ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xpdjuen Unicode version

Theorem xpdjuen 7195
Description: Cardinal multiplication distributes over cardinal addition. Theorem 6I(3) of [Enderton] p. 142. (Contributed by NM, 26-Sep-2004.) (Revised by Mario Carneiro, 29-Apr-2015.)
Assertion
Ref Expression
xpdjuen  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( A  X.  ( B C ) )  ~~  ( ( A  X.  B ) ( A  X.  C ) ) )

Proof of Theorem xpdjuen
StepHypRef Expression
1 enrefg 6742 . . . . . 6  |-  ( A  e.  V  ->  A  ~~  A )
213ad2ant1 1013 . . . . 5  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  A  ~~  A )
3 0ex 4116 . . . . . . 7  |-  (/)  e.  _V
4 simp2 993 . . . . . . 7  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  B  e.  W )
5 xpsnen2g 6807 . . . . . . 7  |-  ( (
(/)  e.  _V  /\  B  e.  W )  ->  ( { (/) }  X.  B
)  ~~  B )
63, 4, 5sylancr 412 . . . . . 6  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( { (/) }  X.  B )  ~~  B
)
76ensymd 6761 . . . . 5  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  B  ~~  ( {
(/) }  X.  B
) )
8 xpen 6823 . . . . 5  |-  ( ( A  ~~  A  /\  B  ~~  ( { (/) }  X.  B ) )  ->  ( A  X.  B )  ~~  ( A  X.  ( { (/) }  X.  B ) ) )
92, 7, 8syl2anc 409 . . . 4  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( A  X.  B
)  ~~  ( A  X.  ( { (/) }  X.  B ) ) )
10 1on 6402 . . . . . . 7  |-  1o  e.  On
11 simp3 994 . . . . . . 7  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  C  e.  X )
12 xpsnen2g 6807 . . . . . . 7  |-  ( ( 1o  e.  On  /\  C  e.  X )  ->  ( { 1o }  X.  C )  ~~  C
)
1310, 11, 12sylancr 412 . . . . . 6  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( { 1o }  X.  C )  ~~  C
)
1413ensymd 6761 . . . . 5  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  C  ~~  ( { 1o }  X.  C
) )
15 xpen 6823 . . . . 5  |-  ( ( A  ~~  A  /\  C  ~~  ( { 1o }  X.  C ) )  ->  ( A  X.  C )  ~~  ( A  X.  ( { 1o }  X.  C ) ) )
162, 14, 15syl2anc 409 . . . 4  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( A  X.  C
)  ~~  ( A  X.  ( { 1o }  X.  C ) ) )
17 xp01disjl 6413 . . . . . . 7  |-  ( ( { (/) }  X.  B
)  i^i  ( { 1o }  X.  C ) )  =  (/)
1817xpeq2i 4632 . . . . . 6  |-  ( A  X.  ( ( {
(/) }  X.  B
)  i^i  ( { 1o }  X.  C ) ) )  =  ( A  X.  (/) )
19 xpindi 4746 . . . . . 6  |-  ( A  X.  ( ( {
(/) }  X.  B
)  i^i  ( { 1o }  X.  C ) ) )  =  ( ( A  X.  ( { (/) }  X.  B
) )  i^i  ( A  X.  ( { 1o }  X.  C ) ) )
20 xp0 5030 . . . . . 6  |-  ( A  X.  (/) )  =  (/)
2118, 19, 203eqtr3i 2199 . . . . 5  |-  ( ( A  X.  ( {
(/) }  X.  B
) )  i^i  ( A  X.  ( { 1o }  X.  C ) ) )  =  (/)
2221a1i 9 . . . 4  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( ( A  X.  ( { (/) }  X.  B
) )  i^i  ( A  X.  ( { 1o }  X.  C ) ) )  =  (/) )
23 djuenun 7189 . . . 4  |-  ( ( ( A  X.  B
)  ~~  ( A  X.  ( { (/) }  X.  B ) )  /\  ( A  X.  C
)  ~~  ( A  X.  ( { 1o }  X.  C ) )  /\  ( ( A  X.  ( { (/) }  X.  B
) )  i^i  ( A  X.  ( { 1o }  X.  C ) ) )  =  (/) )  -> 
( ( A  X.  B ) ( A  X.  C ) )  ~~  ( ( A  X.  ( { (/) }  X.  B
) )  u.  ( A  X.  ( { 1o }  X.  C ) ) ) )
249, 16, 22, 23syl3anc 1233 . . 3  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( ( A  X.  B ) ( A  X.  C ) )  ~~  ( ( A  X.  ( { (/) }  X.  B
) )  u.  ( A  X.  ( { 1o }  X.  C ) ) ) )
25 df-dju 7015 . . . . 5  |-  ( B C )  =  ( ( { (/) }  X.  B )  u.  ( { 1o }  X.  C
) )
2625xpeq2i 4632 . . . 4  |-  ( A  X.  ( B C ) )  =  ( A  X.  ( ( {
(/) }  X.  B
)  u.  ( { 1o }  X.  C
) ) )
27 xpundi 4667 . . . 4  |-  ( A  X.  ( ( {
(/) }  X.  B
)  u.  ( { 1o }  X.  C
) ) )  =  ( ( A  X.  ( { (/) }  X.  B
) )  u.  ( A  X.  ( { 1o }  X.  C ) ) )
2826, 27eqtri 2191 . . 3  |-  ( A  X.  ( B C ) )  =  ( ( A  X.  ( {
(/) }  X.  B
) )  u.  ( A  X.  ( { 1o }  X.  C ) ) )
2924, 28breqtrrdi 4031 . 2  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( ( A  X.  B ) ( A  X.  C ) )  ~~  ( A  X.  ( B C ) ) )
3029ensymd 6761 1  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( A  X.  ( B C ) )  ~~  ( ( A  X.  B ) ( A  X.  C ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 973    = wceq 1348    e. wcel 2141   _Vcvv 2730    u. cun 3119    i^i cin 3120   (/)c0 3414   {csn 3583   class class class wbr 3989   Oncon0 4348    X. cxp 4609   1oc1o 6388    ~~ cen 6716   ⊔ cdju 7014
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-iord 4351  df-on 4353  df-suc 4356  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-oprab 5857  df-mpo 5858  df-1st 6119  df-2nd 6120  df-1o 6395  df-er 6513  df-en 6719  df-dju 7015  df-inl 7024  df-inr 7025
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator