ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xpeq1d GIF version

Theorem xpeq1d 4522
Description: Equality deduction for cross product. (Contributed by Jeff Madsen, 17-Jun-2010.)
Hypothesis
Ref Expression
xpeq1d.1 (𝜑𝐴 = 𝐵)
Assertion
Ref Expression
xpeq1d (𝜑 → (𝐴 × 𝐶) = (𝐵 × 𝐶))

Proof of Theorem xpeq1d
StepHypRef Expression
1 xpeq1d.1 . 2 (𝜑𝐴 = 𝐵)
2 xpeq1 4513 . 2 (𝐴 = 𝐵 → (𝐴 × 𝐶) = (𝐵 × 𝐶))
31, 2syl 14 1 (𝜑 → (𝐴 × 𝐶) = (𝐵 × 𝐶))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1314   × cxp 4497
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-11 1467  ax-4 1470  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097
This theorem depends on definitions:  df-bi 116  df-tru 1317  df-nf 1420  df-sb 1719  df-clab 2102  df-cleq 2108  df-clel 2111  df-opab 3950  df-xp 4505
This theorem is referenced by:  xpssres  4812  ixpsnf1o  6584  xpfi  6771  hashxp  10465
  Copyright terms: Public domain W3C validator