ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xpdjuen Unicode version

Theorem xpdjuen 7231
Description: Cardinal multiplication distributes over cardinal addition. Theorem 6I(3) of [Enderton] p. 142. (Contributed by NM, 26-Sep-2004.) (Revised by Mario Carneiro, 29-Apr-2015.)
Assertion
Ref Expression
xpdjuen  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( A  X.  ( B C ) )  ~~  ( ( A  X.  B ) ( A  X.  C ) ) )

Proof of Theorem xpdjuen
StepHypRef Expression
1 enrefg 6778 . . . . . 6  |-  ( A  e.  V  ->  A  ~~  A )
213ad2ant1 1019 . . . . 5  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  A  ~~  A )
3 0ex 4142 . . . . . . 7  |-  (/)  e.  _V
4 simp2 999 . . . . . . 7  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  B  e.  W )
5 xpsnen2g 6843 . . . . . . 7  |-  ( (
(/)  e.  _V  /\  B  e.  W )  ->  ( { (/) }  X.  B
)  ~~  B )
63, 4, 5sylancr 414 . . . . . 6  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( { (/) }  X.  B )  ~~  B
)
76ensymd 6797 . . . . 5  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  B  ~~  ( {
(/) }  X.  B
) )
8 xpen 6859 . . . . 5  |-  ( ( A  ~~  A  /\  B  ~~  ( { (/) }  X.  B ) )  ->  ( A  X.  B )  ~~  ( A  X.  ( { (/) }  X.  B ) ) )
92, 7, 8syl2anc 411 . . . 4  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( A  X.  B
)  ~~  ( A  X.  ( { (/) }  X.  B ) ) )
10 1on 6438 . . . . . . 7  |-  1o  e.  On
11 simp3 1000 . . . . . . 7  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  C  e.  X )
12 xpsnen2g 6843 . . . . . . 7  |-  ( ( 1o  e.  On  /\  C  e.  X )  ->  ( { 1o }  X.  C )  ~~  C
)
1310, 11, 12sylancr 414 . . . . . 6  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( { 1o }  X.  C )  ~~  C
)
1413ensymd 6797 . . . . 5  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  C  ~~  ( { 1o }  X.  C
) )
15 xpen 6859 . . . . 5  |-  ( ( A  ~~  A  /\  C  ~~  ( { 1o }  X.  C ) )  ->  ( A  X.  C )  ~~  ( A  X.  ( { 1o }  X.  C ) ) )
162, 14, 15syl2anc 411 . . . 4  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( A  X.  C
)  ~~  ( A  X.  ( { 1o }  X.  C ) ) )
17 xp01disjl 6449 . . . . . . 7  |-  ( ( { (/) }  X.  B
)  i^i  ( { 1o }  X.  C ) )  =  (/)
1817xpeq2i 4659 . . . . . 6  |-  ( A  X.  ( ( {
(/) }  X.  B
)  i^i  ( { 1o }  X.  C ) ) )  =  ( A  X.  (/) )
19 xpindi 4774 . . . . . 6  |-  ( A  X.  ( ( {
(/) }  X.  B
)  i^i  ( { 1o }  X.  C ) ) )  =  ( ( A  X.  ( { (/) }  X.  B
) )  i^i  ( A  X.  ( { 1o }  X.  C ) ) )
20 xp0 5060 . . . . . 6  |-  ( A  X.  (/) )  =  (/)
2118, 19, 203eqtr3i 2216 . . . . 5  |-  ( ( A  X.  ( {
(/) }  X.  B
) )  i^i  ( A  X.  ( { 1o }  X.  C ) ) )  =  (/)
2221a1i 9 . . . 4  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( ( A  X.  ( { (/) }  X.  B
) )  i^i  ( A  X.  ( { 1o }  X.  C ) ) )  =  (/) )
23 djuenun 7225 . . . 4  |-  ( ( ( A  X.  B
)  ~~  ( A  X.  ( { (/) }  X.  B ) )  /\  ( A  X.  C
)  ~~  ( A  X.  ( { 1o }  X.  C ) )  /\  ( ( A  X.  ( { (/) }  X.  B
) )  i^i  ( A  X.  ( { 1o }  X.  C ) ) )  =  (/) )  -> 
( ( A  X.  B ) ( A  X.  C ) )  ~~  ( ( A  X.  ( { (/) }  X.  B
) )  u.  ( A  X.  ( { 1o }  X.  C ) ) ) )
249, 16, 22, 23syl3anc 1248 . . 3  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( ( A  X.  B ) ( A  X.  C ) )  ~~  ( ( A  X.  ( { (/) }  X.  B
) )  u.  ( A  X.  ( { 1o }  X.  C ) ) ) )
25 df-dju 7051 . . . . 5  |-  ( B C )  =  ( ( { (/) }  X.  B )  u.  ( { 1o }  X.  C
) )
2625xpeq2i 4659 . . . 4  |-  ( A  X.  ( B C ) )  =  ( A  X.  ( ( {
(/) }  X.  B
)  u.  ( { 1o }  X.  C
) ) )
27 xpundi 4694 . . . 4  |-  ( A  X.  ( ( {
(/) }  X.  B
)  u.  ( { 1o }  X.  C
) ) )  =  ( ( A  X.  ( { (/) }  X.  B
) )  u.  ( A  X.  ( { 1o }  X.  C ) ) )
2826, 27eqtri 2208 . . 3  |-  ( A  X.  ( B C ) )  =  ( ( A  X.  ( {
(/) }  X.  B
) )  u.  ( A  X.  ( { 1o }  X.  C ) ) )
2924, 28breqtrrdi 4057 . 2  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( ( A  X.  B ) ( A  X.  C ) )  ~~  ( A  X.  ( B C ) ) )
3029ensymd 6797 1  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( A  X.  ( B C ) )  ~~  ( ( A  X.  B ) ( A  X.  C ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 979    = wceq 1363    e. wcel 2158   _Vcvv 2749    u. cun 3139    i^i cin 3140   (/)c0 3434   {csn 3604   class class class wbr 4015   Oncon0 4375    X. cxp 4636   1oc1o 6424    ~~ cen 6752   ⊔ cdju 7050
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1457  ax-7 1458  ax-gen 1459  ax-ie1 1503  ax-ie2 1504  ax-8 1514  ax-10 1515  ax-11 1516  ax-i12 1517  ax-bndl 1519  ax-4 1520  ax-17 1536  ax-i9 1540  ax-ial 1544  ax-i5r 1545  ax-13 2160  ax-14 2161  ax-ext 2169  ax-coll 4130  ax-sep 4133  ax-nul 4141  ax-pow 4186  ax-pr 4221  ax-un 4445
This theorem depends on definitions:  df-bi 117  df-3an 981  df-tru 1366  df-fal 1369  df-nf 1471  df-sb 1773  df-eu 2039  df-mo 2040  df-clab 2174  df-cleq 2180  df-clel 2183  df-nfc 2318  df-ne 2358  df-ral 2470  df-rex 2471  df-reu 2472  df-rab 2474  df-v 2751  df-sbc 2975  df-csb 3070  df-dif 3143  df-un 3145  df-in 3147  df-ss 3154  df-nul 3435  df-pw 3589  df-sn 3610  df-pr 3611  df-op 3613  df-uni 3822  df-int 3857  df-iun 3900  df-br 4016  df-opab 4077  df-mpt 4078  df-tr 4114  df-id 4305  df-iord 4378  df-on 4380  df-suc 4383  df-xp 4644  df-rel 4645  df-cnv 4646  df-co 4647  df-dm 4648  df-rn 4649  df-res 4650  df-ima 4651  df-iota 5190  df-fun 5230  df-fn 5231  df-f 5232  df-f1 5233  df-fo 5234  df-f1o 5235  df-fv 5236  df-oprab 5892  df-mpo 5893  df-1st 6155  df-2nd 6156  df-1o 6431  df-er 6549  df-en 6755  df-dju 7051  df-inl 7060  df-inr 7061
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator