| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > djuassen | Unicode version | ||
| Description: Associative law for cardinal addition. Exercise 4.56(c) of [Mendelson] p. 258. (Contributed by NM, 26-Sep-2004.) (Revised by Mario Carneiro, 29-Apr-2015.) |
| Ref | Expression |
|---|---|
| djuassen |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ex 4187 |
. . . . . 6
| |
| 2 | simp1 1000 |
. . . . . 6
| |
| 3 | xpsnen2g 6949 |
. . . . . 6
| |
| 4 | 1, 2, 3 | sylancr 414 |
. . . . 5
|
| 5 | 4 | ensymd 6898 |
. . . 4
|
| 6 | 1oex 6533 |
. . . . . . 7
| |
| 7 | 1 | snex 4245 |
. . . . . . . 8
|
| 8 | simp2 1001 |
. . . . . . . 8
| |
| 9 | xpexg 4807 |
. . . . . . . 8
| |
| 10 | 7, 8, 9 | sylancr 414 |
. . . . . . 7
|
| 11 | xpsnen2g 6949 |
. . . . . . 7
| |
| 12 | 6, 10, 11 | sylancr 414 |
. . . . . 6
|
| 13 | xpsnen2g 6949 |
. . . . . . 7
| |
| 14 | 1, 8, 13 | sylancr 414 |
. . . . . 6
|
| 15 | entr 6899 |
. . . . . 6
| |
| 16 | 12, 14, 15 | syl2anc 411 |
. . . . 5
|
| 17 | 16 | ensymd 6898 |
. . . 4
|
| 18 | xp01disjl 6543 |
. . . . 5
| |
| 19 | 18 | a1i 9 |
. . . 4
|
| 20 | djuenun 7355 |
. . . 4
| |
| 21 | 5, 17, 19, 20 | syl3anc 1250 |
. . 3
|
| 22 | 6 | snex 4245 |
. . . . . . 7
|
| 23 | simp3 1002 |
. . . . . . 7
| |
| 24 | xpexg 4807 |
. . . . . . 7
| |
| 25 | 22, 23, 24 | sylancr 414 |
. . . . . 6
|
| 26 | xpsnen2g 6949 |
. . . . . 6
| |
| 27 | 6, 25, 26 | sylancr 414 |
. . . . 5
|
| 28 | xpsnen2g 6949 |
. . . . . 6
| |
| 29 | 6, 23, 28 | sylancr 414 |
. . . . 5
|
| 30 | entr 6899 |
. . . . 5
| |
| 31 | 27, 29, 30 | syl2anc 411 |
. . . 4
|
| 32 | 31 | ensymd 6898 |
. . 3
|
| 33 | indir 3430 |
. . . . 5
| |
| 34 | xp01disjl 6543 |
. . . . . . 7
| |
| 35 | xp01disjl 6543 |
. . . . . . . . 9
| |
| 36 | 35 | xpeq2i 4714 |
. . . . . . . 8
|
| 37 | xpindi 4831 |
. . . . . . . 8
| |
| 38 | xp0 5121 |
. . . . . . . 8
| |
| 39 | 36, 37, 38 | 3eqtr3i 2236 |
. . . . . . 7
|
| 40 | 34, 39 | uneq12i 3333 |
. . . . . 6
|
| 41 | un0 3502 |
. . . . . 6
| |
| 42 | 40, 41 | eqtri 2228 |
. . . . 5
|
| 43 | 33, 42 | eqtri 2228 |
. . . 4
|
| 44 | 43 | a1i 9 |
. . 3
|
| 45 | djuenun 7355 |
. . 3
| |
| 46 | 21, 32, 44, 45 | syl3anc 1250 |
. 2
|
| 47 | df-dju 7166 |
. . . . . 6
| |
| 48 | 47 | xpeq2i 4714 |
. . . . 5
|
| 49 | xpundi 4749 |
. . . . 5
| |
| 50 | 48, 49 | eqtri 2228 |
. . . 4
|
| 51 | 50 | uneq2i 3332 |
. . 3
|
| 52 | df-dju 7166 |
. . 3
| |
| 53 | unass 3338 |
. . 3
| |
| 54 | 51, 52, 53 | 3eqtr4i 2238 |
. 2
|
| 55 | 46, 54 | breqtrrdi 4101 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-coll 4175 ax-sep 4178 ax-nul 4186 ax-pow 4234 ax-pr 4269 ax-un 4498 |
| This theorem depends on definitions: df-bi 117 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-ral 2491 df-rex 2492 df-reu 2493 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-nul 3469 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-iun 3943 df-br 4060 df-opab 4122 df-mpt 4123 df-tr 4159 df-id 4358 df-iord 4431 df-on 4433 df-suc 4436 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-f1 5295 df-fo 5296 df-f1o 5297 df-fv 5298 df-1st 6249 df-2nd 6250 df-1o 6525 df-er 6643 df-en 6851 df-dju 7166 df-inl 7175 df-inr 7176 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |