Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > xpexgALT | Unicode version |
Description: The cross product of two sets is a set. Proposition 6.2 of [TakeutiZaring] p. 23. This version is proven using Replacement; see xpexg 4717 for a version that uses the Power Set axiom instead. (Contributed by Mario Carneiro, 20-May-2013.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
xpexgALT |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iunid 3920 | . . . 4 | |
2 | 1 | xpeq2i 4624 | . . 3 |
3 | xpiundi 4661 | . . 3 | |
4 | 2, 3 | eqtr3i 2188 | . 2 |
5 | id 19 | . . 3 | |
6 | fconstmpt 4650 | . . . . 5 | |
7 | mptexg 5709 | . . . . 5 | |
8 | 6, 7 | eqeltrid 2252 | . . . 4 |
9 | 8 | ralrimivw 2539 | . . 3 |
10 | iunexg 6084 | . . 3 | |
11 | 5, 9, 10 | syl2anr 288 | . 2 |
12 | 4, 11 | eqeltrid 2252 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wcel 2136 wral 2443 cvv 2725 csn 3575 ciun 3865 cmpt 4042 cxp 4601 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-coll 4096 ax-sep 4099 ax-pow 4152 ax-pr 4186 ax-un 4410 |
This theorem depends on definitions: df-bi 116 df-3an 970 df-tru 1346 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2296 df-ral 2448 df-rex 2449 df-reu 2450 df-rab 2452 df-v 2727 df-sbc 2951 df-csb 3045 df-un 3119 df-in 3121 df-ss 3128 df-pw 3560 df-sn 3581 df-pr 3582 df-op 3584 df-uni 3789 df-iun 3867 df-br 3982 df-opab 4043 df-mpt 4044 df-id 4270 df-xp 4609 df-rel 4610 df-cnv 4611 df-co 4612 df-dm 4613 df-rn 4614 df-res 4615 df-ima 4616 df-iota 5152 df-fun 5189 df-fn 5190 df-f 5191 df-f1 5192 df-fo 5193 df-f1o 5194 df-fv 5195 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |