Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > hashxp | Unicode version |
Description: The size of the Cartesian product of two finite sets is the product of their sizes. (Contributed by Paul Chapman, 30-Nov-2012.) |
Ref | Expression |
---|---|
hashxp | ♯ ♯ ♯ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xpeq1 4618 | . . . 4 | |
2 | 1 | fveq2d 5490 | . . 3 ♯ ♯ |
3 | fveq2 5486 | . . . 4 ♯ ♯ | |
4 | 3 | oveq1d 5857 | . . 3 ♯ ♯ ♯ ♯ |
5 | 2, 4 | eqeq12d 2180 | . 2 ♯ ♯ ♯ ♯ ♯ ♯ |
6 | xpeq1 4618 | . . . 4 | |
7 | 6 | fveq2d 5490 | . . 3 ♯ ♯ |
8 | fveq2 5486 | . . . 4 ♯ ♯ | |
9 | 8 | oveq1d 5857 | . . 3 ♯ ♯ ♯ ♯ |
10 | 7, 9 | eqeq12d 2180 | . 2 ♯ ♯ ♯ ♯ ♯ ♯ |
11 | xpeq1 4618 | . . . 4 | |
12 | 11 | fveq2d 5490 | . . 3 ♯ ♯ |
13 | fveq2 5486 | . . . 4 ♯ ♯ | |
14 | 13 | oveq1d 5857 | . . 3 ♯ ♯ ♯ ♯ |
15 | 12, 14 | eqeq12d 2180 | . 2 ♯ ♯ ♯ ♯ ♯ ♯ |
16 | xpeq1 4618 | . . . 4 | |
17 | 16 | fveq2d 5490 | . . 3 ♯ ♯ |
18 | fveq2 5486 | . . . 4 ♯ ♯ | |
19 | 18 | oveq1d 5857 | . . 3 ♯ ♯ ♯ ♯ |
20 | 17, 19 | eqeq12d 2180 | . 2 ♯ ♯ ♯ ♯ ♯ ♯ |
21 | 0xp 4684 | . . . . 5 | |
22 | 21 | fveq2i 5489 | . . . 4 ♯ ♯ |
23 | hash0 10710 | . . . 4 ♯ | |
24 | 22, 23 | eqtri 2186 | . . 3 ♯ |
25 | 23 | oveq1i 5852 | . . . 4 ♯ ♯ ♯ |
26 | hashcl 10694 | . . . . . . 7 ♯ | |
27 | 26 | nn0cnd 9169 | . . . . . 6 ♯ |
28 | 27 | mul02d 8290 | . . . . 5 ♯ |
29 | 28 | adantl 275 | . . . 4 ♯ |
30 | 25, 29 | syl5eq 2211 | . . 3 ♯ ♯ |
31 | 24, 30 | eqtr4id 2218 | . 2 ♯ ♯ ♯ |
32 | oveq1 5849 | . . . . 5 ♯ ♯ ♯ ♯ ♯ ♯ ♯ ♯ | |
33 | 32 | adantl 275 | . . . 4 ♯ ♯ ♯ ♯ ♯ ♯ ♯ ♯ |
34 | xpundir 4661 | . . . . . . 7 | |
35 | 34 | fveq2i 5489 | . . . . . 6 ♯ ♯ |
36 | simplr 520 | . . . . . . . . 9 | |
37 | simpllr 524 | . . . . . . . . 9 | |
38 | xpfi 6895 | . . . . . . . . 9 | |
39 | 36, 37, 38 | syl2anc 409 | . . . . . . . 8 |
40 | vex 2729 | . . . . . . . . . . 11 | |
41 | snfig 6780 | . . . . . . . . . . 11 | |
42 | 40, 41 | ax-mp 5 | . . . . . . . . . 10 |
43 | xpfi 6895 | . . . . . . . . . 10 | |
44 | 42, 43 | mpan 421 | . . . . . . . . 9 |
45 | 44 | ad3antlr 485 | . . . . . . . 8 |
46 | simprr 522 | . . . . . . . . . 10 | |
47 | 46 | eldifbd 3128 | . . . . . . . . 9 |
48 | inxp 4738 | . . . . . . . . . 10 | |
49 | disjsn 3638 | . . . . . . . . . . . . 13 | |
50 | 49 | biimpri 132 | . . . . . . . . . . . 12 |
51 | 50 | xpeq1d 4627 | . . . . . . . . . . 11 |
52 | 0xp 4684 | . . . . . . . . . . 11 | |
53 | 51, 52 | eqtrdi 2215 | . . . . . . . . . 10 |
54 | 48, 53 | syl5eq 2211 | . . . . . . . . 9 |
55 | 47, 54 | syl 14 | . . . . . . . 8 |
56 | hashun 10718 | . . . . . . . 8 ♯ ♯ ♯ | |
57 | 39, 45, 55, 56 | syl3anc 1228 | . . . . . . 7 ♯ ♯ ♯ |
58 | 40 | snex 4164 | . . . . . . . . . . . 12 |
59 | 58 | a1i 9 | . . . . . . . . . . 11 |
60 | xpcomeng 6794 | . . . . . . . . . . 11 | |
61 | 59, 37, 60 | syl2anc 409 | . . . . . . . . . 10 |
62 | 40 | a1i 9 | . . . . . . . . . . 11 |
63 | xpsneng 6788 | . . . . . . . . . . 11 | |
64 | 37, 62, 63 | syl2anc 409 | . . . . . . . . . 10 |
65 | entr 6750 | . . . . . . . . . 10 | |
66 | 61, 64, 65 | syl2anc 409 | . . . . . . . . 9 |
67 | hashen 10697 | . . . . . . . . . 10 ♯ ♯ | |
68 | 45, 37, 67 | syl2anc 409 | . . . . . . . . 9 ♯ ♯ |
69 | 66, 68 | mpbird 166 | . . . . . . . 8 ♯ ♯ |
70 | 69 | oveq2d 5858 | . . . . . . 7 ♯ ♯ ♯ ♯ |
71 | 57, 70 | eqtrd 2198 | . . . . . 6 ♯ ♯ ♯ |
72 | 35, 71 | syl5eq 2211 | . . . . 5 ♯ ♯ ♯ |
73 | 72 | adantr 274 | . . . 4 ♯ ♯ ♯ ♯ ♯ ♯ |
74 | hashunsng 10720 | . . . . . . . . 9 ♯ ♯ | |
75 | 40, 74 | ax-mp 5 | . . . . . . . 8 ♯ ♯ |
76 | 75 | oveq1d 5857 | . . . . . . 7 ♯ ♯ ♯ ♯ |
77 | 36, 47, 76 | syl2anc 409 | . . . . . 6 ♯ ♯ ♯ ♯ |
78 | hashcl 10694 | . . . . . . . . 9 ♯ | |
79 | 78 | nn0cnd 9169 | . . . . . . . 8 ♯ |
80 | 36, 79 | syl 14 | . . . . . . 7 ♯ |
81 | 37, 27 | syl 14 | . . . . . . 7 ♯ |
82 | 80, 81 | adddirp1d 7925 | . . . . . 6 ♯ ♯ ♯ ♯ ♯ |
83 | 77, 82 | eqtrd 2198 | . . . . 5 ♯ ♯ ♯ ♯ ♯ |
84 | 83 | adantr 274 | . . . 4 ♯ ♯ ♯ ♯ ♯ ♯ ♯ ♯ |
85 | 33, 73, 84 | 3eqtr4d 2208 | . . 3 ♯ ♯ ♯ ♯ ♯ ♯ |
86 | 85 | ex 114 | . 2 ♯ ♯ ♯ ♯ ♯ ♯ |
87 | simpl 108 | . 2 | |
88 | 5, 10, 15, 20, 31, 86, 87 | findcard2sd 6858 | 1 ♯ ♯ ♯ |
Colors of variables: wff set class |
Syntax hints: wn 3 wi 4 wa 103 wb 104 wceq 1343 wcel 2136 cvv 2726 cdif 3113 cun 3114 cin 3115 wss 3116 c0 3409 csn 3576 class class class wbr 3982 cxp 4602 cfv 5188 (class class class)co 5842 cen 6704 cfn 6706 cc 7751 cc0 7753 c1 7754 caddc 7756 cmul 7758 ♯chash 10688 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-coll 4097 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-iinf 4565 ax-cnex 7844 ax-resscn 7845 ax-1cn 7846 ax-1re 7847 ax-icn 7848 ax-addcl 7849 ax-addrcl 7850 ax-mulcl 7851 ax-addcom 7853 ax-mulcom 7854 ax-addass 7855 ax-mulass 7856 ax-distr 7857 ax-i2m1 7858 ax-0lt1 7859 ax-1rid 7860 ax-0id 7861 ax-rnegex 7862 ax-cnre 7864 ax-pre-ltirr 7865 ax-pre-ltwlin 7866 ax-pre-lttrn 7867 ax-pre-apti 7868 ax-pre-ltadd 7869 |
This theorem depends on definitions: df-bi 116 df-dc 825 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-nel 2432 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-if 3521 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-tr 4081 df-id 4271 df-iord 4344 df-on 4346 df-ilim 4347 df-suc 4349 df-iom 4568 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-riota 5798 df-ov 5845 df-oprab 5846 df-mpo 5847 df-1st 6108 df-2nd 6109 df-recs 6273 df-irdg 6338 df-frec 6359 df-1o 6384 df-oadd 6388 df-er 6501 df-en 6707 df-dom 6708 df-fin 6709 df-pnf 7935 df-mnf 7936 df-xr 7937 df-ltxr 7938 df-le 7939 df-sub 8071 df-neg 8072 df-inn 8858 df-n0 9115 df-z 9192 df-uz 9467 df-fz 9945 df-ihash 10689 |
This theorem is referenced by: crth 12156 phimullem 12157 |
Copyright terms: Public domain | W3C validator |