| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > xpdjuen | Unicode version | ||
| Description: Cardinal multiplication distributes over cardinal addition. Theorem 6I(3) of [Enderton] p. 142. (Contributed by NM, 26-Sep-2004.) (Revised by Mario Carneiro, 29-Apr-2015.) |
| Ref | Expression |
|---|---|
| xpdjuen |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | enrefg 6857 |
. . . . . 6
| |
| 2 | 1 | 3ad2ant1 1021 |
. . . . 5
|
| 3 | 0ex 4172 |
. . . . . . 7
| |
| 4 | simp2 1001 |
. . . . . . 7
| |
| 5 | xpsnen2g 6926 |
. . . . . . 7
| |
| 6 | 3, 4, 5 | sylancr 414 |
. . . . . 6
|
| 7 | 6 | ensymd 6877 |
. . . . 5
|
| 8 | xpen 6944 |
. . . . 5
| |
| 9 | 2, 7, 8 | syl2anc 411 |
. . . 4
|
| 10 | 1on 6511 |
. . . . . . 7
| |
| 11 | simp3 1002 |
. . . . . . 7
| |
| 12 | xpsnen2g 6926 |
. . . . . . 7
| |
| 13 | 10, 11, 12 | sylancr 414 |
. . . . . 6
|
| 14 | 13 | ensymd 6877 |
. . . . 5
|
| 15 | xpen 6944 |
. . . . 5
| |
| 16 | 2, 14, 15 | syl2anc 411 |
. . . 4
|
| 17 | xp01disjl 6522 |
. . . . . . 7
| |
| 18 | 17 | xpeq2i 4697 |
. . . . . 6
|
| 19 | xpindi 4814 |
. . . . . 6
| |
| 20 | xp0 5103 |
. . . . . 6
| |
| 21 | 18, 19, 20 | 3eqtr3i 2234 |
. . . . 5
|
| 22 | 21 | a1i 9 |
. . . 4
|
| 23 | djuenun 7326 |
. . . 4
| |
| 24 | 9, 16, 22, 23 | syl3anc 1250 |
. . 3
|
| 25 | df-dju 7142 |
. . . . 5
| |
| 26 | 25 | xpeq2i 4697 |
. . . 4
|
| 27 | xpundi 4732 |
. . . 4
| |
| 28 | 26, 27 | eqtri 2226 |
. . 3
|
| 29 | 24, 28 | breqtrrdi 4087 |
. 2
|
| 30 | 29 | ensymd 6877 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-coll 4160 ax-sep 4163 ax-nul 4171 ax-pow 4219 ax-pr 4254 ax-un 4481 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-ral 2489 df-rex 2490 df-reu 2491 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-nul 3461 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-iun 3929 df-br 4046 df-opab 4107 df-mpt 4108 df-tr 4144 df-id 4341 df-iord 4414 df-on 4416 df-suc 4419 df-xp 4682 df-rel 4683 df-cnv 4684 df-co 4685 df-dm 4686 df-rn 4687 df-res 4688 df-ima 4689 df-iota 5233 df-fun 5274 df-fn 5275 df-f 5276 df-f1 5277 df-fo 5278 df-f1o 5279 df-fv 5280 df-oprab 5950 df-mpo 5951 df-1st 6228 df-2nd 6229 df-1o 6504 df-er 6622 df-en 6830 df-dju 7142 df-inl 7151 df-inr 7152 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |