ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xpeq1i Unicode version

Theorem xpeq1i 4624
Description: Equality inference for cross product. (Contributed by NM, 21-Dec-2008.)
Hypothesis
Ref Expression
xpeq1i.1  |-  A  =  B
Assertion
Ref Expression
xpeq1i  |-  ( A  X.  C )  =  ( B  X.  C
)

Proof of Theorem xpeq1i
StepHypRef Expression
1 xpeq1i.1 . 2  |-  A  =  B
2 xpeq1 4618 . 2  |-  ( A  =  B  ->  ( A  X.  C )  =  ( B  X.  C
) )
31, 2ax-mp 5 1  |-  ( A  X.  C )  =  ( B  X.  C
)
Colors of variables: wff set class
Syntax hints:    = wceq 1343    X. cxp 4602
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-11 1494  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-opab 4044  df-xp 4610
This theorem is referenced by:  iunxpconst  4664  xpindi  4739  resdmres  5095  mapsnconst  6660  mapsncnv  6661  xp2dju  7171
  Copyright terms: Public domain W3C validator