| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > xpeq1d | GIF version | ||
| Description: Equality deduction for cross product. (Contributed by Jeff Madsen, 17-Jun-2010.) |
| Ref | Expression |
|---|---|
| xpeq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| Ref | Expression |
|---|---|
| xpeq1d | ⊢ (𝜑 → (𝐴 × 𝐶) = (𝐵 × 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpeq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | xpeq1 4696 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 × 𝐶) = (𝐵 × 𝐶)) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → (𝐴 × 𝐶) = (𝐵 × 𝐶)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 = wceq 1373 × cxp 4680 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-11 1530 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1485 df-sb 1787 df-clab 2193 df-cleq 2199 df-clel 2202 df-opab 4113 df-xp 4688 |
| This theorem is referenced by: xpssres 5002 ixpsnf1o 6835 xpfi 7043 hashxp 10988 psrval 14498 mpl0fi 14534 dvmptc 15259 |
| Copyright terms: Public domain | W3C validator |