ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xpeq2i Unicode version

Theorem xpeq2i 4740
Description: Equality inference for cross product. (Contributed by NM, 21-Dec-2008.)
Hypothesis
Ref Expression
xpeq1i.1  |-  A  =  B
Assertion
Ref Expression
xpeq2i  |-  ( C  X.  A )  =  ( C  X.  B
)

Proof of Theorem xpeq2i
StepHypRef Expression
1 xpeq1i.1 . 2  |-  A  =  B
2 xpeq2 4734 . 2  |-  ( A  =  B  ->  ( C  X.  A )  =  ( C  X.  B
) )
31, 2ax-mp 5 1  |-  ( C  X.  A )  =  ( C  X.  B
)
Colors of variables: wff set class
Syntax hints:    = wceq 1395    X. cxp 4717
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-11 1552  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-opab 4146  df-xp 4725
This theorem is referenced by:  xpindir  4858  xpexgALT  6278  xp1en  6982  djuassen  7399  xpdjuen  7400  pwf1oexmid  16365
  Copyright terms: Public domain W3C validator