| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > hashxp | Unicode version | ||
| Description: The size of the Cartesian product of two finite sets is the product of their sizes. (Contributed by Paul Chapman, 30-Nov-2012.) |
| Ref | Expression |
|---|---|
| hashxp |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpeq1 4678 |
. . . 4
| |
| 2 | 1 | fveq2d 5565 |
. . 3
|
| 3 | fveq2 5561 |
. . . 4
| |
| 4 | 3 | oveq1d 5940 |
. . 3
|
| 5 | 2, 4 | eqeq12d 2211 |
. 2
|
| 6 | xpeq1 4678 |
. . . 4
| |
| 7 | 6 | fveq2d 5565 |
. . 3
|
| 8 | fveq2 5561 |
. . . 4
| |
| 9 | 8 | oveq1d 5940 |
. . 3
|
| 10 | 7, 9 | eqeq12d 2211 |
. 2
|
| 11 | xpeq1 4678 |
. . . 4
| |
| 12 | 11 | fveq2d 5565 |
. . 3
|
| 13 | fveq2 5561 |
. . . 4
| |
| 14 | 13 | oveq1d 5940 |
. . 3
|
| 15 | 12, 14 | eqeq12d 2211 |
. 2
|
| 16 | xpeq1 4678 |
. . . 4
| |
| 17 | 16 | fveq2d 5565 |
. . 3
|
| 18 | fveq2 5561 |
. . . 4
| |
| 19 | 18 | oveq1d 5940 |
. . 3
|
| 20 | 17, 19 | eqeq12d 2211 |
. 2
|
| 21 | 0xp 4744 |
. . . . 5
| |
| 22 | 21 | fveq2i 5564 |
. . . 4
|
| 23 | hash0 10905 |
. . . 4
| |
| 24 | 22, 23 | eqtri 2217 |
. . 3
|
| 25 | 23 | oveq1i 5935 |
. . . 4
|
| 26 | hashcl 10890 |
. . . . . . 7
| |
| 27 | 26 | nn0cnd 9321 |
. . . . . 6
|
| 28 | 27 | mul02d 8435 |
. . . . 5
|
| 29 | 28 | adantl 277 |
. . . 4
|
| 30 | 25, 29 | eqtrid 2241 |
. . 3
|
| 31 | 24, 30 | eqtr4id 2248 |
. 2
|
| 32 | oveq1 5932 |
. . . . 5
| |
| 33 | 32 | adantl 277 |
. . . 4
|
| 34 | xpundir 4721 |
. . . . . . 7
| |
| 35 | 34 | fveq2i 5564 |
. . . . . 6
|
| 36 | simplr 528 |
. . . . . . . . 9
| |
| 37 | simpllr 534 |
. . . . . . . . 9
| |
| 38 | xpfi 7002 |
. . . . . . . . 9
| |
| 39 | 36, 37, 38 | syl2anc 411 |
. . . . . . . 8
|
| 40 | vex 2766 |
. . . . . . . . . . 11
| |
| 41 | snfig 6882 |
. . . . . . . . . . 11
| |
| 42 | 40, 41 | ax-mp 5 |
. . . . . . . . . 10
|
| 43 | xpfi 7002 |
. . . . . . . . . 10
| |
| 44 | 42, 43 | mpan 424 |
. . . . . . . . 9
|
| 45 | 44 | ad3antlr 493 |
. . . . . . . 8
|
| 46 | simprr 531 |
. . . . . . . . . 10
| |
| 47 | 46 | eldifbd 3169 |
. . . . . . . . 9
|
| 48 | inxp 4801 |
. . . . . . . . . 10
| |
| 49 | disjsn 3685 |
. . . . . . . . . . . . 13
| |
| 50 | 49 | biimpri 133 |
. . . . . . . . . . . 12
|
| 51 | 50 | xpeq1d 4687 |
. . . . . . . . . . 11
|
| 52 | 0xp 4744 |
. . . . . . . . . . 11
| |
| 53 | 51, 52 | eqtrdi 2245 |
. . . . . . . . . 10
|
| 54 | 48, 53 | eqtrid 2241 |
. . . . . . . . 9
|
| 55 | 47, 54 | syl 14 |
. . . . . . . 8
|
| 56 | hashun 10914 |
. . . . . . . 8
| |
| 57 | 39, 45, 55, 56 | syl3anc 1249 |
. . . . . . 7
|
| 58 | 40 | snex 4219 |
. . . . . . . . . . . 12
|
| 59 | 58 | a1i 9 |
. . . . . . . . . . 11
|
| 60 | xpcomeng 6896 |
. . . . . . . . . . 11
| |
| 61 | 59, 37, 60 | syl2anc 411 |
. . . . . . . . . 10
|
| 62 | 40 | a1i 9 |
. . . . . . . . . . 11
|
| 63 | xpsneng 6890 |
. . . . . . . . . . 11
| |
| 64 | 37, 62, 63 | syl2anc 411 |
. . . . . . . . . 10
|
| 65 | entr 6852 |
. . . . . . . . . 10
| |
| 66 | 61, 64, 65 | syl2anc 411 |
. . . . . . . . 9
|
| 67 | hashen 10893 |
. . . . . . . . . 10
| |
| 68 | 45, 37, 67 | syl2anc 411 |
. . . . . . . . 9
|
| 69 | 66, 68 | mpbird 167 |
. . . . . . . 8
|
| 70 | 69 | oveq2d 5941 |
. . . . . . 7
|
| 71 | 57, 70 | eqtrd 2229 |
. . . . . 6
|
| 72 | 35, 71 | eqtrid 2241 |
. . . . 5
|
| 73 | 72 | adantr 276 |
. . . 4
|
| 74 | hashunsng 10916 |
. . . . . . . . 9
| |
| 75 | 40, 74 | ax-mp 5 |
. . . . . . . 8
|
| 76 | 75 | oveq1d 5940 |
. . . . . . 7
|
| 77 | 36, 47, 76 | syl2anc 411 |
. . . . . 6
|
| 78 | hashcl 10890 |
. . . . . . . . 9
| |
| 79 | 78 | nn0cnd 9321 |
. . . . . . . 8
|
| 80 | 36, 79 | syl 14 |
. . . . . . 7
|
| 81 | 37, 27 | syl 14 |
. . . . . . 7
|
| 82 | 80, 81 | adddirp1d 8070 |
. . . . . 6
|
| 83 | 77, 82 | eqtrd 2229 |
. . . . 5
|
| 84 | 83 | adantr 276 |
. . . 4
|
| 85 | 33, 73, 84 | 3eqtr4d 2239 |
. . 3
|
| 86 | 85 | ex 115 |
. 2
|
| 87 | simpl 109 |
. 2
| |
| 88 | 5, 10, 15, 20, 31, 86, 87 | findcard2sd 6962 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-coll 4149 ax-sep 4152 ax-nul 4160 ax-pow 4208 ax-pr 4243 ax-un 4469 ax-setind 4574 ax-iinf 4625 ax-cnex 7987 ax-resscn 7988 ax-1cn 7989 ax-1re 7990 ax-icn 7991 ax-addcl 7992 ax-addrcl 7993 ax-mulcl 7994 ax-addcom 7996 ax-mulcom 7997 ax-addass 7998 ax-mulass 7999 ax-distr 8000 ax-i2m1 8001 ax-0lt1 8002 ax-1rid 8003 ax-0id 8004 ax-rnegex 8005 ax-cnre 8007 ax-pre-ltirr 8008 ax-pre-ltwlin 8009 ax-pre-lttrn 8010 ax-pre-apti 8011 ax-pre-ltadd 8012 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-csb 3085 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-nul 3452 df-if 3563 df-pw 3608 df-sn 3629 df-pr 3630 df-op 3632 df-uni 3841 df-int 3876 df-iun 3919 df-br 4035 df-opab 4096 df-mpt 4097 df-tr 4133 df-id 4329 df-iord 4402 df-on 4404 df-ilim 4405 df-suc 4407 df-iom 4628 df-xp 4670 df-rel 4671 df-cnv 4672 df-co 4673 df-dm 4674 df-rn 4675 df-res 4676 df-ima 4677 df-iota 5220 df-fun 5261 df-fn 5262 df-f 5263 df-f1 5264 df-fo 5265 df-f1o 5266 df-fv 5267 df-riota 5880 df-ov 5928 df-oprab 5929 df-mpo 5930 df-1st 6207 df-2nd 6208 df-recs 6372 df-irdg 6437 df-frec 6458 df-1o 6483 df-oadd 6487 df-er 6601 df-en 6809 df-dom 6810 df-fin 6811 df-pnf 8080 df-mnf 8081 df-xr 8082 df-ltxr 8083 df-le 8084 df-sub 8216 df-neg 8217 df-inn 9008 df-n0 9267 df-z 9344 df-uz 9619 df-fz 10101 df-ihash 10885 |
| This theorem is referenced by: crth 12417 phimullem 12418 lgsquadlem3 15404 |
| Copyright terms: Public domain | W3C validator |