| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > xpeq1d | GIF version | ||
| Description: Equality deduction for cross product. (Contributed by Jeff Madsen, 17-Jun-2010.) | 
| Ref | Expression | 
|---|---|
| xpeq1d.1 | ⊢ (𝜑 → 𝐴 = 𝐵) | 
| Ref | Expression | 
|---|---|
| xpeq1d | ⊢ (𝜑 → (𝐴 × 𝐶) = (𝐵 × 𝐶)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | xpeq1d.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | xpeq1 4677 | . 2 ⊢ (𝐴 = 𝐵 → (𝐴 × 𝐶) = (𝐵 × 𝐶)) | |
| 3 | 1, 2 | syl 14 | 1 ⊢ (𝜑 → (𝐴 × 𝐶) = (𝐵 × 𝐶)) | 
| Colors of variables: wff set class | 
| Syntax hints: → wi 4 = wceq 1364 × cxp 4661 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-11 1520 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-opab 4095 df-xp 4669 | 
| This theorem is referenced by: xpssres 4981 ixpsnf1o 6795 xpfi 6993 hashxp 10918 psrval 14220 dvmptc 14953 | 
| Copyright terms: Public domain | W3C validator |