ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  hashxp Unicode version

Theorem hashxp 10222
Description: The size of the Cartesian product of two finite sets is the product of their sizes. (Contributed by Paul Chapman, 30-Nov-2012.)
Assertion
Ref Expression
hashxp  |-  ( ( A  e.  Fin  /\  B  e.  Fin )  ->  ( `  ( A  X.  B ) )  =  ( ( `  A
)  x.  ( `  B
) ) )

Proof of Theorem hashxp
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xpeq1 4450 . . . 4  |-  ( x  =  (/)  ->  ( x  X.  B )  =  ( (/)  X.  B
) )
21fveq2d 5303 . . 3  |-  ( x  =  (/)  ->  ( `  (
x  X.  B ) )  =  ( `  ( (/) 
X.  B ) ) )
3 fveq2 5299 . . . 4  |-  ( x  =  (/)  ->  ( `  x
)  =  ( `  (/) ) )
43oveq1d 5659 . . 3  |-  ( x  =  (/)  ->  ( ( `  x )  x.  ( `  B ) )  =  ( ( `  (/) )  x.  ( `  B )
) )
52, 4eqeq12d 2102 . 2  |-  ( x  =  (/)  ->  ( ( `  ( x  X.  B
) )  =  ( ( `  x )  x.  ( `  B )
)  <->  ( `  ( (/)  X.  B
) )  =  ( ( `  (/) )  x.  ( `  B )
) ) )
6 xpeq1 4450 . . . 4  |-  ( x  =  y  ->  (
x  X.  B )  =  ( y  X.  B ) )
76fveq2d 5303 . . 3  |-  ( x  =  y  ->  ( `  ( x  X.  B
) )  =  ( `  ( y  X.  B
) ) )
8 fveq2 5299 . . . 4  |-  ( x  =  y  ->  ( `  x )  =  ( `  y ) )
98oveq1d 5659 . . 3  |-  ( x  =  y  ->  (
( `  x )  x.  ( `  B )
)  =  ( ( `  y )  x.  ( `  B ) ) )
107, 9eqeq12d 2102 . 2  |-  ( x  =  y  ->  (
( `  ( x  X.  B ) )  =  ( ( `  x
)  x.  ( `  B
) )  <->  ( `  (
y  X.  B ) )  =  ( ( `  y )  x.  ( `  B ) ) ) )
11 xpeq1 4450 . . . 4  |-  ( x  =  ( y  u. 
{ z } )  ->  ( x  X.  B )  =  ( ( y  u.  {
z } )  X.  B ) )
1211fveq2d 5303 . . 3  |-  ( x  =  ( y  u. 
{ z } )  ->  ( `  ( x  X.  B ) )  =  ( `  ( (
y  u.  { z } )  X.  B
) ) )
13 fveq2 5299 . . . 4  |-  ( x  =  ( y  u. 
{ z } )  ->  ( `  x )  =  ( `  ( y  u.  { z } ) ) )
1413oveq1d 5659 . . 3  |-  ( x  =  ( y  u. 
{ z } )  ->  ( ( `  x
)  x.  ( `  B
) )  =  ( ( `  ( y  u.  { z } ) )  x.  ( `  B
) ) )
1512, 14eqeq12d 2102 . 2  |-  ( x  =  ( y  u. 
{ z } )  ->  ( ( `  (
x  X.  B ) )  =  ( ( `  x )  x.  ( `  B ) )  <->  ( `  (
( y  u.  {
z } )  X.  B ) )  =  ( ( `  (
y  u.  { z } ) )  x.  ( `  B )
) ) )
16 xpeq1 4450 . . . 4  |-  ( x  =  A  ->  (
x  X.  B )  =  ( A  X.  B ) )
1716fveq2d 5303 . . 3  |-  ( x  =  A  ->  ( `  ( x  X.  B
) )  =  ( `  ( A  X.  B
) ) )
18 fveq2 5299 . . . 4  |-  ( x  =  A  ->  ( `  x )  =  ( `  A ) )
1918oveq1d 5659 . . 3  |-  ( x  =  A  ->  (
( `  x )  x.  ( `  B )
)  =  ( ( `  A )  x.  ( `  B ) ) )
2017, 19eqeq12d 2102 . 2  |-  ( x  =  A  ->  (
( `  ( x  X.  B ) )  =  ( ( `  x
)  x.  ( `  B
) )  <->  ( `  ( A  X.  B ) )  =  ( ( `  A
)  x.  ( `  B
) ) ) )
21 hash0 10193 . . . . 5  |-  ( `  (/) )  =  0
2221oveq1i 5654 . . . 4  |-  ( ( `  (/) )  x.  ( `  B ) )  =  ( 0  x.  ( `  B ) )
23 hashcl 10177 . . . . . . 7  |-  ( B  e.  Fin  ->  ( `  B )  e.  NN0 )
2423nn0cnd 8718 . . . . . 6  |-  ( B  e.  Fin  ->  ( `  B )  e.  CC )
2524mul02d 7860 . . . . 5  |-  ( B  e.  Fin  ->  (
0  x.  ( `  B
) )  =  0 )
2625adantl 271 . . . 4  |-  ( ( A  e.  Fin  /\  B  e.  Fin )  ->  ( 0  x.  ( `  B ) )  =  0 )
2722, 26syl5eq 2132 . . 3  |-  ( ( A  e.  Fin  /\  B  e.  Fin )  ->  ( ( `  (/) )  x.  ( `  B )
)  =  0 )
28 0xp 4514 . . . . 5  |-  ( (/)  X.  B )  =  (/)
2928fveq2i 5302 . . . 4  |-  ( `  ( (/) 
X.  B ) )  =  ( `  (/) )
3029, 21eqtri 2108 . . 3  |-  ( `  ( (/) 
X.  B ) )  =  0
3127, 30syl6reqr 2139 . 2  |-  ( ( A  e.  Fin  /\  B  e.  Fin )  ->  ( `  ( (/)  X.  B
) )  =  ( ( `  (/) )  x.  ( `  B )
) )
32 oveq1 5651 . . . . 5  |-  ( ( `  ( y  X.  B
) )  =  ( ( `  y )  x.  ( `  B )
)  ->  ( ( `  ( y  X.  B
) )  +  ( `  B ) )  =  ( ( ( `  y
)  x.  ( `  B
) )  +  ( `  B ) ) )
3332adantl 271 . . . 4  |-  ( ( ( ( ( A  e.  Fin  /\  B  e.  Fin )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  ( `  (
y  X.  B ) )  =  ( ( `  y )  x.  ( `  B ) ) )  ->  ( ( `  (
y  X.  B ) )  +  ( `  B
) )  =  ( ( ( `  y
)  x.  ( `  B
) )  +  ( `  B ) ) )
34 xpundir 4491 . . . . . . 7  |-  ( ( y  u.  { z } )  X.  B
)  =  ( ( y  X.  B )  u.  ( { z }  X.  B ) )
3534fveq2i 5302 . . . . . 6  |-  ( `  (
( y  u.  {
z } )  X.  B ) )  =  ( `  ( (
y  X.  B )  u.  ( { z }  X.  B ) ) )
36 simplr 497 . . . . . . . . 9  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  Fin )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  y  e.  Fin )
37 simpllr 501 . . . . . . . . 9  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  Fin )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  B  e.  Fin )
38 xpfi 6630 . . . . . . . . 9  |-  ( ( y  e.  Fin  /\  B  e.  Fin )  ->  ( y  X.  B
)  e.  Fin )
3936, 37, 38syl2anc 403 . . . . . . . 8  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  Fin )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  ( y  X.  B )  e.  Fin )
40 vex 2622 . . . . . . . . . . 11  |-  z  e. 
_V
41 snfig 6521 . . . . . . . . . . 11  |-  ( z  e.  _V  ->  { z }  e.  Fin )
4240, 41ax-mp 7 . . . . . . . . . 10  |-  { z }  e.  Fin
43 xpfi 6630 . . . . . . . . . 10  |-  ( ( { z }  e.  Fin  /\  B  e.  Fin )  ->  ( { z }  X.  B )  e.  Fin )
4442, 43mpan 415 . . . . . . . . 9  |-  ( B  e.  Fin  ->  ( { z }  X.  B )  e.  Fin )
4544ad3antlr 477 . . . . . . . 8  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  Fin )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  ( { z }  X.  B )  e.  Fin )
46 simprr 499 . . . . . . . . . 10  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  Fin )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  z  e.  ( A  \  y ) )
4746eldifbd 3011 . . . . . . . . 9  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  Fin )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  -.  z  e.  y )
48 inxp 4566 . . . . . . . . . 10  |-  ( ( y  X.  B )  i^i  ( { z }  X.  B ) )  =  ( ( y  i^i  { z } )  X.  ( B  i^i  B ) )
49 disjsn 3502 . . . . . . . . . . . . 13  |-  ( ( y  i^i  { z } )  =  (/)  <->  -.  z  e.  y )
5049biimpri 131 . . . . . . . . . . . 12  |-  ( -.  z  e.  y  -> 
( y  i^i  {
z } )  =  (/) )
5150xpeq1d 4459 . . . . . . . . . . 11  |-  ( -.  z  e.  y  -> 
( ( y  i^i 
{ z } )  X.  ( B  i^i  B ) )  =  (
(/)  X.  ( B  i^i  B ) ) )
52 0xp 4514 . . . . . . . . . . 11  |-  ( (/)  X.  ( B  i^i  B
) )  =  (/)
5351, 52syl6eq 2136 . . . . . . . . . 10  |-  ( -.  z  e.  y  -> 
( ( y  i^i 
{ z } )  X.  ( B  i^i  B ) )  =  (/) )
5448, 53syl5eq 2132 . . . . . . . . 9  |-  ( -.  z  e.  y  -> 
( ( y  X.  B )  i^i  ( { z }  X.  B ) )  =  (/) )
5547, 54syl 14 . . . . . . . 8  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  Fin )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  ( ( y  X.  B )  i^i  ( { z }  X.  B ) )  =  (/) )
56 hashun 10201 . . . . . . . 8  |-  ( ( ( y  X.  B
)  e.  Fin  /\  ( { z }  X.  B )  e.  Fin  /\  ( ( y  X.  B )  i^i  ( { z }  X.  B ) )  =  (/) )  ->  ( `  (
( y  X.  B
)  u.  ( { z }  X.  B
) ) )  =  ( ( `  (
y  X.  B ) )  +  ( `  ( { z }  X.  B ) ) ) )
5739, 45, 55, 56syl3anc 1174 . . . . . . 7  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  Fin )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  ( `  ( (
y  X.  B )  u.  ( { z }  X.  B ) ) )  =  ( ( `  ( y  X.  B ) )  +  ( `  ( {
z }  X.  B
) ) ) )
5840snex 4018 . . . . . . . . . . . 12  |-  { z }  e.  _V
5958a1i 9 . . . . . . . . . . 11  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  Fin )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  { z }  e.  _V )
60 xpcomeng 6534 . . . . . . . . . . 11  |-  ( ( { z }  e.  _V  /\  B  e.  Fin )  ->  ( { z }  X.  B ) 
~~  ( B  X.  { z } ) )
6159, 37, 60syl2anc 403 . . . . . . . . . 10  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  Fin )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  ( { z }  X.  B ) 
~~  ( B  X.  { z } ) )
6240a1i 9 . . . . . . . . . . 11  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  Fin )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  z  e.  _V )
63 xpsneng 6528 . . . . . . . . . . 11  |-  ( ( B  e.  Fin  /\  z  e.  _V )  ->  ( B  X.  {
z } )  ~~  B )
6437, 62, 63syl2anc 403 . . . . . . . . . 10  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  Fin )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  ( B  X.  { z } ) 
~~  B )
65 entr 6491 . . . . . . . . . 10  |-  ( ( ( { z }  X.  B )  ~~  ( B  X.  { z } )  /\  ( B  X.  { z } )  ~~  B )  ->  ( { z }  X.  B ) 
~~  B )
6661, 64, 65syl2anc 403 . . . . . . . . 9  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  Fin )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  ( { z }  X.  B ) 
~~  B )
67 hashen 10180 . . . . . . . . . 10  |-  ( ( ( { z }  X.  B )  e. 
Fin  /\  B  e.  Fin )  ->  ( ( `  ( { z }  X.  B ) )  =  ( `  B
)  <->  ( { z }  X.  B ) 
~~  B ) )
6845, 37, 67syl2anc 403 . . . . . . . . 9  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  Fin )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  ( ( `  ( { z }  X.  B ) )  =  ( `  B )  <->  ( { z }  X.  B )  ~~  B
) )
6966, 68mpbird 165 . . . . . . . 8  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  Fin )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  ( `  ( {
z }  X.  B
) )  =  ( `  B ) )
7069oveq2d 5660 . . . . . . 7  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  Fin )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  ( ( `  (
y  X.  B ) )  +  ( `  ( { z }  X.  B ) ) )  =  ( ( `  (
y  X.  B ) )  +  ( `  B
) ) )
7157, 70eqtrd 2120 . . . . . 6  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  Fin )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  ( `  ( (
y  X.  B )  u.  ( { z }  X.  B ) ) )  =  ( ( `  ( y  X.  B ) )  +  ( `  B )
) )
7235, 71syl5eq 2132 . . . . 5  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  Fin )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  ( `  ( (
y  u.  { z } )  X.  B
) )  =  ( ( `  ( y  X.  B ) )  +  ( `  B )
) )
7372adantr 270 . . . 4  |-  ( ( ( ( ( A  e.  Fin  /\  B  e.  Fin )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  ( `  (
y  X.  B ) )  =  ( ( `  y )  x.  ( `  B ) ) )  ->  ( `  ( (
y  u.  { z } )  X.  B
) )  =  ( ( `  ( y  X.  B ) )  +  ( `  B )
) )
74 hashunsng 10203 . . . . . . . . 9  |-  ( z  e.  _V  ->  (
( y  e.  Fin  /\ 
-.  z  e.  y )  ->  ( `  (
y  u.  { z } ) )  =  ( ( `  y
)  +  1 ) ) )
7540, 74ax-mp 7 . . . . . . . 8  |-  ( ( y  e.  Fin  /\  -.  z  e.  y
)  ->  ( `  (
y  u.  { z } ) )  =  ( ( `  y
)  +  1 ) )
7675oveq1d 5659 . . . . . . 7  |-  ( ( y  e.  Fin  /\  -.  z  e.  y
)  ->  ( ( `  ( y  u.  {
z } ) )  x.  ( `  B
) )  =  ( ( ( `  y
)  +  1 )  x.  ( `  B
) ) )
7736, 47, 76syl2anc 403 . . . . . 6  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  Fin )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  ( ( `  (
y  u.  { z } ) )  x.  ( `  B )
)  =  ( ( ( `  y )  +  1 )  x.  ( `  B )
) )
78 hashcl 10177 . . . . . . . . 9  |-  ( y  e.  Fin  ->  ( `  y )  e.  NN0 )
7978nn0cnd 8718 . . . . . . . 8  |-  ( y  e.  Fin  ->  ( `  y )  e.  CC )
8036, 79syl 14 . . . . . . 7  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  Fin )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  ( `  y )  e.  CC )
8137, 24syl 14 . . . . . . 7  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  Fin )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  ( `  B )  e.  CC )
8280, 81adddirp1d 7504 . . . . . 6  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  Fin )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  ( ( ( `  y )  +  1 )  x.  ( `  B
) )  =  ( ( ( `  y
)  x.  ( `  B
) )  +  ( `  B ) ) )
8377, 82eqtrd 2120 . . . . 5  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  Fin )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  ( ( `  (
y  u.  { z } ) )  x.  ( `  B )
)  =  ( ( ( `  y )  x.  ( `  B )
)  +  ( `  B
) ) )
8483adantr 270 . . . 4  |-  ( ( ( ( ( A  e.  Fin  /\  B  e.  Fin )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  ( `  (
y  X.  B ) )  =  ( ( `  y )  x.  ( `  B ) ) )  ->  ( ( `  (
y  u.  { z } ) )  x.  ( `  B )
)  =  ( ( ( `  y )  x.  ( `  B )
)  +  ( `  B
) ) )
8533, 73, 843eqtr4d 2130 . . 3  |-  ( ( ( ( ( A  e.  Fin  /\  B  e.  Fin )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  ( `  (
y  X.  B ) )  =  ( ( `  y )  x.  ( `  B ) ) )  ->  ( `  ( (
y  u.  { z } )  X.  B
) )  =  ( ( `  ( y  u.  { z } ) )  x.  ( `  B
) ) )
8685ex 113 . 2  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  Fin )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  ( ( `  (
y  X.  B ) )  =  ( ( `  y )  x.  ( `  B ) )  -> 
( `  ( ( y  u.  { z } )  X.  B ) )  =  ( ( `  ( y  u.  {
z } ) )  x.  ( `  B
) ) ) )
87 simpl 107 . 2  |-  ( ( A  e.  Fin  /\  B  e.  Fin )  ->  A  e.  Fin )
885, 10, 15, 20, 31, 86, 87findcard2sd 6598 1  |-  ( ( A  e.  Fin  /\  B  e.  Fin )  ->  ( `  ( A  X.  B ) )  =  ( ( `  A
)  x.  ( `  B
) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 102    <-> wb 103    = wceq 1289    e. wcel 1438   _Vcvv 2619    \ cdif 2996    u. cun 2997    i^i cin 2998    C_ wss 2999   (/)c0 3286   {csn 3444   class class class wbr 3843    X. cxp 4434   ` cfv 5010  (class class class)co 5644    ~~ cen 6445   Fincfn 6447   CCcc 7338   0cc0 7340   1c1 7341    + caddc 7343    x. cmul 7345  ♯chash 10171
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 579  ax-in2 580  ax-io 665  ax-5 1381  ax-7 1382  ax-gen 1383  ax-ie1 1427  ax-ie2 1428  ax-8 1440  ax-10 1441  ax-11 1442  ax-i12 1443  ax-bndl 1444  ax-4 1445  ax-13 1449  ax-14 1450  ax-17 1464  ax-i9 1468  ax-ial 1472  ax-i5r 1473  ax-ext 2070  ax-coll 3952  ax-sep 3955  ax-nul 3963  ax-pow 4007  ax-pr 4034  ax-un 4258  ax-setind 4351  ax-iinf 4401  ax-cnex 7426  ax-resscn 7427  ax-1cn 7428  ax-1re 7429  ax-icn 7430  ax-addcl 7431  ax-addrcl 7432  ax-mulcl 7433  ax-addcom 7435  ax-mulcom 7436  ax-addass 7437  ax-mulass 7438  ax-distr 7439  ax-i2m1 7440  ax-0lt1 7441  ax-1rid 7442  ax-0id 7443  ax-rnegex 7444  ax-cnre 7446  ax-pre-ltirr 7447  ax-pre-ltwlin 7448  ax-pre-lttrn 7449  ax-pre-apti 7450  ax-pre-ltadd 7451
This theorem depends on definitions:  df-bi 115  df-dc 781  df-3or 925  df-3an 926  df-tru 1292  df-fal 1295  df-nf 1395  df-sb 1693  df-eu 1951  df-mo 1952  df-clab 2075  df-cleq 2081  df-clel 2084  df-nfc 2217  df-ne 2256  df-nel 2351  df-ral 2364  df-rex 2365  df-reu 2366  df-rab 2368  df-v 2621  df-sbc 2841  df-csb 2934  df-dif 3001  df-un 3003  df-in 3005  df-ss 3012  df-nul 3287  df-if 3392  df-pw 3429  df-sn 3450  df-pr 3451  df-op 3453  df-uni 3652  df-int 3687  df-iun 3730  df-br 3844  df-opab 3898  df-mpt 3899  df-tr 3935  df-id 4118  df-iord 4191  df-on 4193  df-ilim 4194  df-suc 4196  df-iom 4404  df-xp 4442  df-rel 4443  df-cnv 4444  df-co 4445  df-dm 4446  df-rn 4447  df-res 4448  df-ima 4449  df-iota 4975  df-fun 5012  df-fn 5013  df-f 5014  df-f1 5015  df-fo 5016  df-f1o 5017  df-fv 5018  df-riota 5600  df-ov 5647  df-oprab 5648  df-mpt2 5649  df-1st 5903  df-2nd 5904  df-recs 6062  df-irdg 6127  df-frec 6148  df-1o 6173  df-oadd 6177  df-er 6282  df-en 6448  df-dom 6449  df-fin 6450  df-pnf 7514  df-mnf 7515  df-xr 7516  df-ltxr 7517  df-le 7518  df-sub 7645  df-neg 7646  df-inn 8413  df-n0 8664  df-z 8741  df-uz 9010  df-fz 9415  df-ihash 10172
This theorem is referenced by:  crth  11465  phimullem  11466
  Copyright terms: Public domain W3C validator