ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  djuassen Unicode version

Theorem djuassen 7173
Description: Associative law for cardinal addition. Exercise 4.56(c) of [Mendelson] p. 258. (Contributed by NM, 26-Sep-2004.) (Revised by Mario Carneiro, 29-Apr-2015.)
Assertion
Ref Expression
djuassen  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( ( A B ) C )  ~~  ( A ( B C )
) )

Proof of Theorem djuassen
StepHypRef Expression
1 0ex 4109 . . . . . 6  |-  (/)  e.  _V
2 simp1 987 . . . . . 6  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  A  e.  V )
3 xpsnen2g 6795 . . . . . 6  |-  ( (
(/)  e.  _V  /\  A  e.  V )  ->  ( { (/) }  X.  A
)  ~~  A )
41, 2, 3sylancr 411 . . . . 5  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( { (/) }  X.  A )  ~~  A
)
54ensymd 6749 . . . 4  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  A  ~~  ( {
(/) }  X.  A
) )
6 1oex 6392 . . . . . . 7  |-  1o  e.  _V
71snex 4164 . . . . . . . 8  |-  { (/) }  e.  _V
8 simp2 988 . . . . . . . 8  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  B  e.  W )
9 xpexg 4718 . . . . . . . 8  |-  ( ( { (/) }  e.  _V  /\  B  e.  W )  ->  ( { (/) }  X.  B )  e. 
_V )
107, 8, 9sylancr 411 . . . . . . 7  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( { (/) }  X.  B )  e.  _V )
11 xpsnen2g 6795 . . . . . . 7  |-  ( ( 1o  e.  _V  /\  ( { (/) }  X.  B
)  e.  _V )  ->  ( { 1o }  X.  ( { (/) }  X.  B ) )  ~~  ( { (/) }  X.  B
) )
126, 10, 11sylancr 411 . . . . . 6  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( { 1o }  X.  ( { (/) }  X.  B ) )  ~~  ( { (/) }  X.  B
) )
13 xpsnen2g 6795 . . . . . . 7  |-  ( (
(/)  e.  _V  /\  B  e.  W )  ->  ( { (/) }  X.  B
)  ~~  B )
141, 8, 13sylancr 411 . . . . . 6  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( { (/) }  X.  B )  ~~  B
)
15 entr 6750 . . . . . 6  |-  ( ( ( { 1o }  X.  ( { (/) }  X.  B ) )  ~~  ( { (/) }  X.  B
)  /\  ( { (/)
}  X.  B ) 
~~  B )  -> 
( { 1o }  X.  ( { (/) }  X.  B ) )  ~~  B )
1612, 14, 15syl2anc 409 . . . . 5  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( { 1o }  X.  ( { (/) }  X.  B ) )  ~~  B )
1716ensymd 6749 . . . 4  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  B  ~~  ( { 1o }  X.  ( { (/) }  X.  B
) ) )
18 xp01disjl 6402 . . . . 5  |-  ( ( { (/) }  X.  A
)  i^i  ( { 1o }  X.  ( {
(/) }  X.  B
) ) )  =  (/)
1918a1i 9 . . . 4  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( ( { (/) }  X.  A )  i^i  ( { 1o }  X.  ( { (/) }  X.  B ) ) )  =  (/) )
20 djuenun 7168 . . . 4  |-  ( ( A  ~~  ( {
(/) }  X.  A
)  /\  B  ~~  ( { 1o }  X.  ( { (/) }  X.  B
) )  /\  (
( { (/) }  X.  A )  i^i  ( { 1o }  X.  ( { (/) }  X.  B
) ) )  =  (/) )  ->  ( A B )  ~~  (
( { (/) }  X.  A )  u.  ( { 1o }  X.  ( { (/) }  X.  B
) ) ) )
215, 17, 19, 20syl3anc 1228 . . 3  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( A B )  ~~  ( ( { (/) }  X.  A )  u.  ( { 1o }  X.  ( { (/) }  X.  B ) ) ) )
226snex 4164 . . . . . . 7  |-  { 1o }  e.  _V
23 simp3 989 . . . . . . 7  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  C  e.  X )
24 xpexg 4718 . . . . . . 7  |-  ( ( { 1o }  e.  _V  /\  C  e.  X
)  ->  ( { 1o }  X.  C )  e.  _V )
2522, 23, 24sylancr 411 . . . . . 6  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( { 1o }  X.  C )  e.  _V )
26 xpsnen2g 6795 . . . . . 6  |-  ( ( 1o  e.  _V  /\  ( { 1o }  X.  C )  e.  _V )  ->  ( { 1o }  X.  ( { 1o }  X.  C ) ) 
~~  ( { 1o }  X.  C ) )
276, 25, 26sylancr 411 . . . . 5  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( { 1o }  X.  ( { 1o }  X.  C ) )  ~~  ( { 1o }  X.  C ) )
28 xpsnen2g 6795 . . . . . 6  |-  ( ( 1o  e.  _V  /\  C  e.  X )  ->  ( { 1o }  X.  C )  ~~  C
)
296, 23, 28sylancr 411 . . . . 5  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( { 1o }  X.  C )  ~~  C
)
30 entr 6750 . . . . 5  |-  ( ( ( { 1o }  X.  ( { 1o }  X.  C ) )  ~~  ( { 1o }  X.  C )  /\  ( { 1o }  X.  C
)  ~~  C )  ->  ( { 1o }  X.  ( { 1o }  X.  C ) )  ~~  C )
3127, 29, 30syl2anc 409 . . . 4  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( { 1o }  X.  ( { 1o }  X.  C ) )  ~~  C )
3231ensymd 6749 . . 3  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  C  ~~  ( { 1o }  X.  ( { 1o }  X.  C
) ) )
33 indir 3371 . . . . 5  |-  ( ( ( { (/) }  X.  A )  u.  ( { 1o }  X.  ( { (/) }  X.  B
) ) )  i^i  ( { 1o }  X.  ( { 1o }  X.  C ) ) )  =  ( ( ( { (/) }  X.  A
)  i^i  ( { 1o }  X.  ( { 1o }  X.  C
) ) )  u.  ( ( { 1o }  X.  ( { (/) }  X.  B ) )  i^i  ( { 1o }  X.  ( { 1o }  X.  C ) ) ) )
34 xp01disjl 6402 . . . . . . 7  |-  ( ( { (/) }  X.  A
)  i^i  ( { 1o }  X.  ( { 1o }  X.  C
) ) )  =  (/)
35 xp01disjl 6402 . . . . . . . . 9  |-  ( ( { (/) }  X.  B
)  i^i  ( { 1o }  X.  C ) )  =  (/)
3635xpeq2i 4625 . . . . . . . 8  |-  ( { 1o }  X.  (
( { (/) }  X.  B )  i^i  ( { 1o }  X.  C
) ) )  =  ( { 1o }  X.  (/) )
37 xpindi 4739 . . . . . . . 8  |-  ( { 1o }  X.  (
( { (/) }  X.  B )  i^i  ( { 1o }  X.  C
) ) )  =  ( ( { 1o }  X.  ( { (/) }  X.  B ) )  i^i  ( { 1o }  X.  ( { 1o }  X.  C ) ) )
38 xp0 5023 . . . . . . . 8  |-  ( { 1o }  X.  (/) )  =  (/)
3936, 37, 383eqtr3i 2194 . . . . . . 7  |-  ( ( { 1o }  X.  ( { (/) }  X.  B
) )  i^i  ( { 1o }  X.  ( { 1o }  X.  C
) ) )  =  (/)
4034, 39uneq12i 3274 . . . . . 6  |-  ( ( ( { (/) }  X.  A )  i^i  ( { 1o }  X.  ( { 1o }  X.  C
) ) )  u.  ( ( { 1o }  X.  ( { (/) }  X.  B ) )  i^i  ( { 1o }  X.  ( { 1o }  X.  C ) ) ) )  =  (
(/)  u.  (/) )
41 un0 3442 . . . . . 6  |-  ( (/)  u.  (/) )  =  (/)
4240, 41eqtri 2186 . . . . 5  |-  ( ( ( { (/) }  X.  A )  i^i  ( { 1o }  X.  ( { 1o }  X.  C
) ) )  u.  ( ( { 1o }  X.  ( { (/) }  X.  B ) )  i^i  ( { 1o }  X.  ( { 1o }  X.  C ) ) ) )  =  (/)
4333, 42eqtri 2186 . . . 4  |-  ( ( ( { (/) }  X.  A )  u.  ( { 1o }  X.  ( { (/) }  X.  B
) ) )  i^i  ( { 1o }  X.  ( { 1o }  X.  C ) ) )  =  (/)
4443a1i 9 . . 3  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( ( ( {
(/) }  X.  A
)  u.  ( { 1o }  X.  ( { (/) }  X.  B
) ) )  i^i  ( { 1o }  X.  ( { 1o }  X.  C ) ) )  =  (/) )
45 djuenun 7168 . . 3  |-  ( ( ( A B )  ~~  ( ( { (/) }  X.  A )  u.  ( { 1o }  X.  ( { (/) }  X.  B ) ) )  /\  C  ~~  ( { 1o }  X.  ( { 1o }  X.  C
) )  /\  (
( ( { (/) }  X.  A )  u.  ( { 1o }  X.  ( { (/) }  X.  B ) ) )  i^i  ( { 1o }  X.  ( { 1o }  X.  C ) ) )  =  (/) )  -> 
( ( A B ) C )  ~~  (
( ( { (/) }  X.  A )  u.  ( { 1o }  X.  ( { (/) }  X.  B ) ) )  u.  ( { 1o }  X.  ( { 1o }  X.  C ) ) ) )
4621, 32, 44, 45syl3anc 1228 . 2  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( ( A B ) C )  ~~  (
( ( { (/) }  X.  A )  u.  ( { 1o }  X.  ( { (/) }  X.  B ) ) )  u.  ( { 1o }  X.  ( { 1o }  X.  C ) ) ) )
47 df-dju 7003 . . . . . 6  |-  ( B C )  =  ( ( { (/) }  X.  B )  u.  ( { 1o }  X.  C
) )
4847xpeq2i 4625 . . . . 5  |-  ( { 1o }  X.  ( B C ) )  =  ( { 1o }  X.  ( ( { (/) }  X.  B )  u.  ( { 1o }  X.  C ) ) )
49 xpundi 4660 . . . . 5  |-  ( { 1o }  X.  (
( { (/) }  X.  B )  u.  ( { 1o }  X.  C
) ) )  =  ( ( { 1o }  X.  ( { (/) }  X.  B ) )  u.  ( { 1o }  X.  ( { 1o }  X.  C ) ) )
5048, 49eqtri 2186 . . . 4  |-  ( { 1o }  X.  ( B C ) )  =  ( ( { 1o }  X.  ( { (/) }  X.  B ) )  u.  ( { 1o }  X.  ( { 1o }  X.  C ) ) )
5150uneq2i 3273 . . 3  |-  ( ( { (/) }  X.  A
)  u.  ( { 1o }  X.  ( B C ) ) )  =  ( ( {
(/) }  X.  A
)  u.  ( ( { 1o }  X.  ( { (/) }  X.  B
) )  u.  ( { 1o }  X.  ( { 1o }  X.  C
) ) ) )
52 df-dju 7003 . . 3  |-  ( A ( B C ) )  =  ( ( {
(/) }  X.  A
)  u.  ( { 1o }  X.  ( B C ) ) )
53 unass 3279 . . 3  |-  ( ( ( { (/) }  X.  A )  u.  ( { 1o }  X.  ( { (/) }  X.  B
) ) )  u.  ( { 1o }  X.  ( { 1o }  X.  C ) ) )  =  ( ( {
(/) }  X.  A
)  u.  ( ( { 1o }  X.  ( { (/) }  X.  B
) )  u.  ( { 1o }  X.  ( { 1o }  X.  C
) ) ) )
5451, 52, 533eqtr4i 2196 . 2  |-  ( A ( B C ) )  =  ( ( ( { (/) }  X.  A
)  u.  ( { 1o }  X.  ( { (/) }  X.  B
) ) )  u.  ( { 1o }  X.  ( { 1o }  X.  C ) ) )
5546, 54breqtrrdi 4024 1  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( ( A B ) C )  ~~  ( A ( B C )
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 968    = wceq 1343    e. wcel 2136   _Vcvv 2726    u. cun 3114    i^i cin 3115   (/)c0 3409   {csn 3576   class class class wbr 3982    X. cxp 4602   1oc1o 6377    ~~ cen 6704   ⊔ cdju 7002
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-nul 4108  ax-pow 4153  ax-pr 4187  ax-un 4411
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-fal 1349  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ne 2337  df-ral 2449  df-rex 2450  df-reu 2451  df-rab 2453  df-v 2728  df-sbc 2952  df-csb 3046  df-dif 3118  df-un 3120  df-in 3122  df-ss 3129  df-nul 3410  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-int 3825  df-iun 3868  df-br 3983  df-opab 4044  df-mpt 4045  df-tr 4081  df-id 4271  df-iord 4344  df-on 4346  df-suc 4349  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-iota 5153  df-fun 5190  df-fn 5191  df-f 5192  df-f1 5193  df-fo 5194  df-f1o 5195  df-fv 5196  df-1st 6108  df-2nd 6109  df-1o 6384  df-er 6501  df-en 6707  df-dju 7003  df-inl 7012  df-inr 7013
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator