ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xpexgALT Unicode version

Theorem xpexgALT 6217
Description: The cross product of two sets is a set. Proposition 6.2 of [TakeutiZaring] p. 23. This version is proven using Replacement; see xpexg 4788 for a version that uses the Power Set axiom instead. (Contributed by Mario Carneiro, 20-May-2013.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
xpexgALT  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( A  X.  B
)  e.  _V )

Proof of Theorem xpexgALT
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iunid 3982 . . . 4  |-  U_ y  e.  B  { y }  =  B
21xpeq2i 4695 . . 3  |-  ( A  X.  U_ y  e.  B  { y } )  =  ( A  X.  B )
3 xpiundi 4732 . . 3  |-  ( A  X.  U_ y  e.  B  { y } )  =  U_ y  e.  B  ( A  X.  { y } )
42, 3eqtr3i 2227 . 2  |-  ( A  X.  B )  = 
U_ y  e.  B  ( A  X.  { y } )
5 id 19 . . 3  |-  ( B  e.  W  ->  B  e.  W )
6 fconstmpt 4721 . . . . 5  |-  ( A  X.  { y } )  =  ( x  e.  A  |->  y )
7 mptexg 5808 . . . . 5  |-  ( A  e.  V  ->  (
x  e.  A  |->  y )  e.  _V )
86, 7eqeltrid 2291 . . . 4  |-  ( A  e.  V  ->  ( A  X.  { y } )  e.  _V )
98ralrimivw 2579 . . 3  |-  ( A  e.  V  ->  A. y  e.  B  ( A  X.  { y } )  e.  _V )
10 iunexg 6203 . . 3  |-  ( ( B  e.  W  /\  A. y  e.  B  ( A  X.  { y } )  e.  _V )  ->  U_ y  e.  B  ( A  X.  { y } )  e.  _V )
115, 9, 10syl2anr 290 . 2  |-  ( ( A  e.  V  /\  B  e.  W )  ->  U_ y  e.  B  ( A  X.  { y } )  e.  _V )
124, 11eqeltrid 2291 1  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( A  X.  B
)  e.  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    e. wcel 2175   A.wral 2483   _Vcvv 2771   {csn 3632   U_ciun 3926    |-> cmpt 4104    X. cxp 4672
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-pow 4217  ax-pr 4252  ax-un 4479
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1375  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ral 2488  df-rex 2489  df-reu 2490  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-un 3169  df-in 3171  df-ss 3178  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-id 4339  df-xp 4680  df-rel 4681  df-cnv 4682  df-co 4683  df-dm 4684  df-rn 4685  df-res 4686  df-ima 4687  df-iota 5231  df-fun 5272  df-fn 5273  df-f 5274  df-f1 5275  df-fo 5276  df-f1o 5277  df-fv 5278
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator