ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xpdjuen Unicode version

Theorem xpdjuen 7074
Description: Cardinal multiplication distributes over cardinal addition. Theorem 6I(3) of [Enderton] p. 142. (Contributed by NM, 26-Sep-2004.) (Revised by Mario Carneiro, 29-Apr-2015.)
Assertion
Ref Expression
xpdjuen  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( A  X.  ( B C ) )  ~~  ( ( A  X.  B ) ( A  X.  C ) ) )

Proof of Theorem xpdjuen
StepHypRef Expression
1 enrefg 6658 . . . . . 6  |-  ( A  e.  V  ->  A  ~~  A )
213ad2ant1 1002 . . . . 5  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  A  ~~  A )
3 0ex 4055 . . . . . . 7  |-  (/)  e.  _V
4 simp2 982 . . . . . . 7  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  B  e.  W )
5 xpsnen2g 6723 . . . . . . 7  |-  ( (
(/)  e.  _V  /\  B  e.  W )  ->  ( { (/) }  X.  B
)  ~~  B )
63, 4, 5sylancr 410 . . . . . 6  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( { (/) }  X.  B )  ~~  B
)
76ensymd 6677 . . . . 5  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  B  ~~  ( {
(/) }  X.  B
) )
8 xpen 6739 . . . . 5  |-  ( ( A  ~~  A  /\  B  ~~  ( { (/) }  X.  B ) )  ->  ( A  X.  B )  ~~  ( A  X.  ( { (/) }  X.  B ) ) )
92, 7, 8syl2anc 408 . . . 4  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( A  X.  B
)  ~~  ( A  X.  ( { (/) }  X.  B ) ) )
10 1on 6320 . . . . . . 7  |-  1o  e.  On
11 simp3 983 . . . . . . 7  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  C  e.  X )
12 xpsnen2g 6723 . . . . . . 7  |-  ( ( 1o  e.  On  /\  C  e.  X )  ->  ( { 1o }  X.  C )  ~~  C
)
1310, 11, 12sylancr 410 . . . . . 6  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( { 1o }  X.  C )  ~~  C
)
1413ensymd 6677 . . . . 5  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  C  ~~  ( { 1o }  X.  C
) )
15 xpen 6739 . . . . 5  |-  ( ( A  ~~  A  /\  C  ~~  ( { 1o }  X.  C ) )  ->  ( A  X.  C )  ~~  ( A  X.  ( { 1o }  X.  C ) ) )
162, 14, 15syl2anc 408 . . . 4  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( A  X.  C
)  ~~  ( A  X.  ( { 1o }  X.  C ) ) )
17 xp01disjl 6331 . . . . . . 7  |-  ( ( { (/) }  X.  B
)  i^i  ( { 1o }  X.  C ) )  =  (/)
1817xpeq2i 4560 . . . . . 6  |-  ( A  X.  ( ( {
(/) }  X.  B
)  i^i  ( { 1o }  X.  C ) ) )  =  ( A  X.  (/) )
19 xpindi 4674 . . . . . 6  |-  ( A  X.  ( ( {
(/) }  X.  B
)  i^i  ( { 1o }  X.  C ) ) )  =  ( ( A  X.  ( { (/) }  X.  B
) )  i^i  ( A  X.  ( { 1o }  X.  C ) ) )
20 xp0 4958 . . . . . 6  |-  ( A  X.  (/) )  =  (/)
2118, 19, 203eqtr3i 2168 . . . . 5  |-  ( ( A  X.  ( {
(/) }  X.  B
) )  i^i  ( A  X.  ( { 1o }  X.  C ) ) )  =  (/)
2221a1i 9 . . . 4  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( ( A  X.  ( { (/) }  X.  B
) )  i^i  ( A  X.  ( { 1o }  X.  C ) ) )  =  (/) )
23 djuenun 7068 . . . 4  |-  ( ( ( A  X.  B
)  ~~  ( A  X.  ( { (/) }  X.  B ) )  /\  ( A  X.  C
)  ~~  ( A  X.  ( { 1o }  X.  C ) )  /\  ( ( A  X.  ( { (/) }  X.  B
) )  i^i  ( A  X.  ( { 1o }  X.  C ) ) )  =  (/) )  -> 
( ( A  X.  B ) ( A  X.  C ) )  ~~  ( ( A  X.  ( { (/) }  X.  B
) )  u.  ( A  X.  ( { 1o }  X.  C ) ) ) )
249, 16, 22, 23syl3anc 1216 . . 3  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( ( A  X.  B ) ( A  X.  C ) )  ~~  ( ( A  X.  ( { (/) }  X.  B
) )  u.  ( A  X.  ( { 1o }  X.  C ) ) ) )
25 df-dju 6923 . . . . 5  |-  ( B C )  =  ( ( { (/) }  X.  B )  u.  ( { 1o }  X.  C
) )
2625xpeq2i 4560 . . . 4  |-  ( A  X.  ( B C ) )  =  ( A  X.  ( ( {
(/) }  X.  B
)  u.  ( { 1o }  X.  C
) ) )
27 xpundi 4595 . . . 4  |-  ( A  X.  ( ( {
(/) }  X.  B
)  u.  ( { 1o }  X.  C
) ) )  =  ( ( A  X.  ( { (/) }  X.  B
) )  u.  ( A  X.  ( { 1o }  X.  C ) ) )
2826, 27eqtri 2160 . . 3  |-  ( A  X.  ( B C ) )  =  ( ( A  X.  ( {
(/) }  X.  B
) )  u.  ( A  X.  ( { 1o }  X.  C ) ) )
2924, 28breqtrrdi 3970 . 2  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( ( A  X.  B ) ( A  X.  C ) )  ~~  ( A  X.  ( B C ) ) )
3029ensymd 6677 1  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( A  X.  ( B C ) )  ~~  ( ( A  X.  B ) ( A  X.  C ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 962    = wceq 1331    e. wcel 1480   _Vcvv 2686    u. cun 3069    i^i cin 3070   (/)c0 3363   {csn 3527   class class class wbr 3929   Oncon0 4285    X. cxp 4537   1oc1o 6306    ~~ cen 6632   ⊔ cdju 6922
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-iord 4288  df-on 4290  df-suc 4293  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-1o 6313  df-er 6429  df-en 6635  df-dju 6923  df-inl 6932  df-inr 6933
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator