ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xp1en Unicode version

Theorem xp1en 6918
Description: One times a cardinal number. (Contributed by NM, 27-Sep-2004.) (Revised by Mario Carneiro, 29-Apr-2015.)
Assertion
Ref Expression
xp1en  |-  ( A  e.  V  ->  ( A  X.  1o )  ~~  A )

Proof of Theorem xp1en
StepHypRef Expression
1 df1o2 6515 . . 3  |-  1o  =  { (/) }
21xpeq2i 4696 . 2  |-  ( A  X.  1o )  =  ( A  X.  { (/)
} )
3 0ex 4171 . . 3  |-  (/)  e.  _V
4 xpsneng 6917 . . 3  |-  ( ( A  e.  V  /\  (/) 
e.  _V )  ->  ( A  X.  { (/) } ) 
~~  A )
53, 4mpan2 425 . 2  |-  ( A  e.  V  ->  ( A  X.  { (/) } ) 
~~  A )
62, 5eqbrtrid 4079 1  |-  ( A  e.  V  ->  ( A  X.  1o )  ~~  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 2176   _Vcvv 2772   (/)c0 3460   {csn 3633   class class class wbr 4044    X. cxp 4673   1oc1o 6495    ~~ cen 6825
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-nul 4170  ax-pow 4218  ax-pr 4253  ax-un 4480
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ral 2489  df-rex 2490  df-v 2774  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3461  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-br 4045  df-opab 4106  df-mpt 4107  df-id 4340  df-suc 4418  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-1o 6502  df-en 6828
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator