| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > hashxp | Unicode version | ||
| Description: The size of the Cartesian product of two finite sets is the product of their sizes. (Contributed by Paul Chapman, 30-Nov-2012.) |
| Ref | Expression |
|---|---|
| hashxp |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpeq1 4707 |
. . . 4
| |
| 2 | 1 | fveq2d 5603 |
. . 3
|
| 3 | fveq2 5599 |
. . . 4
| |
| 4 | 3 | oveq1d 5982 |
. . 3
|
| 5 | 2, 4 | eqeq12d 2222 |
. 2
|
| 6 | xpeq1 4707 |
. . . 4
| |
| 7 | 6 | fveq2d 5603 |
. . 3
|
| 8 | fveq2 5599 |
. . . 4
| |
| 9 | 8 | oveq1d 5982 |
. . 3
|
| 10 | 7, 9 | eqeq12d 2222 |
. 2
|
| 11 | xpeq1 4707 |
. . . 4
| |
| 12 | 11 | fveq2d 5603 |
. . 3
|
| 13 | fveq2 5599 |
. . . 4
| |
| 14 | 13 | oveq1d 5982 |
. . 3
|
| 15 | 12, 14 | eqeq12d 2222 |
. 2
|
| 16 | xpeq1 4707 |
. . . 4
| |
| 17 | 16 | fveq2d 5603 |
. . 3
|
| 18 | fveq2 5599 |
. . . 4
| |
| 19 | 18 | oveq1d 5982 |
. . 3
|
| 20 | 17, 19 | eqeq12d 2222 |
. 2
|
| 21 | 0xp 4773 |
. . . . 5
| |
| 22 | 21 | fveq2i 5602 |
. . . 4
|
| 23 | hash0 10978 |
. . . 4
| |
| 24 | 22, 23 | eqtri 2228 |
. . 3
|
| 25 | 23 | oveq1i 5977 |
. . . 4
|
| 26 | hashcl 10963 |
. . . . . . 7
| |
| 27 | 26 | nn0cnd 9385 |
. . . . . 6
|
| 28 | 27 | mul02d 8499 |
. . . . 5
|
| 29 | 28 | adantl 277 |
. . . 4
|
| 30 | 25, 29 | eqtrid 2252 |
. . 3
|
| 31 | 24, 30 | eqtr4id 2259 |
. 2
|
| 32 | oveq1 5974 |
. . . . 5
| |
| 33 | 32 | adantl 277 |
. . . 4
|
| 34 | xpundir 4750 |
. . . . . . 7
| |
| 35 | 34 | fveq2i 5602 |
. . . . . 6
|
| 36 | simplr 528 |
. . . . . . . . 9
| |
| 37 | simpllr 534 |
. . . . . . . . 9
| |
| 38 | xpfi 7055 |
. . . . . . . . 9
| |
| 39 | 36, 37, 38 | syl2anc 411 |
. . . . . . . 8
|
| 40 | vex 2779 |
. . . . . . . . . . 11
| |
| 41 | snfig 6930 |
. . . . . . . . . . 11
| |
| 42 | 40, 41 | ax-mp 5 |
. . . . . . . . . 10
|
| 43 | xpfi 7055 |
. . . . . . . . . 10
| |
| 44 | 42, 43 | mpan 424 |
. . . . . . . . 9
|
| 45 | 44 | ad3antlr 493 |
. . . . . . . 8
|
| 46 | simprr 531 |
. . . . . . . . . 10
| |
| 47 | 46 | eldifbd 3186 |
. . . . . . . . 9
|
| 48 | inxp 4830 |
. . . . . . . . . 10
| |
| 49 | disjsn 3705 |
. . . . . . . . . . . . 13
| |
| 50 | 49 | biimpri 133 |
. . . . . . . . . . . 12
|
| 51 | 50 | xpeq1d 4716 |
. . . . . . . . . . 11
|
| 52 | 0xp 4773 |
. . . . . . . . . . 11
| |
| 53 | 51, 52 | eqtrdi 2256 |
. . . . . . . . . 10
|
| 54 | 48, 53 | eqtrid 2252 |
. . . . . . . . 9
|
| 55 | 47, 54 | syl 14 |
. . . . . . . 8
|
| 56 | hashun 10987 |
. . . . . . . 8
| |
| 57 | 39, 45, 55, 56 | syl3anc 1250 |
. . . . . . 7
|
| 58 | 40 | snex 4245 |
. . . . . . . . . . . 12
|
| 59 | 58 | a1i 9 |
. . . . . . . . . . 11
|
| 60 | xpcomeng 6948 |
. . . . . . . . . . 11
| |
| 61 | 59, 37, 60 | syl2anc 411 |
. . . . . . . . . 10
|
| 62 | 40 | a1i 9 |
. . . . . . . . . . 11
|
| 63 | xpsneng 6942 |
. . . . . . . . . . 11
| |
| 64 | 37, 62, 63 | syl2anc 411 |
. . . . . . . . . 10
|
| 65 | entr 6899 |
. . . . . . . . . 10
| |
| 66 | 61, 64, 65 | syl2anc 411 |
. . . . . . . . 9
|
| 67 | hashen 10966 |
. . . . . . . . . 10
| |
| 68 | 45, 37, 67 | syl2anc 411 |
. . . . . . . . 9
|
| 69 | 66, 68 | mpbird 167 |
. . . . . . . 8
|
| 70 | 69 | oveq2d 5983 |
. . . . . . 7
|
| 71 | 57, 70 | eqtrd 2240 |
. . . . . 6
|
| 72 | 35, 71 | eqtrid 2252 |
. . . . 5
|
| 73 | 72 | adantr 276 |
. . . 4
|
| 74 | hashunsng 10989 |
. . . . . . . . 9
| |
| 75 | 40, 74 | ax-mp 5 |
. . . . . . . 8
|
| 76 | 75 | oveq1d 5982 |
. . . . . . 7
|
| 77 | 36, 47, 76 | syl2anc 411 |
. . . . . 6
|
| 78 | hashcl 10963 |
. . . . . . . . 9
| |
| 79 | 78 | nn0cnd 9385 |
. . . . . . . 8
|
| 80 | 36, 79 | syl 14 |
. . . . . . 7
|
| 81 | 37, 27 | syl 14 |
. . . . . . 7
|
| 82 | 80, 81 | adddirp1d 8134 |
. . . . . 6
|
| 83 | 77, 82 | eqtrd 2240 |
. . . . 5
|
| 84 | 83 | adantr 276 |
. . . 4
|
| 85 | 33, 73, 84 | 3eqtr4d 2250 |
. . 3
|
| 86 | 85 | ex 115 |
. 2
|
| 87 | simpl 109 |
. 2
| |
| 88 | 5, 10, 15, 20, 31, 86, 87 | findcard2sd 7015 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-coll 4175 ax-sep 4178 ax-nul 4186 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-iinf 4654 ax-cnex 8051 ax-resscn 8052 ax-1cn 8053 ax-1re 8054 ax-icn 8055 ax-addcl 8056 ax-addrcl 8057 ax-mulcl 8058 ax-addcom 8060 ax-mulcom 8061 ax-addass 8062 ax-mulass 8063 ax-distr 8064 ax-i2m1 8065 ax-0lt1 8066 ax-1rid 8067 ax-0id 8068 ax-rnegex 8069 ax-cnre 8071 ax-pre-ltirr 8072 ax-pre-ltwlin 8073 ax-pre-lttrn 8074 ax-pre-apti 8075 ax-pre-ltadd 8076 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-nel 2474 df-ral 2491 df-rex 2492 df-reu 2493 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-if 3580 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-iun 3943 df-br 4060 df-opab 4122 df-mpt 4123 df-tr 4159 df-id 4358 df-iord 4431 df-on 4433 df-ilim 4434 df-suc 4436 df-iom 4657 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-fv 5298 df-riota 5922 df-ov 5970 df-oprab 5971 df-mpo 5972 df-1st 6249 df-2nd 6250 df-recs 6414 df-irdg 6479 df-frec 6500 df-1o 6525 df-oadd 6529 df-er 6643 df-en 6851 df-dom 6852 df-fin 6853 df-pnf 8144 df-mnf 8145 df-xr 8146 df-ltxr 8147 df-le 8148 df-sub 8280 df-neg 8281 df-inn 9072 df-n0 9331 df-z 9408 df-uz 9684 df-fz 10166 df-ihash 10958 |
| This theorem is referenced by: crth 12661 phimullem 12662 lgsquadlem3 15671 |
| Copyright terms: Public domain | W3C validator |