ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  djuassen Unicode version

Theorem djuassen 7277
Description: Associative law for cardinal addition. Exercise 4.56(c) of [Mendelson] p. 258. (Contributed by NM, 26-Sep-2004.) (Revised by Mario Carneiro, 29-Apr-2015.)
Assertion
Ref Expression
djuassen  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( ( A B ) C )  ~~  ( A ( B C )
) )

Proof of Theorem djuassen
StepHypRef Expression
1 0ex 4156 . . . . . 6  |-  (/)  e.  _V
2 simp1 999 . . . . . 6  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  A  e.  V )
3 xpsnen2g 6883 . . . . . 6  |-  ( (
(/)  e.  _V  /\  A  e.  V )  ->  ( { (/) }  X.  A
)  ~~  A )
41, 2, 3sylancr 414 . . . . 5  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( { (/) }  X.  A )  ~~  A
)
54ensymd 6837 . . . 4  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  A  ~~  ( {
(/) }  X.  A
) )
6 1oex 6477 . . . . . . 7  |-  1o  e.  _V
71snex 4214 . . . . . . . 8  |-  { (/) }  e.  _V
8 simp2 1000 . . . . . . . 8  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  B  e.  W )
9 xpexg 4773 . . . . . . . 8  |-  ( ( { (/) }  e.  _V  /\  B  e.  W )  ->  ( { (/) }  X.  B )  e. 
_V )
107, 8, 9sylancr 414 . . . . . . 7  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( { (/) }  X.  B )  e.  _V )
11 xpsnen2g 6883 . . . . . . 7  |-  ( ( 1o  e.  _V  /\  ( { (/) }  X.  B
)  e.  _V )  ->  ( { 1o }  X.  ( { (/) }  X.  B ) )  ~~  ( { (/) }  X.  B
) )
126, 10, 11sylancr 414 . . . . . 6  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( { 1o }  X.  ( { (/) }  X.  B ) )  ~~  ( { (/) }  X.  B
) )
13 xpsnen2g 6883 . . . . . . 7  |-  ( (
(/)  e.  _V  /\  B  e.  W )  ->  ( { (/) }  X.  B
)  ~~  B )
141, 8, 13sylancr 414 . . . . . 6  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( { (/) }  X.  B )  ~~  B
)
15 entr 6838 . . . . . 6  |-  ( ( ( { 1o }  X.  ( { (/) }  X.  B ) )  ~~  ( { (/) }  X.  B
)  /\  ( { (/)
}  X.  B ) 
~~  B )  -> 
( { 1o }  X.  ( { (/) }  X.  B ) )  ~~  B )
1612, 14, 15syl2anc 411 . . . . 5  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( { 1o }  X.  ( { (/) }  X.  B ) )  ~~  B )
1716ensymd 6837 . . . 4  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  B  ~~  ( { 1o }  X.  ( { (/) }  X.  B
) ) )
18 xp01disjl 6487 . . . . 5  |-  ( ( { (/) }  X.  A
)  i^i  ( { 1o }  X.  ( {
(/) }  X.  B
) ) )  =  (/)
1918a1i 9 . . . 4  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( ( { (/) }  X.  A )  i^i  ( { 1o }  X.  ( { (/) }  X.  B ) ) )  =  (/) )
20 djuenun 7272 . . . 4  |-  ( ( A  ~~  ( {
(/) }  X.  A
)  /\  B  ~~  ( { 1o }  X.  ( { (/) }  X.  B
) )  /\  (
( { (/) }  X.  A )  i^i  ( { 1o }  X.  ( { (/) }  X.  B
) ) )  =  (/) )  ->  ( A B )  ~~  (
( { (/) }  X.  A )  u.  ( { 1o }  X.  ( { (/) }  X.  B
) ) ) )
215, 17, 19, 20syl3anc 1249 . . 3  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( A B )  ~~  ( ( { (/) }  X.  A )  u.  ( { 1o }  X.  ( { (/) }  X.  B ) ) ) )
226snex 4214 . . . . . . 7  |-  { 1o }  e.  _V
23 simp3 1001 . . . . . . 7  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  C  e.  X )
24 xpexg 4773 . . . . . . 7  |-  ( ( { 1o }  e.  _V  /\  C  e.  X
)  ->  ( { 1o }  X.  C )  e.  _V )
2522, 23, 24sylancr 414 . . . . . 6  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( { 1o }  X.  C )  e.  _V )
26 xpsnen2g 6883 . . . . . 6  |-  ( ( 1o  e.  _V  /\  ( { 1o }  X.  C )  e.  _V )  ->  ( { 1o }  X.  ( { 1o }  X.  C ) ) 
~~  ( { 1o }  X.  C ) )
276, 25, 26sylancr 414 . . . . 5  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( { 1o }  X.  ( { 1o }  X.  C ) )  ~~  ( { 1o }  X.  C ) )
28 xpsnen2g 6883 . . . . . 6  |-  ( ( 1o  e.  _V  /\  C  e.  X )  ->  ( { 1o }  X.  C )  ~~  C
)
296, 23, 28sylancr 414 . . . . 5  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( { 1o }  X.  C )  ~~  C
)
30 entr 6838 . . . . 5  |-  ( ( ( { 1o }  X.  ( { 1o }  X.  C ) )  ~~  ( { 1o }  X.  C )  /\  ( { 1o }  X.  C
)  ~~  C )  ->  ( { 1o }  X.  ( { 1o }  X.  C ) )  ~~  C )
3127, 29, 30syl2anc 411 . . . 4  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( { 1o }  X.  ( { 1o }  X.  C ) )  ~~  C )
3231ensymd 6837 . . 3  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  C  ~~  ( { 1o }  X.  ( { 1o }  X.  C
) ) )
33 indir 3408 . . . . 5  |-  ( ( ( { (/) }  X.  A )  u.  ( { 1o }  X.  ( { (/) }  X.  B
) ) )  i^i  ( { 1o }  X.  ( { 1o }  X.  C ) ) )  =  ( ( ( { (/) }  X.  A
)  i^i  ( { 1o }  X.  ( { 1o }  X.  C
) ) )  u.  ( ( { 1o }  X.  ( { (/) }  X.  B ) )  i^i  ( { 1o }  X.  ( { 1o }  X.  C ) ) ) )
34 xp01disjl 6487 . . . . . . 7  |-  ( ( { (/) }  X.  A
)  i^i  ( { 1o }  X.  ( { 1o }  X.  C
) ) )  =  (/)
35 xp01disjl 6487 . . . . . . . . 9  |-  ( ( { (/) }  X.  B
)  i^i  ( { 1o }  X.  C ) )  =  (/)
3635xpeq2i 4680 . . . . . . . 8  |-  ( { 1o }  X.  (
( { (/) }  X.  B )  i^i  ( { 1o }  X.  C
) ) )  =  ( { 1o }  X.  (/) )
37 xpindi 4797 . . . . . . . 8  |-  ( { 1o }  X.  (
( { (/) }  X.  B )  i^i  ( { 1o }  X.  C
) ) )  =  ( ( { 1o }  X.  ( { (/) }  X.  B ) )  i^i  ( { 1o }  X.  ( { 1o }  X.  C ) ) )
38 xp0 5085 . . . . . . . 8  |-  ( { 1o }  X.  (/) )  =  (/)
3936, 37, 383eqtr3i 2222 . . . . . . 7  |-  ( ( { 1o }  X.  ( { (/) }  X.  B
) )  i^i  ( { 1o }  X.  ( { 1o }  X.  C
) ) )  =  (/)
4034, 39uneq12i 3311 . . . . . 6  |-  ( ( ( { (/) }  X.  A )  i^i  ( { 1o }  X.  ( { 1o }  X.  C
) ) )  u.  ( ( { 1o }  X.  ( { (/) }  X.  B ) )  i^i  ( { 1o }  X.  ( { 1o }  X.  C ) ) ) )  =  (
(/)  u.  (/) )
41 un0 3480 . . . . . 6  |-  ( (/)  u.  (/) )  =  (/)
4240, 41eqtri 2214 . . . . 5  |-  ( ( ( { (/) }  X.  A )  i^i  ( { 1o }  X.  ( { 1o }  X.  C
) ) )  u.  ( ( { 1o }  X.  ( { (/) }  X.  B ) )  i^i  ( { 1o }  X.  ( { 1o }  X.  C ) ) ) )  =  (/)
4333, 42eqtri 2214 . . . 4  |-  ( ( ( { (/) }  X.  A )  u.  ( { 1o }  X.  ( { (/) }  X.  B
) ) )  i^i  ( { 1o }  X.  ( { 1o }  X.  C ) ) )  =  (/)
4443a1i 9 . . 3  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( ( ( {
(/) }  X.  A
)  u.  ( { 1o }  X.  ( { (/) }  X.  B
) ) )  i^i  ( { 1o }  X.  ( { 1o }  X.  C ) ) )  =  (/) )
45 djuenun 7272 . . 3  |-  ( ( ( A B )  ~~  ( ( { (/) }  X.  A )  u.  ( { 1o }  X.  ( { (/) }  X.  B ) ) )  /\  C  ~~  ( { 1o }  X.  ( { 1o }  X.  C
) )  /\  (
( ( { (/) }  X.  A )  u.  ( { 1o }  X.  ( { (/) }  X.  B ) ) )  i^i  ( { 1o }  X.  ( { 1o }  X.  C ) ) )  =  (/) )  -> 
( ( A B ) C )  ~~  (
( ( { (/) }  X.  A )  u.  ( { 1o }  X.  ( { (/) }  X.  B ) ) )  u.  ( { 1o }  X.  ( { 1o }  X.  C ) ) ) )
4621, 32, 44, 45syl3anc 1249 . 2  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( ( A B ) C )  ~~  (
( ( { (/) }  X.  A )  u.  ( { 1o }  X.  ( { (/) }  X.  B ) ) )  u.  ( { 1o }  X.  ( { 1o }  X.  C ) ) ) )
47 df-dju 7097 . . . . . 6  |-  ( B C )  =  ( ( { (/) }  X.  B )  u.  ( { 1o }  X.  C
) )
4847xpeq2i 4680 . . . . 5  |-  ( { 1o }  X.  ( B C ) )  =  ( { 1o }  X.  ( ( { (/) }  X.  B )  u.  ( { 1o }  X.  C ) ) )
49 xpundi 4715 . . . . 5  |-  ( { 1o }  X.  (
( { (/) }  X.  B )  u.  ( { 1o }  X.  C
) ) )  =  ( ( { 1o }  X.  ( { (/) }  X.  B ) )  u.  ( { 1o }  X.  ( { 1o }  X.  C ) ) )
5048, 49eqtri 2214 . . . 4  |-  ( { 1o }  X.  ( B C ) )  =  ( ( { 1o }  X.  ( { (/) }  X.  B ) )  u.  ( { 1o }  X.  ( { 1o }  X.  C ) ) )
5150uneq2i 3310 . . 3  |-  ( ( { (/) }  X.  A
)  u.  ( { 1o }  X.  ( B C ) ) )  =  ( ( {
(/) }  X.  A
)  u.  ( ( { 1o }  X.  ( { (/) }  X.  B
) )  u.  ( { 1o }  X.  ( { 1o }  X.  C
) ) ) )
52 df-dju 7097 . . 3  |-  ( A ( B C ) )  =  ( ( {
(/) }  X.  A
)  u.  ( { 1o }  X.  ( B C ) ) )
53 unass 3316 . . 3  |-  ( ( ( { (/) }  X.  A )  u.  ( { 1o }  X.  ( { (/) }  X.  B
) ) )  u.  ( { 1o }  X.  ( { 1o }  X.  C ) ) )  =  ( ( {
(/) }  X.  A
)  u.  ( ( { 1o }  X.  ( { (/) }  X.  B
) )  u.  ( { 1o }  X.  ( { 1o }  X.  C
) ) ) )
5451, 52, 533eqtr4i 2224 . 2  |-  ( A ( B C ) )  =  ( ( ( { (/) }  X.  A
)  u.  ( { 1o }  X.  ( { (/) }  X.  B
) ) )  u.  ( { 1o }  X.  ( { 1o }  X.  C ) ) )
5546, 54breqtrrdi 4071 1  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( ( A B ) C )  ~~  ( A ( B C )
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 980    = wceq 1364    e. wcel 2164   _Vcvv 2760    u. cun 3151    i^i cin 3152   (/)c0 3446   {csn 3618   class class class wbr 4029    X. cxp 4657   1oc1o 6462    ~~ cen 6792   ⊔ cdju 7096
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-nul 4155  ax-pow 4203  ax-pr 4238  ax-un 4464
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ne 2365  df-ral 2477  df-rex 2478  df-reu 2479  df-rab 2481  df-v 2762  df-sbc 2986  df-csb 3081  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3447  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-uni 3836  df-int 3871  df-iun 3914  df-br 4030  df-opab 4091  df-mpt 4092  df-tr 4128  df-id 4324  df-iord 4397  df-on 4399  df-suc 4402  df-xp 4665  df-rel 4666  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-iota 5215  df-fun 5256  df-fn 5257  df-f 5258  df-f1 5259  df-fo 5260  df-f1o 5261  df-fv 5262  df-1st 6193  df-2nd 6194  df-1o 6469  df-er 6587  df-en 6795  df-dju 7097  df-inl 7106  df-inr 7107
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator