ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  djuassen Unicode version

Theorem djuassen 7073
Description: Associative law for cardinal addition. Exercise 4.56(c) of [Mendelson] p. 258. (Contributed by NM, 26-Sep-2004.) (Revised by Mario Carneiro, 29-Apr-2015.)
Assertion
Ref Expression
djuassen  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( ( A B ) C )  ~~  ( A ( B C )
) )

Proof of Theorem djuassen
StepHypRef Expression
1 0ex 4055 . . . . . 6  |-  (/)  e.  _V
2 simp1 981 . . . . . 6  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  A  e.  V )
3 xpsnen2g 6723 . . . . . 6  |-  ( (
(/)  e.  _V  /\  A  e.  V )  ->  ( { (/) }  X.  A
)  ~~  A )
41, 2, 3sylancr 410 . . . . 5  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( { (/) }  X.  A )  ~~  A
)
54ensymd 6677 . . . 4  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  A  ~~  ( {
(/) }  X.  A
) )
6 1oex 6321 . . . . . . 7  |-  1o  e.  _V
71snex 4109 . . . . . . . 8  |-  { (/) }  e.  _V
8 simp2 982 . . . . . . . 8  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  B  e.  W )
9 xpexg 4653 . . . . . . . 8  |-  ( ( { (/) }  e.  _V  /\  B  e.  W )  ->  ( { (/) }  X.  B )  e. 
_V )
107, 8, 9sylancr 410 . . . . . . 7  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( { (/) }  X.  B )  e.  _V )
11 xpsnen2g 6723 . . . . . . 7  |-  ( ( 1o  e.  _V  /\  ( { (/) }  X.  B
)  e.  _V )  ->  ( { 1o }  X.  ( { (/) }  X.  B ) )  ~~  ( { (/) }  X.  B
) )
126, 10, 11sylancr 410 . . . . . 6  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( { 1o }  X.  ( { (/) }  X.  B ) )  ~~  ( { (/) }  X.  B
) )
13 xpsnen2g 6723 . . . . . . 7  |-  ( (
(/)  e.  _V  /\  B  e.  W )  ->  ( { (/) }  X.  B
)  ~~  B )
141, 8, 13sylancr 410 . . . . . 6  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( { (/) }  X.  B )  ~~  B
)
15 entr 6678 . . . . . 6  |-  ( ( ( { 1o }  X.  ( { (/) }  X.  B ) )  ~~  ( { (/) }  X.  B
)  /\  ( { (/)
}  X.  B ) 
~~  B )  -> 
( { 1o }  X.  ( { (/) }  X.  B ) )  ~~  B )
1612, 14, 15syl2anc 408 . . . . 5  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( { 1o }  X.  ( { (/) }  X.  B ) )  ~~  B )
1716ensymd 6677 . . . 4  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  B  ~~  ( { 1o }  X.  ( { (/) }  X.  B
) ) )
18 xp01disjl 6331 . . . . 5  |-  ( ( { (/) }  X.  A
)  i^i  ( { 1o }  X.  ( {
(/) }  X.  B
) ) )  =  (/)
1918a1i 9 . . . 4  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( ( { (/) }  X.  A )  i^i  ( { 1o }  X.  ( { (/) }  X.  B ) ) )  =  (/) )
20 djuenun 7068 . . . 4  |-  ( ( A  ~~  ( {
(/) }  X.  A
)  /\  B  ~~  ( { 1o }  X.  ( { (/) }  X.  B
) )  /\  (
( { (/) }  X.  A )  i^i  ( { 1o }  X.  ( { (/) }  X.  B
) ) )  =  (/) )  ->  ( A B )  ~~  (
( { (/) }  X.  A )  u.  ( { 1o }  X.  ( { (/) }  X.  B
) ) ) )
215, 17, 19, 20syl3anc 1216 . . 3  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( A B )  ~~  ( ( { (/) }  X.  A )  u.  ( { 1o }  X.  ( { (/) }  X.  B ) ) ) )
226snex 4109 . . . . . . 7  |-  { 1o }  e.  _V
23 simp3 983 . . . . . . 7  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  C  e.  X )
24 xpexg 4653 . . . . . . 7  |-  ( ( { 1o }  e.  _V  /\  C  e.  X
)  ->  ( { 1o }  X.  C )  e.  _V )
2522, 23, 24sylancr 410 . . . . . 6  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( { 1o }  X.  C )  e.  _V )
26 xpsnen2g 6723 . . . . . 6  |-  ( ( 1o  e.  _V  /\  ( { 1o }  X.  C )  e.  _V )  ->  ( { 1o }  X.  ( { 1o }  X.  C ) ) 
~~  ( { 1o }  X.  C ) )
276, 25, 26sylancr 410 . . . . 5  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( { 1o }  X.  ( { 1o }  X.  C ) )  ~~  ( { 1o }  X.  C ) )
28 xpsnen2g 6723 . . . . . 6  |-  ( ( 1o  e.  _V  /\  C  e.  X )  ->  ( { 1o }  X.  C )  ~~  C
)
296, 23, 28sylancr 410 . . . . 5  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( { 1o }  X.  C )  ~~  C
)
30 entr 6678 . . . . 5  |-  ( ( ( { 1o }  X.  ( { 1o }  X.  C ) )  ~~  ( { 1o }  X.  C )  /\  ( { 1o }  X.  C
)  ~~  C )  ->  ( { 1o }  X.  ( { 1o }  X.  C ) )  ~~  C )
3127, 29, 30syl2anc 408 . . . 4  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( { 1o }  X.  ( { 1o }  X.  C ) )  ~~  C )
3231ensymd 6677 . . 3  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  C  ~~  ( { 1o }  X.  ( { 1o }  X.  C
) ) )
33 indir 3325 . . . . 5  |-  ( ( ( { (/) }  X.  A )  u.  ( { 1o }  X.  ( { (/) }  X.  B
) ) )  i^i  ( { 1o }  X.  ( { 1o }  X.  C ) ) )  =  ( ( ( { (/) }  X.  A
)  i^i  ( { 1o }  X.  ( { 1o }  X.  C
) ) )  u.  ( ( { 1o }  X.  ( { (/) }  X.  B ) )  i^i  ( { 1o }  X.  ( { 1o }  X.  C ) ) ) )
34 xp01disjl 6331 . . . . . . 7  |-  ( ( { (/) }  X.  A
)  i^i  ( { 1o }  X.  ( { 1o }  X.  C
) ) )  =  (/)
35 xp01disjl 6331 . . . . . . . . 9  |-  ( ( { (/) }  X.  B
)  i^i  ( { 1o }  X.  C ) )  =  (/)
3635xpeq2i 4560 . . . . . . . 8  |-  ( { 1o }  X.  (
( { (/) }  X.  B )  i^i  ( { 1o }  X.  C
) ) )  =  ( { 1o }  X.  (/) )
37 xpindi 4674 . . . . . . . 8  |-  ( { 1o }  X.  (
( { (/) }  X.  B )  i^i  ( { 1o }  X.  C
) ) )  =  ( ( { 1o }  X.  ( { (/) }  X.  B ) )  i^i  ( { 1o }  X.  ( { 1o }  X.  C ) ) )
38 xp0 4958 . . . . . . . 8  |-  ( { 1o }  X.  (/) )  =  (/)
3936, 37, 383eqtr3i 2168 . . . . . . 7  |-  ( ( { 1o }  X.  ( { (/) }  X.  B
) )  i^i  ( { 1o }  X.  ( { 1o }  X.  C
) ) )  =  (/)
4034, 39uneq12i 3228 . . . . . 6  |-  ( ( ( { (/) }  X.  A )  i^i  ( { 1o }  X.  ( { 1o }  X.  C
) ) )  u.  ( ( { 1o }  X.  ( { (/) }  X.  B ) )  i^i  ( { 1o }  X.  ( { 1o }  X.  C ) ) ) )  =  (
(/)  u.  (/) )
41 un0 3396 . . . . . 6  |-  ( (/)  u.  (/) )  =  (/)
4240, 41eqtri 2160 . . . . 5  |-  ( ( ( { (/) }  X.  A )  i^i  ( { 1o }  X.  ( { 1o }  X.  C
) ) )  u.  ( ( { 1o }  X.  ( { (/) }  X.  B ) )  i^i  ( { 1o }  X.  ( { 1o }  X.  C ) ) ) )  =  (/)
4333, 42eqtri 2160 . . . 4  |-  ( ( ( { (/) }  X.  A )  u.  ( { 1o }  X.  ( { (/) }  X.  B
) ) )  i^i  ( { 1o }  X.  ( { 1o }  X.  C ) ) )  =  (/)
4443a1i 9 . . 3  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( ( ( {
(/) }  X.  A
)  u.  ( { 1o }  X.  ( { (/) }  X.  B
) ) )  i^i  ( { 1o }  X.  ( { 1o }  X.  C ) ) )  =  (/) )
45 djuenun 7068 . . 3  |-  ( ( ( A B )  ~~  ( ( { (/) }  X.  A )  u.  ( { 1o }  X.  ( { (/) }  X.  B ) ) )  /\  C  ~~  ( { 1o }  X.  ( { 1o }  X.  C
) )  /\  (
( ( { (/) }  X.  A )  u.  ( { 1o }  X.  ( { (/) }  X.  B ) ) )  i^i  ( { 1o }  X.  ( { 1o }  X.  C ) ) )  =  (/) )  -> 
( ( A B ) C )  ~~  (
( ( { (/) }  X.  A )  u.  ( { 1o }  X.  ( { (/) }  X.  B ) ) )  u.  ( { 1o }  X.  ( { 1o }  X.  C ) ) ) )
4621, 32, 44, 45syl3anc 1216 . 2  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( ( A B ) C )  ~~  (
( ( { (/) }  X.  A )  u.  ( { 1o }  X.  ( { (/) }  X.  B ) ) )  u.  ( { 1o }  X.  ( { 1o }  X.  C ) ) ) )
47 df-dju 6923 . . . . . 6  |-  ( B C )  =  ( ( { (/) }  X.  B )  u.  ( { 1o }  X.  C
) )
4847xpeq2i 4560 . . . . 5  |-  ( { 1o }  X.  ( B C ) )  =  ( { 1o }  X.  ( ( { (/) }  X.  B )  u.  ( { 1o }  X.  C ) ) )
49 xpundi 4595 . . . . 5  |-  ( { 1o }  X.  (
( { (/) }  X.  B )  u.  ( { 1o }  X.  C
) ) )  =  ( ( { 1o }  X.  ( { (/) }  X.  B ) )  u.  ( { 1o }  X.  ( { 1o }  X.  C ) ) )
5048, 49eqtri 2160 . . . 4  |-  ( { 1o }  X.  ( B C ) )  =  ( ( { 1o }  X.  ( { (/) }  X.  B ) )  u.  ( { 1o }  X.  ( { 1o }  X.  C ) ) )
5150uneq2i 3227 . . 3  |-  ( ( { (/) }  X.  A
)  u.  ( { 1o }  X.  ( B C ) ) )  =  ( ( {
(/) }  X.  A
)  u.  ( ( { 1o }  X.  ( { (/) }  X.  B
) )  u.  ( { 1o }  X.  ( { 1o }  X.  C
) ) ) )
52 df-dju 6923 . . 3  |-  ( A ( B C ) )  =  ( ( {
(/) }  X.  A
)  u.  ( { 1o }  X.  ( B C ) ) )
53 unass 3233 . . 3  |-  ( ( ( { (/) }  X.  A )  u.  ( { 1o }  X.  ( { (/) }  X.  B
) ) )  u.  ( { 1o }  X.  ( { 1o }  X.  C ) ) )  =  ( ( {
(/) }  X.  A
)  u.  ( ( { 1o }  X.  ( { (/) }  X.  B
) )  u.  ( { 1o }  X.  ( { 1o }  X.  C
) ) ) )
5451, 52, 533eqtr4i 2170 . 2  |-  ( A ( B C ) )  =  ( ( ( { (/) }  X.  A
)  u.  ( { 1o }  X.  ( { (/) }  X.  B
) ) )  u.  ( { 1o }  X.  ( { 1o }  X.  C ) ) )
5546, 54breqtrrdi 3970 1  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( ( A B ) C )  ~~  ( A ( B C )
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 962    = wceq 1331    e. wcel 1480   _Vcvv 2686    u. cun 3069    i^i cin 3070   (/)c0 3363   {csn 3527   class class class wbr 3929    X. cxp 4537   1oc1o 6306    ~~ cen 6632   ⊔ cdju 6922
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-iord 4288  df-on 4290  df-suc 4293  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-1st 6038  df-2nd 6039  df-1o 6313  df-er 6429  df-en 6635  df-dju 6923  df-inl 6932  df-inr 6933
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator