ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  hashxp Unicode version

Theorem hashxp 10693
Description: The size of the Cartesian product of two finite sets is the product of their sizes. (Contributed by Paul Chapman, 30-Nov-2012.)
Assertion
Ref Expression
hashxp  |-  ( ( A  e.  Fin  /\  B  e.  Fin )  ->  ( `  ( A  X.  B ) )  =  ( ( `  A
)  x.  ( `  B
) ) )

Proof of Theorem hashxp
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xpeq1 4599 . . . 4  |-  ( x  =  (/)  ->  ( x  X.  B )  =  ( (/)  X.  B
) )
21fveq2d 5471 . . 3  |-  ( x  =  (/)  ->  ( `  (
x  X.  B ) )  =  ( `  ( (/) 
X.  B ) ) )
3 fveq2 5467 . . . 4  |-  ( x  =  (/)  ->  ( `  x
)  =  ( `  (/) ) )
43oveq1d 5836 . . 3  |-  ( x  =  (/)  ->  ( ( `  x )  x.  ( `  B ) )  =  ( ( `  (/) )  x.  ( `  B )
) )
52, 4eqeq12d 2172 . 2  |-  ( x  =  (/)  ->  ( ( `  ( x  X.  B
) )  =  ( ( `  x )  x.  ( `  B )
)  <->  ( `  ( (/)  X.  B
) )  =  ( ( `  (/) )  x.  ( `  B )
) ) )
6 xpeq1 4599 . . . 4  |-  ( x  =  y  ->  (
x  X.  B )  =  ( y  X.  B ) )
76fveq2d 5471 . . 3  |-  ( x  =  y  ->  ( `  ( x  X.  B
) )  =  ( `  ( y  X.  B
) ) )
8 fveq2 5467 . . . 4  |-  ( x  =  y  ->  ( `  x )  =  ( `  y ) )
98oveq1d 5836 . . 3  |-  ( x  =  y  ->  (
( `  x )  x.  ( `  B )
)  =  ( ( `  y )  x.  ( `  B ) ) )
107, 9eqeq12d 2172 . 2  |-  ( x  =  y  ->  (
( `  ( x  X.  B ) )  =  ( ( `  x
)  x.  ( `  B
) )  <->  ( `  (
y  X.  B ) )  =  ( ( `  y )  x.  ( `  B ) ) ) )
11 xpeq1 4599 . . . 4  |-  ( x  =  ( y  u. 
{ z } )  ->  ( x  X.  B )  =  ( ( y  u.  {
z } )  X.  B ) )
1211fveq2d 5471 . . 3  |-  ( x  =  ( y  u. 
{ z } )  ->  ( `  ( x  X.  B ) )  =  ( `  ( (
y  u.  { z } )  X.  B
) ) )
13 fveq2 5467 . . . 4  |-  ( x  =  ( y  u. 
{ z } )  ->  ( `  x )  =  ( `  ( y  u.  { z } ) ) )
1413oveq1d 5836 . . 3  |-  ( x  =  ( y  u. 
{ z } )  ->  ( ( `  x
)  x.  ( `  B
) )  =  ( ( `  ( y  u.  { z } ) )  x.  ( `  B
) ) )
1512, 14eqeq12d 2172 . 2  |-  ( x  =  ( y  u. 
{ z } )  ->  ( ( `  (
x  X.  B ) )  =  ( ( `  x )  x.  ( `  B ) )  <->  ( `  (
( y  u.  {
z } )  X.  B ) )  =  ( ( `  (
y  u.  { z } ) )  x.  ( `  B )
) ) )
16 xpeq1 4599 . . . 4  |-  ( x  =  A  ->  (
x  X.  B )  =  ( A  X.  B ) )
1716fveq2d 5471 . . 3  |-  ( x  =  A  ->  ( `  ( x  X.  B
) )  =  ( `  ( A  X.  B
) ) )
18 fveq2 5467 . . . 4  |-  ( x  =  A  ->  ( `  x )  =  ( `  A ) )
1918oveq1d 5836 . . 3  |-  ( x  =  A  ->  (
( `  x )  x.  ( `  B )
)  =  ( ( `  A )  x.  ( `  B ) ) )
2017, 19eqeq12d 2172 . 2  |-  ( x  =  A  ->  (
( `  ( x  X.  B ) )  =  ( ( `  x
)  x.  ( `  B
) )  <->  ( `  ( A  X.  B ) )  =  ( ( `  A
)  x.  ( `  B
) ) ) )
21 0xp 4665 . . . . 5  |-  ( (/)  X.  B )  =  (/)
2221fveq2i 5470 . . . 4  |-  ( `  ( (/) 
X.  B ) )  =  ( `  (/) )
23 hash0 10664 . . . 4  |-  ( `  (/) )  =  0
2422, 23eqtri 2178 . . 3  |-  ( `  ( (/) 
X.  B ) )  =  0
2523oveq1i 5831 . . . 4  |-  ( ( `  (/) )  x.  ( `  B ) )  =  ( 0  x.  ( `  B ) )
26 hashcl 10648 . . . . . . 7  |-  ( B  e.  Fin  ->  ( `  B )  e.  NN0 )
2726nn0cnd 9139 . . . . . 6  |-  ( B  e.  Fin  ->  ( `  B )  e.  CC )
2827mul02d 8261 . . . . 5  |-  ( B  e.  Fin  ->  (
0  x.  ( `  B
) )  =  0 )
2928adantl 275 . . . 4  |-  ( ( A  e.  Fin  /\  B  e.  Fin )  ->  ( 0  x.  ( `  B ) )  =  0 )
3025, 29syl5eq 2202 . . 3  |-  ( ( A  e.  Fin  /\  B  e.  Fin )  ->  ( ( `  (/) )  x.  ( `  B )
)  =  0 )
3124, 30eqtr4id 2209 . 2  |-  ( ( A  e.  Fin  /\  B  e.  Fin )  ->  ( `  ( (/)  X.  B
) )  =  ( ( `  (/) )  x.  ( `  B )
) )
32 oveq1 5828 . . . . 5  |-  ( ( `  ( y  X.  B
) )  =  ( ( `  y )  x.  ( `  B )
)  ->  ( ( `  ( y  X.  B
) )  +  ( `  B ) )  =  ( ( ( `  y
)  x.  ( `  B
) )  +  ( `  B ) ) )
3332adantl 275 . . . 4  |-  ( ( ( ( ( A  e.  Fin  /\  B  e.  Fin )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  ( `  (
y  X.  B ) )  =  ( ( `  y )  x.  ( `  B ) ) )  ->  ( ( `  (
y  X.  B ) )  +  ( `  B
) )  =  ( ( ( `  y
)  x.  ( `  B
) )  +  ( `  B ) ) )
34 xpundir 4642 . . . . . . 7  |-  ( ( y  u.  { z } )  X.  B
)  =  ( ( y  X.  B )  u.  ( { z }  X.  B ) )
3534fveq2i 5470 . . . . . 6  |-  ( `  (
( y  u.  {
z } )  X.  B ) )  =  ( `  ( (
y  X.  B )  u.  ( { z }  X.  B ) ) )
36 simplr 520 . . . . . . . . 9  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  Fin )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  y  e.  Fin )
37 simpllr 524 . . . . . . . . 9  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  Fin )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  B  e.  Fin )
38 xpfi 6871 . . . . . . . . 9  |-  ( ( y  e.  Fin  /\  B  e.  Fin )  ->  ( y  X.  B
)  e.  Fin )
3936, 37, 38syl2anc 409 . . . . . . . 8  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  Fin )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  ( y  X.  B )  e.  Fin )
40 vex 2715 . . . . . . . . . . 11  |-  z  e. 
_V
41 snfig 6756 . . . . . . . . . . 11  |-  ( z  e.  _V  ->  { z }  e.  Fin )
4240, 41ax-mp 5 . . . . . . . . . 10  |-  { z }  e.  Fin
43 xpfi 6871 . . . . . . . . . 10  |-  ( ( { z }  e.  Fin  /\  B  e.  Fin )  ->  ( { z }  X.  B )  e.  Fin )
4442, 43mpan 421 . . . . . . . . 9  |-  ( B  e.  Fin  ->  ( { z }  X.  B )  e.  Fin )
4544ad3antlr 485 . . . . . . . 8  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  Fin )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  ( { z }  X.  B )  e.  Fin )
46 simprr 522 . . . . . . . . . 10  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  Fin )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  z  e.  ( A  \  y ) )
4746eldifbd 3114 . . . . . . . . 9  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  Fin )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  -.  z  e.  y )
48 inxp 4719 . . . . . . . . . 10  |-  ( ( y  X.  B )  i^i  ( { z }  X.  B ) )  =  ( ( y  i^i  { z } )  X.  ( B  i^i  B ) )
49 disjsn 3621 . . . . . . . . . . . . 13  |-  ( ( y  i^i  { z } )  =  (/)  <->  -.  z  e.  y )
5049biimpri 132 . . . . . . . . . . . 12  |-  ( -.  z  e.  y  -> 
( y  i^i  {
z } )  =  (/) )
5150xpeq1d 4608 . . . . . . . . . . 11  |-  ( -.  z  e.  y  -> 
( ( y  i^i 
{ z } )  X.  ( B  i^i  B ) )  =  (
(/)  X.  ( B  i^i  B ) ) )
52 0xp 4665 . . . . . . . . . . 11  |-  ( (/)  X.  ( B  i^i  B
) )  =  (/)
5351, 52eqtrdi 2206 . . . . . . . . . 10  |-  ( -.  z  e.  y  -> 
( ( y  i^i 
{ z } )  X.  ( B  i^i  B ) )  =  (/) )
5448, 53syl5eq 2202 . . . . . . . . 9  |-  ( -.  z  e.  y  -> 
( ( y  X.  B )  i^i  ( { z }  X.  B ) )  =  (/) )
5547, 54syl 14 . . . . . . . 8  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  Fin )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  ( ( y  X.  B )  i^i  ( { z }  X.  B ) )  =  (/) )
56 hashun 10672 . . . . . . . 8  |-  ( ( ( y  X.  B
)  e.  Fin  /\  ( { z }  X.  B )  e.  Fin  /\  ( ( y  X.  B )  i^i  ( { z }  X.  B ) )  =  (/) )  ->  ( `  (
( y  X.  B
)  u.  ( { z }  X.  B
) ) )  =  ( ( `  (
y  X.  B ) )  +  ( `  ( { z }  X.  B ) ) ) )
5739, 45, 55, 56syl3anc 1220 . . . . . . 7  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  Fin )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  ( `  ( (
y  X.  B )  u.  ( { z }  X.  B ) ) )  =  ( ( `  ( y  X.  B ) )  +  ( `  ( {
z }  X.  B
) ) ) )
5840snex 4146 . . . . . . . . . . . 12  |-  { z }  e.  _V
5958a1i 9 . . . . . . . . . . 11  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  Fin )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  { z }  e.  _V )
60 xpcomeng 6770 . . . . . . . . . . 11  |-  ( ( { z }  e.  _V  /\  B  e.  Fin )  ->  ( { z }  X.  B ) 
~~  ( B  X.  { z } ) )
6159, 37, 60syl2anc 409 . . . . . . . . . 10  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  Fin )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  ( { z }  X.  B ) 
~~  ( B  X.  { z } ) )
6240a1i 9 . . . . . . . . . . 11  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  Fin )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  z  e.  _V )
63 xpsneng 6764 . . . . . . . . . . 11  |-  ( ( B  e.  Fin  /\  z  e.  _V )  ->  ( B  X.  {
z } )  ~~  B )
6437, 62, 63syl2anc 409 . . . . . . . . . 10  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  Fin )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  ( B  X.  { z } ) 
~~  B )
65 entr 6726 . . . . . . . . . 10  |-  ( ( ( { z }  X.  B )  ~~  ( B  X.  { z } )  /\  ( B  X.  { z } )  ~~  B )  ->  ( { z }  X.  B ) 
~~  B )
6661, 64, 65syl2anc 409 . . . . . . . . 9  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  Fin )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  ( { z }  X.  B ) 
~~  B )
67 hashen 10651 . . . . . . . . . 10  |-  ( ( ( { z }  X.  B )  e. 
Fin  /\  B  e.  Fin )  ->  ( ( `  ( { z }  X.  B ) )  =  ( `  B
)  <->  ( { z }  X.  B ) 
~~  B ) )
6845, 37, 67syl2anc 409 . . . . . . . . 9  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  Fin )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  ( ( `  ( { z }  X.  B ) )  =  ( `  B )  <->  ( { z }  X.  B )  ~~  B
) )
6966, 68mpbird 166 . . . . . . . 8  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  Fin )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  ( `  ( {
z }  X.  B
) )  =  ( `  B ) )
7069oveq2d 5837 . . . . . . 7  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  Fin )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  ( ( `  (
y  X.  B ) )  +  ( `  ( { z }  X.  B ) ) )  =  ( ( `  (
y  X.  B ) )  +  ( `  B
) ) )
7157, 70eqtrd 2190 . . . . . 6  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  Fin )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  ( `  ( (
y  X.  B )  u.  ( { z }  X.  B ) ) )  =  ( ( `  ( y  X.  B ) )  +  ( `  B )
) )
7235, 71syl5eq 2202 . . . . 5  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  Fin )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  ( `  ( (
y  u.  { z } )  X.  B
) )  =  ( ( `  ( y  X.  B ) )  +  ( `  B )
) )
7372adantr 274 . . . 4  |-  ( ( ( ( ( A  e.  Fin  /\  B  e.  Fin )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  ( `  (
y  X.  B ) )  =  ( ( `  y )  x.  ( `  B ) ) )  ->  ( `  ( (
y  u.  { z } )  X.  B
) )  =  ( ( `  ( y  X.  B ) )  +  ( `  B )
) )
74 hashunsng 10674 . . . . . . . . 9  |-  ( z  e.  _V  ->  (
( y  e.  Fin  /\ 
-.  z  e.  y )  ->  ( `  (
y  u.  { z } ) )  =  ( ( `  y
)  +  1 ) ) )
7540, 74ax-mp 5 . . . . . . . 8  |-  ( ( y  e.  Fin  /\  -.  z  e.  y
)  ->  ( `  (
y  u.  { z } ) )  =  ( ( `  y
)  +  1 ) )
7675oveq1d 5836 . . . . . . 7  |-  ( ( y  e.  Fin  /\  -.  z  e.  y
)  ->  ( ( `  ( y  u.  {
z } ) )  x.  ( `  B
) )  =  ( ( ( `  y
)  +  1 )  x.  ( `  B
) ) )
7736, 47, 76syl2anc 409 . . . . . 6  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  Fin )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  ( ( `  (
y  u.  { z } ) )  x.  ( `  B )
)  =  ( ( ( `  y )  +  1 )  x.  ( `  B )
) )
78 hashcl 10648 . . . . . . . . 9  |-  ( y  e.  Fin  ->  ( `  y )  e.  NN0 )
7978nn0cnd 9139 . . . . . . . 8  |-  ( y  e.  Fin  ->  ( `  y )  e.  CC )
8036, 79syl 14 . . . . . . 7  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  Fin )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  ( `  y )  e.  CC )
8137, 27syl 14 . . . . . . 7  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  Fin )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  ( `  B )  e.  CC )
8280, 81adddirp1d 7898 . . . . . 6  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  Fin )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  ( ( ( `  y )  +  1 )  x.  ( `  B
) )  =  ( ( ( `  y
)  x.  ( `  B
) )  +  ( `  B ) ) )
8377, 82eqtrd 2190 . . . . 5  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  Fin )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  ( ( `  (
y  u.  { z } ) )  x.  ( `  B )
)  =  ( ( ( `  y )  x.  ( `  B )
)  +  ( `  B
) ) )
8483adantr 274 . . . 4  |-  ( ( ( ( ( A  e.  Fin  /\  B  e.  Fin )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  ( `  (
y  X.  B ) )  =  ( ( `  y )  x.  ( `  B ) ) )  ->  ( ( `  (
y  u.  { z } ) )  x.  ( `  B )
)  =  ( ( ( `  y )  x.  ( `  B )
)  +  ( `  B
) ) )
8533, 73, 843eqtr4d 2200 . . 3  |-  ( ( ( ( ( A  e.  Fin  /\  B  e.  Fin )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  /\  ( `  (
y  X.  B ) )  =  ( ( `  y )  x.  ( `  B ) ) )  ->  ( `  ( (
y  u.  { z } )  X.  B
) )  =  ( ( `  ( y  u.  { z } ) )  x.  ( `  B
) ) )
8685ex 114 . 2  |-  ( ( ( ( A  e. 
Fin  /\  B  e.  Fin )  /\  y  e.  Fin )  /\  (
y  C_  A  /\  z  e.  ( A  \  y ) ) )  ->  ( ( `  (
y  X.  B ) )  =  ( ( `  y )  x.  ( `  B ) )  -> 
( `  ( ( y  u.  { z } )  X.  B ) )  =  ( ( `  ( y  u.  {
z } ) )  x.  ( `  B
) ) ) )
87 simpl 108 . 2  |-  ( ( A  e.  Fin  /\  B  e.  Fin )  ->  A  e.  Fin )
885, 10, 15, 20, 31, 86, 87findcard2sd 6834 1  |-  ( ( A  e.  Fin  /\  B  e.  Fin )  ->  ( `  ( A  X.  B ) )  =  ( ( `  A
)  x.  ( `  B
) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1335    e. wcel 2128   _Vcvv 2712    \ cdif 3099    u. cun 3100    i^i cin 3101    C_ wss 3102   (/)c0 3394   {csn 3560   class class class wbr 3965    X. cxp 4583   ` cfv 5169  (class class class)co 5821    ~~ cen 6680   Fincfn 6682   CCcc 7724   0cc0 7726   1c1 7727    + caddc 7729    x. cmul 7731  ♯chash 10642
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-coll 4079  ax-sep 4082  ax-nul 4090  ax-pow 4135  ax-pr 4169  ax-un 4393  ax-setind 4495  ax-iinf 4546  ax-cnex 7817  ax-resscn 7818  ax-1cn 7819  ax-1re 7820  ax-icn 7821  ax-addcl 7822  ax-addrcl 7823  ax-mulcl 7824  ax-addcom 7826  ax-mulcom 7827  ax-addass 7828  ax-mulass 7829  ax-distr 7830  ax-i2m1 7831  ax-0lt1 7832  ax-1rid 7833  ax-0id 7834  ax-rnegex 7835  ax-cnre 7837  ax-pre-ltirr 7838  ax-pre-ltwlin 7839  ax-pre-lttrn 7840  ax-pre-apti 7841  ax-pre-ltadd 7842
This theorem depends on definitions:  df-bi 116  df-dc 821  df-3or 964  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-nel 2423  df-ral 2440  df-rex 2441  df-reu 2442  df-rab 2444  df-v 2714  df-sbc 2938  df-csb 3032  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-nul 3395  df-if 3506  df-pw 3545  df-sn 3566  df-pr 3567  df-op 3569  df-uni 3773  df-int 3808  df-iun 3851  df-br 3966  df-opab 4026  df-mpt 4027  df-tr 4063  df-id 4253  df-iord 4326  df-on 4328  df-ilim 4329  df-suc 4331  df-iom 4549  df-xp 4591  df-rel 4592  df-cnv 4593  df-co 4594  df-dm 4595  df-rn 4596  df-res 4597  df-ima 4598  df-iota 5134  df-fun 5171  df-fn 5172  df-f 5173  df-f1 5174  df-fo 5175  df-f1o 5176  df-fv 5177  df-riota 5777  df-ov 5824  df-oprab 5825  df-mpo 5826  df-1st 6085  df-2nd 6086  df-recs 6249  df-irdg 6314  df-frec 6335  df-1o 6360  df-oadd 6364  df-er 6477  df-en 6683  df-dom 6684  df-fin 6685  df-pnf 7908  df-mnf 7909  df-xr 7910  df-ltxr 7911  df-le 7912  df-sub 8042  df-neg 8043  df-inn 8828  df-n0 9085  df-z 9162  df-uz 9434  df-fz 9906  df-ihash 10643
This theorem is referenced by:  crth  12087  phimullem  12088
  Copyright terms: Public domain W3C validator