| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > xpdjuen | Unicode version | ||
| Description: Cardinal multiplication distributes over cardinal addition. Theorem 6I(3) of [Enderton] p. 142. (Contributed by NM, 26-Sep-2004.) (Revised by Mario Carneiro, 29-Apr-2015.) |
| Ref | Expression |
|---|---|
| xpdjuen |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | enrefg 6878 |
. . . . . 6
| |
| 2 | 1 | 3ad2ant1 1021 |
. . . . 5
|
| 3 | 0ex 4187 |
. . . . . . 7
| |
| 4 | simp2 1001 |
. . . . . . 7
| |
| 5 | xpsnen2g 6949 |
. . . . . . 7
| |
| 6 | 3, 4, 5 | sylancr 414 |
. . . . . 6
|
| 7 | 6 | ensymd 6898 |
. . . . 5
|
| 8 | xpen 6967 |
. . . . 5
| |
| 9 | 2, 7, 8 | syl2anc 411 |
. . . 4
|
| 10 | 1on 6532 |
. . . . . . 7
| |
| 11 | simp3 1002 |
. . . . . . 7
| |
| 12 | xpsnen2g 6949 |
. . . . . . 7
| |
| 13 | 10, 11, 12 | sylancr 414 |
. . . . . 6
|
| 14 | 13 | ensymd 6898 |
. . . . 5
|
| 15 | xpen 6967 |
. . . . 5
| |
| 16 | 2, 14, 15 | syl2anc 411 |
. . . 4
|
| 17 | xp01disjl 6543 |
. . . . . . 7
| |
| 18 | 17 | xpeq2i 4714 |
. . . . . 6
|
| 19 | xpindi 4831 |
. . . . . 6
| |
| 20 | xp0 5121 |
. . . . . 6
| |
| 21 | 18, 19, 20 | 3eqtr3i 2236 |
. . . . 5
|
| 22 | 21 | a1i 9 |
. . . 4
|
| 23 | djuenun 7355 |
. . . 4
| |
| 24 | 9, 16, 22, 23 | syl3anc 1250 |
. . 3
|
| 25 | df-dju 7166 |
. . . . 5
| |
| 26 | 25 | xpeq2i 4714 |
. . . 4
|
| 27 | xpundi 4749 |
. . . 4
| |
| 28 | 26, 27 | eqtri 2228 |
. . 3
|
| 29 | 24, 28 | breqtrrdi 4101 |
. 2
|
| 30 | 29 | ensymd 6898 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-coll 4175 ax-sep 4178 ax-nul 4186 ax-pow 4234 ax-pr 4269 ax-un 4498 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-ral 2491 df-rex 2492 df-reu 2493 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-iun 3943 df-br 4060 df-opab 4122 df-mpt 4123 df-tr 4159 df-id 4358 df-iord 4431 df-on 4433 df-suc 4436 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-fv 5298 df-oprab 5971 df-mpo 5972 df-1st 6249 df-2nd 6250 df-1o 6525 df-er 6643 df-en 6851 df-dju 7166 df-inl 7175 df-inr 7176 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |