Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > djuassen | Unicode version |
Description: Associative law for cardinal addition. Exercise 4.56(c) of [Mendelson] p. 258. (Contributed by NM, 26-Sep-2004.) (Revised by Mario Carneiro, 29-Apr-2015.) |
Ref | Expression |
---|---|
djuassen | ⊔ ⊔ ⊔ ⊔ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ex 4116 | . . . . . 6 | |
2 | simp1 992 | . . . . . 6 | |
3 | xpsnen2g 6807 | . . . . . 6 | |
4 | 1, 2, 3 | sylancr 412 | . . . . 5 |
5 | 4 | ensymd 6761 | . . . 4 |
6 | 1oex 6403 | . . . . . . 7 | |
7 | 1 | snex 4171 | . . . . . . . 8 |
8 | simp2 993 | . . . . . . . 8 | |
9 | xpexg 4725 | . . . . . . . 8 | |
10 | 7, 8, 9 | sylancr 412 | . . . . . . 7 |
11 | xpsnen2g 6807 | . . . . . . 7 | |
12 | 6, 10, 11 | sylancr 412 | . . . . . 6 |
13 | xpsnen2g 6807 | . . . . . . 7 | |
14 | 1, 8, 13 | sylancr 412 | . . . . . 6 |
15 | entr 6762 | . . . . . 6 | |
16 | 12, 14, 15 | syl2anc 409 | . . . . 5 |
17 | 16 | ensymd 6761 | . . . 4 |
18 | xp01disjl 6413 | . . . . 5 | |
19 | 18 | a1i 9 | . . . 4 |
20 | djuenun 7189 | . . . 4 ⊔ | |
21 | 5, 17, 19, 20 | syl3anc 1233 | . . 3 ⊔ |
22 | 6 | snex 4171 | . . . . . . 7 |
23 | simp3 994 | . . . . . . 7 | |
24 | xpexg 4725 | . . . . . . 7 | |
25 | 22, 23, 24 | sylancr 412 | . . . . . 6 |
26 | xpsnen2g 6807 | . . . . . 6 | |
27 | 6, 25, 26 | sylancr 412 | . . . . 5 |
28 | xpsnen2g 6807 | . . . . . 6 | |
29 | 6, 23, 28 | sylancr 412 | . . . . 5 |
30 | entr 6762 | . . . . 5 | |
31 | 27, 29, 30 | syl2anc 409 | . . . 4 |
32 | 31 | ensymd 6761 | . . 3 |
33 | indir 3376 | . . . . 5 | |
34 | xp01disjl 6413 | . . . . . . 7 | |
35 | xp01disjl 6413 | . . . . . . . . 9 | |
36 | 35 | xpeq2i 4632 | . . . . . . . 8 |
37 | xpindi 4746 | . . . . . . . 8 | |
38 | xp0 5030 | . . . . . . . 8 | |
39 | 36, 37, 38 | 3eqtr3i 2199 | . . . . . . 7 |
40 | 34, 39 | uneq12i 3279 | . . . . . 6 |
41 | un0 3448 | . . . . . 6 | |
42 | 40, 41 | eqtri 2191 | . . . . 5 |
43 | 33, 42 | eqtri 2191 | . . . 4 |
44 | 43 | a1i 9 | . . 3 |
45 | djuenun 7189 | . . 3 ⊔ ⊔ ⊔ | |
46 | 21, 32, 44, 45 | syl3anc 1233 | . 2 ⊔ ⊔ |
47 | df-dju 7015 | . . . . . 6 ⊔ | |
48 | 47 | xpeq2i 4632 | . . . . 5 ⊔ |
49 | xpundi 4667 | . . . . 5 | |
50 | 48, 49 | eqtri 2191 | . . . 4 ⊔ |
51 | 50 | uneq2i 3278 | . . 3 ⊔ |
52 | df-dju 7015 | . . 3 ⊔ ⊔ ⊔ | |
53 | unass 3284 | . . 3 | |
54 | 51, 52, 53 | 3eqtr4i 2201 | . 2 ⊔ ⊔ |
55 | 46, 54 | breqtrrdi 4031 | 1 ⊔ ⊔ ⊔ ⊔ |
Colors of variables: wff set class |
Syntax hints: wi 4 w3a 973 wceq 1348 wcel 2141 cvv 2730 cun 3119 cin 3120 c0 3414 csn 3583 class class class wbr 3989 cxp 4609 c1o 6388 cen 6716 ⊔ cdju 7014 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4104 ax-sep 4107 ax-nul 4115 ax-pow 4160 ax-pr 4194 ax-un 4418 |
This theorem depends on definitions: df-bi 116 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-tr 4088 df-id 4278 df-iord 4351 df-on 4353 df-suc 4356 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-1st 6119 df-2nd 6120 df-1o 6395 df-er 6513 df-en 6719 df-dju 7015 df-inl 7024 df-inr 7025 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |