ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xpdjuen Unicode version

Theorem xpdjuen 7219
Description: Cardinal multiplication distributes over cardinal addition. Theorem 6I(3) of [Enderton] p. 142. (Contributed by NM, 26-Sep-2004.) (Revised by Mario Carneiro, 29-Apr-2015.)
Assertion
Ref Expression
xpdjuen  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( A  X.  ( B C ) )  ~~  ( ( A  X.  B ) ( A  X.  C ) ) )

Proof of Theorem xpdjuen
StepHypRef Expression
1 enrefg 6766 . . . . . 6  |-  ( A  e.  V  ->  A  ~~  A )
213ad2ant1 1018 . . . . 5  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  A  ~~  A )
3 0ex 4132 . . . . . . 7  |-  (/)  e.  _V
4 simp2 998 . . . . . . 7  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  B  e.  W )
5 xpsnen2g 6831 . . . . . . 7  |-  ( (
(/)  e.  _V  /\  B  e.  W )  ->  ( { (/) }  X.  B
)  ~~  B )
63, 4, 5sylancr 414 . . . . . 6  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( { (/) }  X.  B )  ~~  B
)
76ensymd 6785 . . . . 5  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  B  ~~  ( {
(/) }  X.  B
) )
8 xpen 6847 . . . . 5  |-  ( ( A  ~~  A  /\  B  ~~  ( { (/) }  X.  B ) )  ->  ( A  X.  B )  ~~  ( A  X.  ( { (/) }  X.  B ) ) )
92, 7, 8syl2anc 411 . . . 4  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( A  X.  B
)  ~~  ( A  X.  ( { (/) }  X.  B ) ) )
10 1on 6426 . . . . . . 7  |-  1o  e.  On
11 simp3 999 . . . . . . 7  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  C  e.  X )
12 xpsnen2g 6831 . . . . . . 7  |-  ( ( 1o  e.  On  /\  C  e.  X )  ->  ( { 1o }  X.  C )  ~~  C
)
1310, 11, 12sylancr 414 . . . . . 6  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( { 1o }  X.  C )  ~~  C
)
1413ensymd 6785 . . . . 5  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  C  ~~  ( { 1o }  X.  C
) )
15 xpen 6847 . . . . 5  |-  ( ( A  ~~  A  /\  C  ~~  ( { 1o }  X.  C ) )  ->  ( A  X.  C )  ~~  ( A  X.  ( { 1o }  X.  C ) ) )
162, 14, 15syl2anc 411 . . . 4  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( A  X.  C
)  ~~  ( A  X.  ( { 1o }  X.  C ) ) )
17 xp01disjl 6437 . . . . . . 7  |-  ( ( { (/) }  X.  B
)  i^i  ( { 1o }  X.  C ) )  =  (/)
1817xpeq2i 4649 . . . . . 6  |-  ( A  X.  ( ( {
(/) }  X.  B
)  i^i  ( { 1o }  X.  C ) ) )  =  ( A  X.  (/) )
19 xpindi 4764 . . . . . 6  |-  ( A  X.  ( ( {
(/) }  X.  B
)  i^i  ( { 1o }  X.  C ) ) )  =  ( ( A  X.  ( { (/) }  X.  B
) )  i^i  ( A  X.  ( { 1o }  X.  C ) ) )
20 xp0 5050 . . . . . 6  |-  ( A  X.  (/) )  =  (/)
2118, 19, 203eqtr3i 2206 . . . . 5  |-  ( ( A  X.  ( {
(/) }  X.  B
) )  i^i  ( A  X.  ( { 1o }  X.  C ) ) )  =  (/)
2221a1i 9 . . . 4  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( ( A  X.  ( { (/) }  X.  B
) )  i^i  ( A  X.  ( { 1o }  X.  C ) ) )  =  (/) )
23 djuenun 7213 . . . 4  |-  ( ( ( A  X.  B
)  ~~  ( A  X.  ( { (/) }  X.  B ) )  /\  ( A  X.  C
)  ~~  ( A  X.  ( { 1o }  X.  C ) )  /\  ( ( A  X.  ( { (/) }  X.  B
) )  i^i  ( A  X.  ( { 1o }  X.  C ) ) )  =  (/) )  -> 
( ( A  X.  B ) ( A  X.  C ) )  ~~  ( ( A  X.  ( { (/) }  X.  B
) )  u.  ( A  X.  ( { 1o }  X.  C ) ) ) )
249, 16, 22, 23syl3anc 1238 . . 3  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( ( A  X.  B ) ( A  X.  C ) )  ~~  ( ( A  X.  ( { (/) }  X.  B
) )  u.  ( A  X.  ( { 1o }  X.  C ) ) ) )
25 df-dju 7039 . . . . 5  |-  ( B C )  =  ( ( { (/) }  X.  B )  u.  ( { 1o }  X.  C
) )
2625xpeq2i 4649 . . . 4  |-  ( A  X.  ( B C ) )  =  ( A  X.  ( ( {
(/) }  X.  B
)  u.  ( { 1o }  X.  C
) ) )
27 xpundi 4684 . . . 4  |-  ( A  X.  ( ( {
(/) }  X.  B
)  u.  ( { 1o }  X.  C
) ) )  =  ( ( A  X.  ( { (/) }  X.  B
) )  u.  ( A  X.  ( { 1o }  X.  C ) ) )
2826, 27eqtri 2198 . . 3  |-  ( A  X.  ( B C ) )  =  ( ( A  X.  ( {
(/) }  X.  B
) )  u.  ( A  X.  ( { 1o }  X.  C ) ) )
2924, 28breqtrrdi 4047 . 2  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( ( A  X.  B ) ( A  X.  C ) )  ~~  ( A  X.  ( B C ) ) )
3029ensymd 6785 1  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( A  X.  ( B C ) )  ~~  ( ( A  X.  B ) ( A  X.  C ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 978    = wceq 1353    e. wcel 2148   _Vcvv 2739    u. cun 3129    i^i cin 3130   (/)c0 3424   {csn 3594   class class class wbr 4005   Oncon0 4365    X. cxp 4626   1oc1o 6412    ~~ cen 6740   ⊔ cdju 7038
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-tr 4104  df-id 4295  df-iord 4368  df-on 4370  df-suc 4373  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-oprab 5881  df-mpo 5882  df-1st 6143  df-2nd 6144  df-1o 6419  df-er 6537  df-en 6743  df-dju 7039  df-inl 7048  df-inr 7049
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator