ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  djuassen Unicode version

Theorem djuassen 7219
Description: Associative law for cardinal addition. Exercise 4.56(c) of [Mendelson] p. 258. (Contributed by NM, 26-Sep-2004.) (Revised by Mario Carneiro, 29-Apr-2015.)
Assertion
Ref Expression
djuassen  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( ( A B ) C )  ~~  ( A ( B C )
) )

Proof of Theorem djuassen
StepHypRef Expression
1 0ex 4132 . . . . . 6  |-  (/)  e.  _V
2 simp1 997 . . . . . 6  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  A  e.  V )
3 xpsnen2g 6832 . . . . . 6  |-  ( (
(/)  e.  _V  /\  A  e.  V )  ->  ( { (/) }  X.  A
)  ~~  A )
41, 2, 3sylancr 414 . . . . 5  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( { (/) }  X.  A )  ~~  A
)
54ensymd 6786 . . . 4  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  A  ~~  ( {
(/) }  X.  A
) )
6 1oex 6428 . . . . . . 7  |-  1o  e.  _V
71snex 4187 . . . . . . . 8  |-  { (/) }  e.  _V
8 simp2 998 . . . . . . . 8  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  B  e.  W )
9 xpexg 4742 . . . . . . . 8  |-  ( ( { (/) }  e.  _V  /\  B  e.  W )  ->  ( { (/) }  X.  B )  e. 
_V )
107, 8, 9sylancr 414 . . . . . . 7  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( { (/) }  X.  B )  e.  _V )
11 xpsnen2g 6832 . . . . . . 7  |-  ( ( 1o  e.  _V  /\  ( { (/) }  X.  B
)  e.  _V )  ->  ( { 1o }  X.  ( { (/) }  X.  B ) )  ~~  ( { (/) }  X.  B
) )
126, 10, 11sylancr 414 . . . . . 6  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( { 1o }  X.  ( { (/) }  X.  B ) )  ~~  ( { (/) }  X.  B
) )
13 xpsnen2g 6832 . . . . . . 7  |-  ( (
(/)  e.  _V  /\  B  e.  W )  ->  ( { (/) }  X.  B
)  ~~  B )
141, 8, 13sylancr 414 . . . . . 6  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( { (/) }  X.  B )  ~~  B
)
15 entr 6787 . . . . . 6  |-  ( ( ( { 1o }  X.  ( { (/) }  X.  B ) )  ~~  ( { (/) }  X.  B
)  /\  ( { (/)
}  X.  B ) 
~~  B )  -> 
( { 1o }  X.  ( { (/) }  X.  B ) )  ~~  B )
1612, 14, 15syl2anc 411 . . . . 5  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( { 1o }  X.  ( { (/) }  X.  B ) )  ~~  B )
1716ensymd 6786 . . . 4  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  B  ~~  ( { 1o }  X.  ( { (/) }  X.  B
) ) )
18 xp01disjl 6438 . . . . 5  |-  ( ( { (/) }  X.  A
)  i^i  ( { 1o }  X.  ( {
(/) }  X.  B
) ) )  =  (/)
1918a1i 9 . . . 4  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( ( { (/) }  X.  A )  i^i  ( { 1o }  X.  ( { (/) }  X.  B ) ) )  =  (/) )
20 djuenun 7214 . . . 4  |-  ( ( A  ~~  ( {
(/) }  X.  A
)  /\  B  ~~  ( { 1o }  X.  ( { (/) }  X.  B
) )  /\  (
( { (/) }  X.  A )  i^i  ( { 1o }  X.  ( { (/) }  X.  B
) ) )  =  (/) )  ->  ( A B )  ~~  (
( { (/) }  X.  A )  u.  ( { 1o }  X.  ( { (/) }  X.  B
) ) ) )
215, 17, 19, 20syl3anc 1238 . . 3  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( A B )  ~~  ( ( { (/) }  X.  A )  u.  ( { 1o }  X.  ( { (/) }  X.  B ) ) ) )
226snex 4187 . . . . . . 7  |-  { 1o }  e.  _V
23 simp3 999 . . . . . . 7  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  C  e.  X )
24 xpexg 4742 . . . . . . 7  |-  ( ( { 1o }  e.  _V  /\  C  e.  X
)  ->  ( { 1o }  X.  C )  e.  _V )
2522, 23, 24sylancr 414 . . . . . 6  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( { 1o }  X.  C )  e.  _V )
26 xpsnen2g 6832 . . . . . 6  |-  ( ( 1o  e.  _V  /\  ( { 1o }  X.  C )  e.  _V )  ->  ( { 1o }  X.  ( { 1o }  X.  C ) ) 
~~  ( { 1o }  X.  C ) )
276, 25, 26sylancr 414 . . . . 5  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( { 1o }  X.  ( { 1o }  X.  C ) )  ~~  ( { 1o }  X.  C ) )
28 xpsnen2g 6832 . . . . . 6  |-  ( ( 1o  e.  _V  /\  C  e.  X )  ->  ( { 1o }  X.  C )  ~~  C
)
296, 23, 28sylancr 414 . . . . 5  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( { 1o }  X.  C )  ~~  C
)
30 entr 6787 . . . . 5  |-  ( ( ( { 1o }  X.  ( { 1o }  X.  C ) )  ~~  ( { 1o }  X.  C )  /\  ( { 1o }  X.  C
)  ~~  C )  ->  ( { 1o }  X.  ( { 1o }  X.  C ) )  ~~  C )
3127, 29, 30syl2anc 411 . . . 4  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( { 1o }  X.  ( { 1o }  X.  C ) )  ~~  C )
3231ensymd 6786 . . 3  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  C  ~~  ( { 1o }  X.  ( { 1o }  X.  C
) ) )
33 indir 3386 . . . . 5  |-  ( ( ( { (/) }  X.  A )  u.  ( { 1o }  X.  ( { (/) }  X.  B
) ) )  i^i  ( { 1o }  X.  ( { 1o }  X.  C ) ) )  =  ( ( ( { (/) }  X.  A
)  i^i  ( { 1o }  X.  ( { 1o }  X.  C
) ) )  u.  ( ( { 1o }  X.  ( { (/) }  X.  B ) )  i^i  ( { 1o }  X.  ( { 1o }  X.  C ) ) ) )
34 xp01disjl 6438 . . . . . . 7  |-  ( ( { (/) }  X.  A
)  i^i  ( { 1o }  X.  ( { 1o }  X.  C
) ) )  =  (/)
35 xp01disjl 6438 . . . . . . . . 9  |-  ( ( { (/) }  X.  B
)  i^i  ( { 1o }  X.  C ) )  =  (/)
3635xpeq2i 4649 . . . . . . . 8  |-  ( { 1o }  X.  (
( { (/) }  X.  B )  i^i  ( { 1o }  X.  C
) ) )  =  ( { 1o }  X.  (/) )
37 xpindi 4764 . . . . . . . 8  |-  ( { 1o }  X.  (
( { (/) }  X.  B )  i^i  ( { 1o }  X.  C
) ) )  =  ( ( { 1o }  X.  ( { (/) }  X.  B ) )  i^i  ( { 1o }  X.  ( { 1o }  X.  C ) ) )
38 xp0 5050 . . . . . . . 8  |-  ( { 1o }  X.  (/) )  =  (/)
3936, 37, 383eqtr3i 2206 . . . . . . 7  |-  ( ( { 1o }  X.  ( { (/) }  X.  B
) )  i^i  ( { 1o }  X.  ( { 1o }  X.  C
) ) )  =  (/)
4034, 39uneq12i 3289 . . . . . 6  |-  ( ( ( { (/) }  X.  A )  i^i  ( { 1o }  X.  ( { 1o }  X.  C
) ) )  u.  ( ( { 1o }  X.  ( { (/) }  X.  B ) )  i^i  ( { 1o }  X.  ( { 1o }  X.  C ) ) ) )  =  (
(/)  u.  (/) )
41 un0 3458 . . . . . 6  |-  ( (/)  u.  (/) )  =  (/)
4240, 41eqtri 2198 . . . . 5  |-  ( ( ( { (/) }  X.  A )  i^i  ( { 1o }  X.  ( { 1o }  X.  C
) ) )  u.  ( ( { 1o }  X.  ( { (/) }  X.  B ) )  i^i  ( { 1o }  X.  ( { 1o }  X.  C ) ) ) )  =  (/)
4333, 42eqtri 2198 . . . 4  |-  ( ( ( { (/) }  X.  A )  u.  ( { 1o }  X.  ( { (/) }  X.  B
) ) )  i^i  ( { 1o }  X.  ( { 1o }  X.  C ) ) )  =  (/)
4443a1i 9 . . 3  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( ( ( {
(/) }  X.  A
)  u.  ( { 1o }  X.  ( { (/) }  X.  B
) ) )  i^i  ( { 1o }  X.  ( { 1o }  X.  C ) ) )  =  (/) )
45 djuenun 7214 . . 3  |-  ( ( ( A B )  ~~  ( ( { (/) }  X.  A )  u.  ( { 1o }  X.  ( { (/) }  X.  B ) ) )  /\  C  ~~  ( { 1o }  X.  ( { 1o }  X.  C
) )  /\  (
( ( { (/) }  X.  A )  u.  ( { 1o }  X.  ( { (/) }  X.  B ) ) )  i^i  ( { 1o }  X.  ( { 1o }  X.  C ) ) )  =  (/) )  -> 
( ( A B ) C )  ~~  (
( ( { (/) }  X.  A )  u.  ( { 1o }  X.  ( { (/) }  X.  B ) ) )  u.  ( { 1o }  X.  ( { 1o }  X.  C ) ) ) )
4621, 32, 44, 45syl3anc 1238 . 2  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( ( A B ) C )  ~~  (
( ( { (/) }  X.  A )  u.  ( { 1o }  X.  ( { (/) }  X.  B ) ) )  u.  ( { 1o }  X.  ( { 1o }  X.  C ) ) ) )
47 df-dju 7040 . . . . . 6  |-  ( B C )  =  ( ( { (/) }  X.  B )  u.  ( { 1o }  X.  C
) )
4847xpeq2i 4649 . . . . 5  |-  ( { 1o }  X.  ( B C ) )  =  ( { 1o }  X.  ( ( { (/) }  X.  B )  u.  ( { 1o }  X.  C ) ) )
49 xpundi 4684 . . . . 5  |-  ( { 1o }  X.  (
( { (/) }  X.  B )  u.  ( { 1o }  X.  C
) ) )  =  ( ( { 1o }  X.  ( { (/) }  X.  B ) )  u.  ( { 1o }  X.  ( { 1o }  X.  C ) ) )
5048, 49eqtri 2198 . . . 4  |-  ( { 1o }  X.  ( B C ) )  =  ( ( { 1o }  X.  ( { (/) }  X.  B ) )  u.  ( { 1o }  X.  ( { 1o }  X.  C ) ) )
5150uneq2i 3288 . . 3  |-  ( ( { (/) }  X.  A
)  u.  ( { 1o }  X.  ( B C ) ) )  =  ( ( {
(/) }  X.  A
)  u.  ( ( { 1o }  X.  ( { (/) }  X.  B
) )  u.  ( { 1o }  X.  ( { 1o }  X.  C
) ) ) )
52 df-dju 7040 . . 3  |-  ( A ( B C ) )  =  ( ( {
(/) }  X.  A
)  u.  ( { 1o }  X.  ( B C ) ) )
53 unass 3294 . . 3  |-  ( ( ( { (/) }  X.  A )  u.  ( { 1o }  X.  ( { (/) }  X.  B
) ) )  u.  ( { 1o }  X.  ( { 1o }  X.  C ) ) )  =  ( ( {
(/) }  X.  A
)  u.  ( ( { 1o }  X.  ( { (/) }  X.  B
) )  u.  ( { 1o }  X.  ( { 1o }  X.  C
) ) ) )
5451, 52, 533eqtr4i 2208 . 2  |-  ( A ( B C ) )  =  ( ( ( { (/) }  X.  A
)  u.  ( { 1o }  X.  ( { (/) }  X.  B
) ) )  u.  ( { 1o }  X.  ( { 1o }  X.  C ) ) )
5546, 54breqtrrdi 4047 1  |-  ( ( A  e.  V  /\  B  e.  W  /\  C  e.  X )  ->  ( ( A B ) C )  ~~  ( A ( B C )
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ w3a 978    = wceq 1353    e. wcel 2148   _Vcvv 2739    u. cun 3129    i^i cin 3130   (/)c0 3424   {csn 3594   class class class wbr 4005    X. cxp 4626   1oc1o 6413    ~~ cen 6741   ⊔ cdju 7039
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-coll 4120  ax-sep 4123  ax-nul 4131  ax-pow 4176  ax-pr 4211  ax-un 4435
This theorem depends on definitions:  df-bi 117  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-ral 2460  df-rex 2461  df-reu 2462  df-rab 2464  df-v 2741  df-sbc 2965  df-csb 3060  df-dif 3133  df-un 3135  df-in 3137  df-ss 3144  df-nul 3425  df-pw 3579  df-sn 3600  df-pr 3601  df-op 3603  df-uni 3812  df-int 3847  df-iun 3890  df-br 4006  df-opab 4067  df-mpt 4068  df-tr 4104  df-id 4295  df-iord 4368  df-on 4370  df-suc 4373  df-xp 4634  df-rel 4635  df-cnv 4636  df-co 4637  df-dm 4638  df-rn 4639  df-res 4640  df-ima 4641  df-iota 5180  df-fun 5220  df-fn 5221  df-f 5222  df-f1 5223  df-fo 5224  df-f1o 5225  df-fv 5226  df-1st 6144  df-2nd 6145  df-1o 6420  df-er 6538  df-en 6744  df-dju 7040  df-inl 7049  df-inr 7050
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator