ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xpeq2i Unicode version

Theorem xpeq2i 4659
Description: Equality inference for cross product. (Contributed by NM, 21-Dec-2008.)
Hypothesis
Ref Expression
xpeq1i.1  |-  A  =  B
Assertion
Ref Expression
xpeq2i  |-  ( C  X.  A )  =  ( C  X.  B
)

Proof of Theorem xpeq2i
StepHypRef Expression
1 xpeq1i.1 . 2  |-  A  =  B
2 xpeq2 4653 . 2  |-  ( A  =  B  ->  ( C  X.  A )  =  ( C  X.  B
) )
31, 2ax-mp 5 1  |-  ( C  X.  A )  =  ( C  X.  B
)
Colors of variables: wff set class
Syntax hints:    = wceq 1363    X. cxp 4636
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-11 1516  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-ext 2169
This theorem depends on definitions:  df-bi 117  df-tru 1366  df-nf 1471  df-sb 1773  df-clab 2174  df-cleq 2180  df-clel 2183  df-opab 4077  df-xp 4644
This theorem is referenced by:  xpindir  4775  xpexgALT  6147  xp1en  6836  djuassen  7229  xpdjuen  7230  pwf1oexmid  15021
  Copyright terms: Public domain W3C validator