ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xpeq1d GIF version

Theorem xpeq1d 4686
Description: Equality deduction for cross product. (Contributed by Jeff Madsen, 17-Jun-2010.)
Hypothesis
Ref Expression
xpeq1d.1 (𝜑𝐴 = 𝐵)
Assertion
Ref Expression
xpeq1d (𝜑 → (𝐴 × 𝐶) = (𝐵 × 𝐶))

Proof of Theorem xpeq1d
StepHypRef Expression
1 xpeq1d.1 . 2 (𝜑𝐴 = 𝐵)
2 xpeq1 4677 . 2 (𝐴 = 𝐵 → (𝐴 × 𝐶) = (𝐵 × 𝐶))
31, 2syl 14 1 (𝜑 → (𝐴 × 𝐶) = (𝐵 × 𝐶))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1364   × cxp 4661
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-11 1520  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-ext 2178
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-nf 1475  df-sb 1777  df-clab 2183  df-cleq 2189  df-clel 2192  df-opab 4095  df-xp 4669
This theorem is referenced by:  xpssres  4981  ixpsnf1o  6795  xpfi  6993  hashxp  10918  psrval  14220  dvmptc  14953
  Copyright terms: Public domain W3C validator