ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xpeq2i Unicode version

Theorem xpeq2i 4432
Description: Equality inference for cross product. (Contributed by NM, 21-Dec-2008.)
Hypothesis
Ref Expression
xpeq1i.1  |-  A  =  B
Assertion
Ref Expression
xpeq2i  |-  ( C  X.  A )  =  ( C  X.  B
)

Proof of Theorem xpeq2i
StepHypRef Expression
1 xpeq1i.1 . 2  |-  A  =  B
2 xpeq2 4426 . 2  |-  ( A  =  B  ->  ( C  X.  A )  =  ( C  X.  B
) )
31, 2ax-mp 7 1  |-  ( C  X.  A )  =  ( C  X.  B
)
Colors of variables: wff set class
Syntax hints:    = wceq 1287    X. cxp 4409
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-5 1379  ax-7 1380  ax-gen 1381  ax-ie1 1425  ax-ie2 1426  ax-8 1438  ax-11 1440  ax-4 1443  ax-17 1462  ax-i9 1466  ax-ial 1470  ax-i5r 1471  ax-ext 2067
This theorem depends on definitions:  df-bi 115  df-tru 1290  df-nf 1393  df-sb 1690  df-clab 2072  df-cleq 2078  df-clel 2081  df-opab 3875  df-xp 4417
This theorem is referenced by:  xpindir  4540  xpexgALT  5861  xp1en  6491
  Copyright terms: Public domain W3C validator