| Mathbox for Jim Kingdon |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > Mathboxes > pwf1oexmid | Unicode version | ||
| Description: An exercise related to
|
| Ref | Expression |
|---|---|
| pwle2.t |
|
| Ref | Expression |
|---|---|
| pwf1oexmid |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pwle2.t |
. . . . . 6
| |
| 2 | 1 | pwle2 15799 |
. . . . 5
|
| 3 | 2 | adantr 276 |
. . . 4
|
| 4 | pw1dom2 7321 |
. . . . . 6
| |
| 5 | iunxpconst 4733 |
. . . . . . . . . . . 12
| |
| 6 | df1o2 6505 |
. . . . . . . . . . . . 13
| |
| 7 | 6 | xpeq2i 4694 |
. . . . . . . . . . . 12
|
| 8 | 1, 5, 7 | 3eqtri 2229 |
. . . . . . . . . . 11
|
| 9 | peano1 4640 |
. . . . . . . . . . . 12
| |
| 10 | xpsneng 6899 |
. . . . . . . . . . . 12
| |
| 11 | 9, 10 | mpan2 425 |
. . . . . . . . . . 11
|
| 12 | 8, 11 | eqbrtrid 4078 |
. . . . . . . . . 10
|
| 13 | 12 | ad2antrr 488 |
. . . . . . . . 9
|
| 14 | 13 | ensymd 6860 |
. . . . . . . 8
|
| 15 | relen 6821 |
. . . . . . . . . 10
| |
| 16 | brrelex1 4712 |
. . . . . . . . . 10
| |
| 17 | 15, 13, 16 | sylancr 414 |
. . . . . . . . 9
|
| 18 | simplr 528 |
. . . . . . . . . 10
| |
| 19 | simpr 110 |
. . . . . . . . . 10
| |
| 20 | dff1o5 5525 |
. . . . . . . . . 10
| |
| 21 | 18, 19, 20 | sylanbrc 417 |
. . . . . . . . 9
|
| 22 | f1oeng 6834 |
. . . . . . . . 9
| |
| 23 | 17, 21, 22 | syl2anc 411 |
. . . . . . . 8
|
| 24 | entr 6861 |
. . . . . . . 8
| |
| 25 | 14, 23, 24 | syl2anc 411 |
. . . . . . 7
|
| 26 | 25 | ensymd 6860 |
. . . . . 6
|
| 27 | domentr 6868 |
. . . . . 6
| |
| 28 | 4, 26, 27 | sylancr 414 |
. . . . 5
|
| 29 | 2onn 6597 |
. . . . . . 7
| |
| 30 | nndomo 6943 |
. . . . . . 7
| |
| 31 | 29, 30 | mpan 424 |
. . . . . 6
|
| 32 | 31 | ad2antrr 488 |
. . . . 5
|
| 33 | 28, 32 | mpbid 147 |
. . . 4
|
| 34 | 3, 33 | eqssd 3209 |
. . 3
|
| 35 | 26, 34 | breqtrd 4069 |
. . . 4
|
| 36 | exmidpw 6987 |
. . . 4
| |
| 37 | 35, 36 | sylibr 134 |
. . 3
|
| 38 | 34, 37 | jca 306 |
. 2
|
| 39 | simplr 528 |
. . . . 5
| |
| 40 | 12 | ad2antrr 488 |
. . . . . . . 8
|
| 41 | simprl 529 |
. . . . . . . 8
| |
| 42 | 40, 41 | breqtrd 4069 |
. . . . . . 7
|
| 43 | simprr 531 |
. . . . . . . . 9
| |
| 44 | 43, 36 | sylib 122 |
. . . . . . . 8
|
| 45 | 44 | ensymd 6860 |
. . . . . . 7
|
| 46 | entr 6861 |
. . . . . . 7
| |
| 47 | 42, 45, 46 | syl2anc 411 |
. . . . . 6
|
| 48 | nnfi 6951 |
. . . . . . . 8
| |
| 49 | 29, 48 | mp1i 10 |
. . . . . . 7
|
| 50 | enfi 6952 |
. . . . . . . 8
| |
| 51 | 44, 50 | syl 14 |
. . . . . . 7
|
| 52 | 49, 51 | mpbird 167 |
. . . . . 6
|
| 53 | f1finf1o 7031 |
. . . . . 6
| |
| 54 | 47, 52, 53 | syl2anc 411 |
. . . . 5
|
| 55 | 39, 54 | mpbid 147 |
. . . 4
|
| 56 | 55, 20 | sylib 122 |
. . 3
|
| 57 | 56 | simprd 114 |
. 2
|
| 58 | 38, 57 | impbida 596 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-coll 4158 ax-sep 4161 ax-nul 4169 ax-pow 4217 ax-pr 4252 ax-un 4478 ax-setind 4583 ax-iinf 4634 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-3or 981 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-ral 2488 df-rex 2489 df-reu 2490 df-rab 2492 df-v 2773 df-sbc 2998 df-csb 3093 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-nul 3460 df-if 3571 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-iun 3928 df-br 4044 df-opab 4105 df-mpt 4106 df-tr 4142 df-exmid 4238 df-id 4338 df-iord 4411 df-on 4413 df-suc 4416 df-iom 4637 df-xp 4679 df-rel 4680 df-cnv 4681 df-co 4682 df-dm 4683 df-rn 4684 df-res 4685 df-ima 4686 df-iota 5229 df-fun 5270 df-fn 5271 df-f 5272 df-f1 5273 df-fo 5274 df-f1o 5275 df-fv 5276 df-1o 6492 df-2o 6493 df-er 6610 df-en 6818 df-dom 6819 df-fin 6820 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |