ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xpexgALT Unicode version

Theorem xpexgALT 6039
Description: The cross product of two sets is a set. Proposition 6.2 of [TakeutiZaring] p. 23. This version is proven using Replacement; see xpexg 4661 for a version that uses the Power Set axiom instead. (Contributed by Mario Carneiro, 20-May-2013.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
xpexgALT  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( A  X.  B
)  e.  _V )

Proof of Theorem xpexgALT
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 iunid 3876 . . . 4  |-  U_ y  e.  B  { y }  =  B
21xpeq2i 4568 . . 3  |-  ( A  X.  U_ y  e.  B  { y } )  =  ( A  X.  B )
3 xpiundi 4605 . . 3  |-  ( A  X.  U_ y  e.  B  { y } )  =  U_ y  e.  B  ( A  X.  { y } )
42, 3eqtr3i 2163 . 2  |-  ( A  X.  B )  = 
U_ y  e.  B  ( A  X.  { y } )
5 id 19 . . 3  |-  ( B  e.  W  ->  B  e.  W )
6 fconstmpt 4594 . . . . 5  |-  ( A  X.  { y } )  =  ( x  e.  A  |->  y )
7 mptexg 5653 . . . . 5  |-  ( A  e.  V  ->  (
x  e.  A  |->  y )  e.  _V )
86, 7eqeltrid 2227 . . . 4  |-  ( A  e.  V  ->  ( A  X.  { y } )  e.  _V )
98ralrimivw 2509 . . 3  |-  ( A  e.  V  ->  A. y  e.  B  ( A  X.  { y } )  e.  _V )
10 iunexg 6025 . . 3  |-  ( ( B  e.  W  /\  A. y  e.  B  ( A  X.  { y } )  e.  _V )  ->  U_ y  e.  B  ( A  X.  { y } )  e.  _V )
115, 9, 10syl2anr 288 . 2  |-  ( ( A  e.  V  /\  B  e.  W )  ->  U_ y  e.  B  ( A  X.  { y } )  e.  _V )
124, 11eqeltrid 2227 1  |-  ( ( A  e.  V  /\  B  e.  W )  ->  ( A  X.  B
)  e.  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    e. wcel 1481   A.wral 2417   _Vcvv 2689   {csn 3532   U_ciun 3821    |-> cmpt 3997    X. cxp 4545
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-13 1492  ax-14 1493  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-coll 4051  ax-sep 4054  ax-pow 4106  ax-pr 4139  ax-un 4363
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-nf 1438  df-sb 1737  df-eu 2003  df-mo 2004  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-ral 2422  df-rex 2423  df-reu 2424  df-rab 2426  df-v 2691  df-sbc 2914  df-csb 3008  df-un 3080  df-in 3082  df-ss 3089  df-pw 3517  df-sn 3538  df-pr 3539  df-op 3541  df-uni 3745  df-iun 3823  df-br 3938  df-opab 3998  df-mpt 3999  df-id 4223  df-xp 4553  df-rel 4554  df-cnv 4555  df-co 4556  df-dm 4557  df-rn 4558  df-res 4559  df-ima 4560  df-iota 5096  df-fun 5133  df-fn 5134  df-f 5135  df-f1 5136  df-fo 5137  df-f1o 5138  df-fv 5139
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator