| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > djuassen | Unicode version | ||
| Description: Associative law for cardinal addition. Exercise 4.56(c) of [Mendelson] p. 258. (Contributed by NM, 26-Sep-2004.) (Revised by Mario Carneiro, 29-Apr-2015.) |
| Ref | Expression |
|---|---|
| djuassen |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ex 4211 |
. . . . . 6
| |
| 2 | simp1 1021 |
. . . . . 6
| |
| 3 | xpsnen2g 6988 |
. . . . . 6
| |
| 4 | 1, 2, 3 | sylancr 414 |
. . . . 5
|
| 5 | 4 | ensymd 6935 |
. . . 4
|
| 6 | 1oex 6570 |
. . . . . . 7
| |
| 7 | 1 | snex 4269 |
. . . . . . . 8
|
| 8 | simp2 1022 |
. . . . . . . 8
| |
| 9 | xpexg 4833 |
. . . . . . . 8
| |
| 10 | 7, 8, 9 | sylancr 414 |
. . . . . . 7
|
| 11 | xpsnen2g 6988 |
. . . . . . 7
| |
| 12 | 6, 10, 11 | sylancr 414 |
. . . . . 6
|
| 13 | xpsnen2g 6988 |
. . . . . . 7
| |
| 14 | 1, 8, 13 | sylancr 414 |
. . . . . 6
|
| 15 | entr 6936 |
. . . . . 6
| |
| 16 | 12, 14, 15 | syl2anc 411 |
. . . . 5
|
| 17 | 16 | ensymd 6935 |
. . . 4
|
| 18 | xp01disjl 6580 |
. . . . 5
| |
| 19 | 18 | a1i 9 |
. . . 4
|
| 20 | djuenun 7394 |
. . . 4
| |
| 21 | 5, 17, 19, 20 | syl3anc 1271 |
. . 3
|
| 22 | 6 | snex 4269 |
. . . . . . 7
|
| 23 | simp3 1023 |
. . . . . . 7
| |
| 24 | xpexg 4833 |
. . . . . . 7
| |
| 25 | 22, 23, 24 | sylancr 414 |
. . . . . 6
|
| 26 | xpsnen2g 6988 |
. . . . . 6
| |
| 27 | 6, 25, 26 | sylancr 414 |
. . . . 5
|
| 28 | xpsnen2g 6988 |
. . . . . 6
| |
| 29 | 6, 23, 28 | sylancr 414 |
. . . . 5
|
| 30 | entr 6936 |
. . . . 5
| |
| 31 | 27, 29, 30 | syl2anc 411 |
. . . 4
|
| 32 | 31 | ensymd 6935 |
. . 3
|
| 33 | indir 3453 |
. . . . 5
| |
| 34 | xp01disjl 6580 |
. . . . . . 7
| |
| 35 | xp01disjl 6580 |
. . . . . . . . 9
| |
| 36 | 35 | xpeq2i 4740 |
. . . . . . . 8
|
| 37 | xpindi 4857 |
. . . . . . . 8
| |
| 38 | xp0 5148 |
. . . . . . . 8
| |
| 39 | 36, 37, 38 | 3eqtr3i 2258 |
. . . . . . 7
|
| 40 | 34, 39 | uneq12i 3356 |
. . . . . 6
|
| 41 | un0 3525 |
. . . . . 6
| |
| 42 | 40, 41 | eqtri 2250 |
. . . . 5
|
| 43 | 33, 42 | eqtri 2250 |
. . . 4
|
| 44 | 43 | a1i 9 |
. . 3
|
| 45 | djuenun 7394 |
. . 3
| |
| 46 | 21, 32, 44, 45 | syl3anc 1271 |
. 2
|
| 47 | df-dju 7205 |
. . . . . 6
| |
| 48 | 47 | xpeq2i 4740 |
. . . . 5
|
| 49 | xpundi 4775 |
. . . . 5
| |
| 50 | 48, 49 | eqtri 2250 |
. . . 4
|
| 51 | 50 | uneq2i 3355 |
. . 3
|
| 52 | df-dju 7205 |
. . 3
| |
| 53 | unass 3361 |
. . 3
| |
| 54 | 51, 52, 53 | 3eqtr4i 2260 |
. 2
|
| 55 | 46, 54 | breqtrrdi 4125 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4199 ax-sep 4202 ax-nul 4210 ax-pow 4258 ax-pr 4293 ax-un 4524 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-iun 3967 df-br 4084 df-opab 4146 df-mpt 4147 df-tr 4183 df-id 4384 df-iord 4457 df-on 4459 df-suc 4462 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-rn 4730 df-res 4731 df-ima 4732 df-iota 5278 df-fun 5320 df-fn 5321 df-f 5322 df-f1 5323 df-fo 5324 df-f1o 5325 df-fv 5326 df-1st 6286 df-2nd 6287 df-1o 6562 df-er 6680 df-en 6888 df-dju 7205 df-inl 7214 df-inr 7215 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |