ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xpeq1d GIF version

Theorem xpeq1d 4705
Description: Equality deduction for cross product. (Contributed by Jeff Madsen, 17-Jun-2010.)
Hypothesis
Ref Expression
xpeq1d.1 (𝜑𝐴 = 𝐵)
Assertion
Ref Expression
xpeq1d (𝜑 → (𝐴 × 𝐶) = (𝐵 × 𝐶))

Proof of Theorem xpeq1d
StepHypRef Expression
1 xpeq1d.1 . 2 (𝜑𝐴 = 𝐵)
2 xpeq1 4696 . 2 (𝐴 = 𝐵 → (𝐴 × 𝐶) = (𝐵 × 𝐶))
31, 2syl 14 1 (𝜑 → (𝐴 × 𝐶) = (𝐵 × 𝐶))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1373   × cxp 4680
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-11 1530  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2188
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2193  df-cleq 2199  df-clel 2202  df-opab 4113  df-xp 4688
This theorem is referenced by:  xpssres  5002  ixpsnf1o  6835  xpfi  7043  hashxp  10988  psrval  14498  mpl0fi  14534  dvmptc  15259
  Copyright terms: Public domain W3C validator