B ) )
7069oveq2d 5783 . . . . . . 7  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  Fin )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  ( ( `  (
y  X.  B ) )  +  ( `  ( { z }  X.  B ) ) )  =  ( ( `  (
y  X.  B ) )  +  ( `  B
) ) )
7157, 70eqtrd 2170 . . . . . 6  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  Fin )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  ( `  ( (
y  X.  B )  u.  ( { z }  X.  B ) ) )  =  ( ( `  ( y  X.  B ) )  +  ( `  B )
) )
7235, 71syl5eq 2182 . . . . 5  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  Fin )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  ( `  ( (
y  u.  { z } )  X.  B
) )  =  ( ( `  ( y  X.  B ) )  +  ( `  B )
) )
7372adantr 274 . . . 4  |-  ( ( ( ( ( A  e.  Fin  /\  B  e.  Fin )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  ( `  (
y  X.  B ) )  =  ( ( `  y )  x.  ( `  B ) ) )  ->  ( `  ( (
y  u.  { z } )  X.  B
) )  =  ( ( `  ( y  X.  B ) )  +  ( `  B )
) )
74 hashunsng 10546 . . . . . . . . 9  |-  ( z  e.  _V  ->  (
( y  e.  Fin  /\ 
-.  z  e.  y )  ->  ( `  (
y  u.  { z } ) )  =  ( ( `  y
)  +  1 ) ) )
7540, 74ax-mp 5 . . . . . . . 8  |-  ( ( y  e.  Fin  /\  -.  z  e.  y
)  ->  ( `  (
y  u.  { z } ) )  =  ( ( `  y
)  +  1 ) )
7675oveq1d 5782 . . . . . . 7  |-  ( ( y  e.  Fin  /\  -.  z  e.  y
)  ->  ( ( `  ( y  u.  {
z } ) )  x.  ( `  B
) )  =  ( ( ( `  y
)  +  1 )  x.  ( `  B
) ) )
7736, 47, 76syl2anc 408 . . . . . 6  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  Fin )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  ( ( `  (
y  u.  { z } ) )  x.  ( `  B )
)  =  ( ( ( `  y )  +  1 )  x.  ( `  B )
) )
78 hashcl 10520 . . . . . . . . 9  |-  ( y  e.  Fin  ->  ( `  y )  e.  NN0 )
7978nn0cnd 9025 . . . . . . . 8  |-  ( y  e.  Fin  ->  ( `  y )  e.  CC )
8036, 79syl 14 . . . . . . 7  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  Fin )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  ( `  y )  e.  CC )
8137, 24syl 14 . . . . . . 7  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  Fin )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  ( `  B )  e.  CC )
8280, 81adddirp1d 7785 . . . . . 6  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  Fin )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  ( ( ( `  y )  +  1 )  x.  ( `  B
) )  =  ( ( ( `  y
)  x.  ( `  B
) )  +  ( `  B ) ) )
8377, 82eqtrd 2170 . . . . 5  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  Fin )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  ( ( `  (
y  u.  { z } ) )  x.  ( `  B )
)  =  ( ( ( `  y )  x.  ( `  B )
)  +  ( `  B
) ) )
8483adantr 274 . . . 4  |-  ( ( ( ( ( A  e.  Fin  /\  B  e.  Fin )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  ( `  (
y  X.  B ) )  =  ( ( `  y )  x.  ( `  B ) ) )  ->  ( ( `  (
y  u.  { z } ) )  x.  ( `  B )
)  =  ( ( ( `  y )  x.  ( `  B )
)  +  ( `  B
) ) )
8533, 73, 843eqtr4d 2180 . . 3  |-  ( ( ( ( ( A  e.  Fin  /\  B  e.  Fin )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  ( `  (
y  X.  B ) )  =  ( ( `  y )  x.  ( `  B ) ) )  ->  ( `  ( (
y  u.  { z } )  X.  B
) )  =  ( ( `  ( y  u.  { z } ) )  x.  ( `  B
) ) )
8685ex 114 . 2  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  Fin )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  ( ( `  (
y  X.  B ) )  =  ( ( `  y )  x.  ( `  B ) )  -> 
( `  ( ( y  u.  { z } )  X.  B ) )  =  ( ( `  ( y  u.  {
z } ) )  x.  ( `  B
) ) ) )
87 simpl 108 . 2  |-  ( ( A  e.  Fin  /\  B  e.  Fin )  ->  A  e.  Fin )
885, 10, 15, 20, 31, 86, 87findcard2sd 6779 1  |-  ( ( A  e.  Fin  /\  B  e.  Fin )  ->  ( `  ( A  X.  B ) )  =  ( ( `  A
)  x.  ( `  B
) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1331    e. wcel 1480   _Vcvv 2681    \ cdif 3063    u. cun 3064    i^i cin 3065    C_ wss 3066   (/)c0 3358   {csn 3522   class class class wbr 3924    X. cxp 4532   ` cfv 5118  (class class class)co 5767    ~~ cen 6625   Fincfn 6627   CCcc 7611   0cc0 7613   1c1 7614    + caddc 7616    x. cmul 7618  ♯chash 10514
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-coll 4038  ax-sep 4041  ax-nul 4049  ax-pow 4093  ax-pr 4126  ax-un 4350  ax-setind 4447  ax-iinf 4497  ax-cnex 7704  ax-resscn 7705  ax-1cn 7706  ax-1re 7707  ax-icn 7708  ax-addcl 7709  ax-addrcl 7710  ax-mulcl 7711  ax-addcom 7713  ax-mulcom 7714  ax-addass 7715  ax-mulass 7716  ax-distr 7717  ax-i2m1 7718  ax-0lt1 7719  ax-1rid 7720  ax-0id 7721  ax-rnegex 7722  ax-cnre 7724  ax-pre-ltirr 7725  ax-pre-ltwlin 7726  ax-pre-lttrn 7727  ax-pre-apti 7728  ax-pre-ltadd 7729
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ne 2307  df-nel 2402  df-ral 2419  df-rex 2420  df-reu 2421  df-rab 2423  df-v 2683  df-sbc 2905  df-csb 2999  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-nul 3359  df-if 3470  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-int 3767  df-iun 3810  df-br 3925  df-opab 3985  df-mpt 3986  df-tr 4022  df-id 4210  df-iord 4283  df-on 4285  df-ilim 4286  df-suc 4288  df-iom 4500  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-rn 4545  df-res 4546  df-ima 4547  df-iota 5083  df-fun 5120  df-fn 5121  df-f 5122  df-f1 5123  df-fo 5124  df-f1o 5125  df-fv 5126  df-riota 5723  df-ov 5770  df-oprab 5771  df-mpo 5772  df-1st 6031  df-2nd 6032  df-recs 6195  df-irdg 6260  df-frec 6281  df-1o 6306  df-oadd 6310  df-er 6422  df-en 6628  df-dom 6629  df-fin 6630  df-pnf 7795  df-mnf 7796  df-xr 7797  df-ltxr 7798  df-le 7799  df-sub 7928  df-neg 7929  df-inn 8714  df-n0 8971  df-z 9048  df-uz 9320  df-fz 9784  df-ihash 10515
This theorem is referenced by:  crth  11889  phimullem  11890
  Copyright terms: Public domain W3C validator