ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xp1en Unicode version

Theorem xp1en 6646
Description: One times a cardinal number. (Contributed by NM, 27-Sep-2004.) (Revised by Mario Carneiro, 29-Apr-2015.)
Assertion
Ref Expression
xp1en  |-  ( A  e.  V  ->  ( A  X.  1o )  ~~  A )

Proof of Theorem xp1en
StepHypRef Expression
1 df1o2 6256 . . 3  |-  1o  =  { (/) }
21xpeq2i 4498 . 2  |-  ( A  X.  1o )  =  ( A  X.  { (/)
} )
3 0ex 3995 . . 3  |-  (/)  e.  _V
4 xpsneng 6645 . . 3  |-  ( ( A  e.  V  /\  (/) 
e.  _V )  ->  ( A  X.  { (/) } ) 
~~  A )
53, 4mpan2 419 . 2  |-  ( A  e.  V  ->  ( A  X.  { (/) } ) 
~~  A )
62, 5syl5eqbr 3908 1  |-  ( A  e.  V  ->  ( A  X.  1o )  ~~  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    e. wcel 1448   _Vcvv 2641   (/)c0 3310   {csn 3474   class class class wbr 3875    X. cxp 4475   1oc1o 6236    ~~ cen 6562
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 584  ax-in2 585  ax-io 671  ax-5 1391  ax-7 1392  ax-gen 1393  ax-ie1 1437  ax-ie2 1438  ax-8 1450  ax-10 1451  ax-11 1452  ax-i12 1453  ax-bndl 1454  ax-4 1455  ax-13 1459  ax-14 1460  ax-17 1474  ax-i9 1478  ax-ial 1482  ax-i5r 1483  ax-ext 2082  ax-sep 3986  ax-nul 3994  ax-pow 4038  ax-pr 4069  ax-un 4293
This theorem depends on definitions:  df-bi 116  df-3an 932  df-tru 1302  df-nf 1405  df-sb 1704  df-eu 1963  df-mo 1964  df-clab 2087  df-cleq 2093  df-clel 2096  df-nfc 2229  df-ral 2380  df-rex 2381  df-v 2643  df-dif 3023  df-un 3025  df-in 3027  df-ss 3034  df-nul 3311  df-pw 3459  df-sn 3480  df-pr 3481  df-op 3483  df-uni 3684  df-int 3719  df-br 3876  df-opab 3930  df-mpt 3931  df-id 4153  df-suc 4231  df-xp 4483  df-rel 4484  df-cnv 4485  df-co 4486  df-dm 4487  df-rn 4488  df-fun 5061  df-fn 5062  df-f 5063  df-f1 5064  df-fo 5065  df-f1o 5066  df-1o 6243  df-en 6565
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator