Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > xpexgALT | Unicode version |
Description: The cross product of two sets is a set. Proposition 6.2 of [TakeutiZaring] p. 23. This version is proven using Replacement; see xpexg 4723 for a version that uses the Power Set axiom instead. (Contributed by Mario Carneiro, 20-May-2013.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
xpexgALT |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iunid 3926 | . . . 4 | |
2 | 1 | xpeq2i 4630 | . . 3 |
3 | xpiundi 4667 | . . 3 | |
4 | 2, 3 | eqtr3i 2193 | . 2 |
5 | id 19 | . . 3 | |
6 | fconstmpt 4656 | . . . . 5 | |
7 | mptexg 5718 | . . . . 5 | |
8 | 6, 7 | eqeltrid 2257 | . . . 4 |
9 | 8 | ralrimivw 2544 | . . 3 |
10 | iunexg 6095 | . . 3 | |
11 | 5, 9, 10 | syl2anr 288 | . 2 |
12 | 4, 11 | eqeltrid 2257 | 1 |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wcel 2141 wral 2448 cvv 2730 csn 3581 ciun 3871 cmpt 4048 cxp 4607 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4102 ax-sep 4105 ax-pow 4158 ax-pr 4192 ax-un 4416 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-un 3125 df-in 3127 df-ss 3134 df-pw 3566 df-sn 3587 df-pr 3588 df-op 3590 df-uni 3795 df-iun 3873 df-br 3988 df-opab 4049 df-mpt 4050 df-id 4276 df-xp 4615 df-rel 4616 df-cnv 4617 df-co 4618 df-dm 4619 df-rn 4620 df-res 4621 df-ima 4622 df-iota 5158 df-fun 5198 df-fn 5199 df-f 5200 df-f1 5201 df-fo 5202 df-f1o 5203 df-fv 5204 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |