ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  djuassen Unicode version

Theorem djuassen 7194
Description: Associative law for cardinal addition. Exercise 4.56(c) of [Mendelson] p. 258. (Contributed by NM, 26-Sep-2004.) (Revised by Mario Carneiro, 29-Apr-2015.)
Assertion
Ref Expression
djuassen  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( ( A B ) C )  ~~  ( A ( B C )
) )

Proof of Theorem djuassen
StepHypRef Expression
1 0ex 4116 . . . . . 6  |-  (/)  e.  _V
2 simp1 992 . . . . . 6  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  A  e.  V )
3 xpsnen2g 6807 . . . . . 6  |-  ( (
(/)  e.  _V  /\  A  e.  V )  ->  ( { (/) }  X.  A
)  ~~  A )
41, 2, 3sylancr 412 . . . . 5  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( { (/) }  X.  A )  ~~  A
)
54ensymd 6761 . . . 4  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  A  ~~  ( {
(/) }  X.  A
) )
6 1oex 6403 . . . . . . 7  |-  1o  e.  _V
71snex 4171 . . . . . . . 8  |-  { (/) }  e.  _V
8 simp2 993 . . . . . . . 8  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  B  e.  W )
9 xpexg 4725 . . . . . . . 8  |-  ( ( { (/) }  e.  _V  /\  B  e.  W )  ->  ( { (/) }  X.  B )  e. 
_V )
107, 8, 9sylancr 412 . . . . . . 7  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( { (/) }  X.  B )  e.  _V )
11 xpsnen2g 6807 . . . . . . 7  |-  ( ( 1o  e.  _V  /\  ( { (/) }  X.  B
)  e.  _V )  ->  ( { 1o }  X.  ( { (/) }  X.  B ) )  ~~  ( { (/) }  X.  B
) )
126, 10, 11sylancr 412 . . . . . 6  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( { 1o }  X.  ( { (/) }  X.  B ) )  ~~  ( { (/) }  X.  B
) )
13 xpsnen2g 6807 . . . . . . 7  |-  ( (
(/)  e.  _V  /\  B  e.  W )  ->  ( { (/) }  X.  B
)  ~~  B )
141, 8, 13sylancr 412 . . . . . 6  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( { (/) }  X.  B )  ~~  B
)
15 entr 6762 . . . . . 6  |-  ( ( ( { 1o }  X.  ( { (/) }  X.  B ) )  ~~  ( { (/) }  X.  B
)  /\  ( { (/)
}  X.  B ) 
~~  B )  -> 
( { 1o }  X.  ( { (/) }  X.  B ) )  ~~  B )
1612, 14, 15syl2anc 409 . . . . 5  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( { 1o }  X.  ( { (/) }  X.  B ) )  ~~  B )
1716ensymd 6761 . . . 4  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  B  ~~  ( { 1o }  X.  ( { (/) }  X.  B
) ) )
18 xp01disjl 6413 . . . . 5  |-  ( ( { (/) }  X.  A
)  i^i  ( { 1o }  X.  ( {
(/) }  X.  B
) ) )  =  (/)
1918a1i 9 . . . 4  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( ( { (/) }  X.  A )  i^i  ( { 1o }  X.  ( { (/) }  X.  B ) ) )  =  (/) )
20 djuenun 7189 . . . 4  |-  ( ( A  ~~  ( {
(/) }  X.  A
)  /\  B  ~~  ( { 1o }  X.  ( { (/) }  X.  B
) )  /\  (
( { (/) }  X.  A )  i^i  ( { 1o }  X.  ( { (/) }  X.  B
) ) )  =  (/) )  ->  ( A B )  ~~  (
( { (/) }  X.  A )  u.  ( { 1o }  X.  ( { (/) }  X.  B
) ) ) )
215, 17, 19, 20syl3anc 1233 . . 3  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( A B )  ~~  ( ( { (/) }  X.  A )  u.  ( { 1o }  X.  ( { (/) }  X.  B ) ) ) )
226snex 4171 . . . . . . 7  |-  { 1o }  e.  _V
23 simp3 994 . . . . . . 7  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  C  e.  X )
24 xpexg 4725 . . . . . . 7  |-  ( ( { 1o }  e.  _V  /\  C  e.  X
)  ->  ( { 1o }  X.  C )  e.  _V )
2522, 23, 24sylancr 412 . . . . . 6  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( { 1o }  X.  C )  e.  _V )
26 xpsnen2g 6807 . . . . . 6  |-  ( ( 1o  e.  _V  /\  ( { 1o }  X.  C )  e.  _V )  ->  ( { 1o }  X.  ( { 1o }  X.  C ) ) 
~~  ( { 1o }  X.  C ) )
276, 25, 26sylancr 412 . . . . 5  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( { 1o }  X.  ( { 1o }  X.  C ) )  ~~  ( { 1o }  X.  C ) )
28 xpsnen2g 6807 . . . . . 6  |-  ( ( 1o  e.  _V  /\  C  e.  X )  ->  ( { 1o }  X.  C )  ~~  C
)
296, 23, 28sylancr 412 . . . . 5  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( { 1o }  X.  C )  ~~  C
)
30 entr 6762 . . . . 5  |-  ( ( ( { 1o }  X.  ( { 1o }  X.  C ) )  ~~  ( { 1o }  X.  C )  /\  ( { 1o }  X.  C
)  ~~  C )  ->  ( { 1o }  X.  ( { 1o }  X.  C ) )  ~~  C )
3127, 29, 30syl2anc 409 . . . 4  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( { 1o }  X.  ( { 1o }  X.  C ) )  ~~  C )
3231ensymd 6761 . . 3  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  C  ~~  ( { 1o }  X.  ( { 1o }  X.  C
) ) )
33 indir 3376 . . . . 5  |-  ( ( ( { (/) }  X.  A )  u.  ( { 1o }  X.  ( { (/) }  X.  B
) ) )  i^i  ( { 1o }  X.  ( { 1o }  X.  C ) ) )  =  ( ( ( { (/) }  X.  A
)  i^i  ( { 1o }  X.  ( { 1o }  X.  C
) ) )  u.  ( ( { 1o }  X.  ( { (/) }  X.  B ) )  i^i  ( { 1o }  X.  ( { 1o }  X.  C ) ) ) )
34 xp01disjl 6413 . . . . . . 7  |-  ( ( { (/) }  X.  A
)  i^i  ( { 1o }  X.  ( { 1o }  X.  C
) ) )  =  (/)
35 xp01disjl 6413 . . . . . . . . 9  |-  ( ( { (/) }  X.  B
)  i^i  ( { 1o }  X.  C ) )  =  (/)
3635xpeq2i 4632 . . . . . . . 8  |-  ( { 1o }  X.  (
( { (/) }  X.  B )  i^i  ( { 1o }  X.  C
) ) )  =  ( { 1o }  X.  (/) )
37 xpindi 4746 . . . . . . . 8  |-  ( { 1o }  X.  (
( { (/) }  X.  B )  i^i  ( { 1o }  X.  C
) ) )  =  ( ( { 1o }  X.  ( { (/) }  X.  B ) )  i^i  ( { 1o }  X.  ( { 1o }  X.  C ) ) )
38 xp0 5030 . . . . . . . 8  |-  ( { 1o }  X.  (/) )  =  (/)
3936, 37, 383eqtr3i 2199 . . . . . . 7  |-  ( ( { 1o }  X.  ( { (/) }  X.  B
) )  i^i  ( { 1o }  X.  ( { 1o }  X.  C
) ) )  =  (/)
4034, 39uneq12i 3279 . . . . . 6  |-  ( ( ( { (/) }  X.  A )  i^i  ( { 1o }  X.  ( { 1o }  X.  C
) ) )  u.  ( ( { 1o }  X.  ( { (/) }  X.  B ) )  i^i  ( { 1o }  X.  ( { 1o }  X.  C ) ) ) )  =  (
(/)  u.  (/) )
41 un0 3448 . . . . . 6  |-  ( (/)  u.  (/) )  =  (/)
4240, 41eqtri 2191 . . . . 5  |-  ( ( ( { (/) }  X.  A )  i^i  ( { 1o }  X.  ( { 1o }  X.  C
) ) )  u.  ( ( { 1o }  X.  ( { (/) }  X.  B ) )  i^i  ( { 1o }  X.  ( { 1o }  X.  C ) ) ) )  =  (/)
4333, 42eqtri 2191 . . . 4  |-  ( ( ( { (/) }  X.  A )  u.  ( { 1o }  X.  ( { (/) }  X.  B
) ) )  i^i  ( { 1o }  X.  ( { 1o }  X.  C ) ) )  =  (/)
4443a1i 9 . . 3  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( ( ( {
(/) }  X.  A
)  u.  ( { 1o }  X.  ( { (/) }  X.  B
) ) )  i^i  ( { 1o }  X.  ( { 1o }  X.  C ) ) )  =  (/) )
45 djuenun 7189 . . 3  |-  ( ( ( A B )  ~~  ( ( { (/) }  X.  A )  u.  ( { 1o }  X.  ( { (/) }  X.  B ) ) )  /\  C  ~~  ( { 1o }  X.  ( { 1o }  X.  C
) )  /\  (
( ( { (/) }  X.  A )  u.  ( { 1o }  X.  ( { (/) }  X.  B ) ) )  i^i  ( { 1o }  X.  ( { 1o }  X.  C ) ) )  =  (/) )  -> 
( ( A B ) C )  ~~  (
( ( { (/) }  X.  A )  u.  ( { 1o }  X.  ( { (/) }  X.  B ) ) )  u.  ( { 1o }  X.  ( { 1o }  X.  C ) ) ) )
4621, 32, 44, 45syl3anc 1233 . 2  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( ( A B ) C )  ~~  (
( ( { (/) }  X.  A )  u.  ( { 1o }  X.  ( { (/) }  X.  B ) ) )  u.  ( { 1o }  X.  ( { 1o }  X.  C ) ) ) )
47 df-dju 7015 . . . . . 6  |-  ( B C )  =  ( ( { (/) }  X.  B )  u.  ( { 1o }  X.  C
) )
4847xpeq2i 4632 . . . . 5  |-  ( { 1o }  X.  ( B C ) )  =  ( { 1o }  X.  ( ( { (/) }  X.  B )  u.  ( { 1o }  X.  C ) ) )
49 xpundi 4667 . . . . 5  |-  ( { 1o }  X.  (
( { (/) }  X.  B )  u.  ( { 1o }  X.  C
) ) )  =  ( ( { 1o }  X.  ( { (/) }  X.  B ) )  u.  ( { 1o }  X.  ( { 1o }  X.  C ) ) )
5048, 49eqtri 2191 . . . 4  |-  ( { 1o }  X.  ( B C ) )  =  ( ( { 1o }  X.  ( { (/) }  X.  B ) )  u.  ( { 1o }  X.  ( { 1o }  X.  C ) ) )
5150uneq2i 3278 . . 3  |-  ( ( { (/) }  X.  A
)  u.  ( { 1o }  X.  ( B C ) ) )  =  ( ( {
(/) }  X.  A
)  u.  ( ( { 1o }  X.  ( { (/) }  X.  B
) )  u.  ( { 1o }  X.  ( { 1o }  X.  C
) ) ) )
52 df-dju 7015 . . 3  |-  ( A ( B C ) )  =  ( ( {
(/) }  X.  A
)  u.  ( { 1o }  X.  ( B C ) ) )
53 unass 3284 . . 3  |-  ( ( ( { (/) }  X.  A )  u.  ( { 1o }  X.  ( { (/) }  X.  B
) ) )  u.  ( { 1o }  X.  ( { 1o }  X.  C ) ) )  =  ( ( {
(/) }  X.  A
)  u.  ( ( { 1o }  X.  ( { (/) }  X.  B
) )  u.  ( { 1o }  X.  ( { 1o }  X.  C
) ) ) )
5451, 52, 533eqtr4i 2201 . 2  |-  ( A ( B C ) )  =  ( ( ( { (/) }  X.  A
)  u.  ( { 1o }  X.  ( { (/) }  X.  B
) ) )  u.  ( { 1o }  X.  ( { 1o }  X.  C ) ) )
5546, 54breqtrrdi 4031 1  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( ( A B ) C )  ~~  ( A ( B C )
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 973    = wceq 1348    e. wcel 2141   _Vcvv 2730    u. cun 3119    i^i cin 3120   (/)c0 3414   {csn 3583   class class class wbr 3989    X. cxp 4609   1oc1o 6388    ~~ cen 6716   ⊔ cdju 7014
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418
This theorem depends on definitions:  df-bi 116  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-id 4278  df-iord 4351  df-on 4353  df-suc 4356  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-1st 6119  df-2nd 6120  df-1o 6395  df-er 6513  df-en 6719  df-dju 7015  df-inl 7024  df-inr 7025
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator