Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  pwf1oexmid Unicode version

Theorem pwf1oexmid 15800
Description: An exercise related to  N copies of a singleton and the power set of a singleton (where the latter can also be thought of as representing truth values). Posed as an exercise by Martin Escardo online. (Contributed by Jim Kingdon, 3-Sep-2023.)
Hypothesis
Ref Expression
pwle2.t  |-  T  = 
U_ x  e.  N  ( { x }  X.  1o )
Assertion
Ref Expression
pwf1oexmid  |-  ( ( N  e.  om  /\  G : T -1-1-> ~P 1o )  ->  ( ran  G  =  ~P 1o  <->  ( N  =  2o  /\ EXMID ) ) )
Distinct variable group:    x, N
Allowed substitution hints:    T( x)    G( x)

Proof of Theorem pwf1oexmid
StepHypRef Expression
1 pwle2.t . . . . . 6  |-  T  = 
U_ x  e.  N  ( { x }  X.  1o )
21pwle2 15799 . . . . 5  |-  ( ( N  e.  om  /\  G : T -1-1-> ~P 1o )  ->  N  C_  2o )
32adantr 276 . . . 4  |-  ( ( ( N  e.  om  /\  G : T -1-1-> ~P 1o )  /\  ran  G  =  ~P 1o )  ->  N  C_  2o )
4 pw1dom2 7321 . . . . . 6  |-  2o  ~<_  ~P 1o
5 iunxpconst 4733 . . . . . . . . . . . 12  |-  U_ x  e.  N  ( {
x }  X.  1o )  =  ( N  X.  1o )
6 df1o2 6505 . . . . . . . . . . . . 13  |-  1o  =  { (/) }
76xpeq2i 4694 . . . . . . . . . . . 12  |-  ( N  X.  1o )  =  ( N  X.  { (/)
} )
81, 5, 73eqtri 2229 . . . . . . . . . . 11  |-  T  =  ( N  X.  { (/)
} )
9 peano1 4640 . . . . . . . . . . . 12  |-  (/)  e.  om
10 xpsneng 6899 . . . . . . . . . . . 12  |-  ( ( N  e.  om  /\  (/) 
e.  om )  ->  ( N  X.  { (/) } ) 
~~  N )
119, 10mpan2 425 . . . . . . . . . . 11  |-  ( N  e.  om  ->  ( N  X.  { (/) } ) 
~~  N )
128, 11eqbrtrid 4078 . . . . . . . . . 10  |-  ( N  e.  om  ->  T  ~~  N )
1312ad2antrr 488 . . . . . . . . 9  |-  ( ( ( N  e.  om  /\  G : T -1-1-> ~P 1o )  /\  ran  G  =  ~P 1o )  ->  T  ~~  N )
1413ensymd 6860 . . . . . . . 8  |-  ( ( ( N  e.  om  /\  G : T -1-1-> ~P 1o )  /\  ran  G  =  ~P 1o )  ->  N  ~~  T )
15 relen 6821 . . . . . . . . . 10  |-  Rel  ~~
16 brrelex1 4712 . . . . . . . . . 10  |-  ( ( Rel  ~~  /\  T  ~~  N )  ->  T  e.  _V )
1715, 13, 16sylancr 414 . . . . . . . . 9  |-  ( ( ( N  e.  om  /\  G : T -1-1-> ~P 1o )  /\  ran  G  =  ~P 1o )  ->  T  e.  _V )
18 simplr 528 . . . . . . . . . 10  |-  ( ( ( N  e.  om  /\  G : T -1-1-> ~P 1o )  /\  ran  G  =  ~P 1o )  ->  G : T -1-1-> ~P 1o )
19 simpr 110 . . . . . . . . . 10  |-  ( ( ( N  e.  om  /\  G : T -1-1-> ~P 1o )  /\  ran  G  =  ~P 1o )  ->  ran  G  =  ~P 1o )
20 dff1o5 5525 . . . . . . . . . 10  |-  ( G : T -1-1-onto-> ~P 1o  <->  ( G : T -1-1-> ~P 1o  /\  ran  G  =  ~P 1o ) )
2118, 19, 20sylanbrc 417 . . . . . . . . 9  |-  ( ( ( N  e.  om  /\  G : T -1-1-> ~P 1o )  /\  ran  G  =  ~P 1o )  ->  G : T -1-1-onto-> ~P 1o )
22 f1oeng 6834 . . . . . . . . 9  |-  ( ( T  e.  _V  /\  G : T -1-1-onto-> ~P 1o )  ->  T  ~~  ~P 1o )
2317, 21, 22syl2anc 411 . . . . . . . 8  |-  ( ( ( N  e.  om  /\  G : T -1-1-> ~P 1o )  /\  ran  G  =  ~P 1o )  ->  T  ~~  ~P 1o )
24 entr 6861 . . . . . . . 8  |-  ( ( N  ~~  T  /\  T  ~~  ~P 1o )  ->  N  ~~  ~P 1o )
2514, 23, 24syl2anc 411 . . . . . . 7  |-  ( ( ( N  e.  om  /\  G : T -1-1-> ~P 1o )  /\  ran  G  =  ~P 1o )  ->  N  ~~  ~P 1o )
2625ensymd 6860 . . . . . 6  |-  ( ( ( N  e.  om  /\  G : T -1-1-> ~P 1o )  /\  ran  G  =  ~P 1o )  ->  ~P 1o  ~~  N )
27 domentr 6868 . . . . . 6  |-  ( ( 2o  ~<_  ~P 1o  /\  ~P 1o  ~~  N )  ->  2o 
~<_  N )
284, 26, 27sylancr 414 . . . . 5  |-  ( ( ( N  e.  om  /\  G : T -1-1-> ~P 1o )  /\  ran  G  =  ~P 1o )  ->  2o 
~<_  N )
29 2onn 6597 . . . . . . 7  |-  2o  e.  om
30 nndomo 6943 . . . . . . 7  |-  ( ( 2o  e.  om  /\  N  e.  om )  ->  ( 2o  ~<_  N  <->  2o  C_  N
) )
3129, 30mpan 424 . . . . . 6  |-  ( N  e.  om  ->  ( 2o 
~<_  N  <->  2o  C_  N ) )
3231ad2antrr 488 . . . . 5  |-  ( ( ( N  e.  om  /\  G : T -1-1-> ~P 1o )  /\  ran  G  =  ~P 1o )  -> 
( 2o  ~<_  N  <->  2o  C_  N
) )
3328, 32mpbid 147 . . . 4  |-  ( ( ( N  e.  om  /\  G : T -1-1-> ~P 1o )  /\  ran  G  =  ~P 1o )  ->  2o  C_  N )
343, 33eqssd 3209 . . 3  |-  ( ( ( N  e.  om  /\  G : T -1-1-> ~P 1o )  /\  ran  G  =  ~P 1o )  ->  N  =  2o )
3526, 34breqtrd 4069 . . . 4  |-  ( ( ( N  e.  om  /\  G : T -1-1-> ~P 1o )  /\  ran  G  =  ~P 1o )  ->  ~P 1o  ~~  2o )
36 exmidpw 6987 . . . 4  |-  (EXMID  <->  ~P 1o  ~~  2o )
3735, 36sylibr 134 . . 3  |-  ( ( ( N  e.  om  /\  G : T -1-1-> ~P 1o )  /\  ran  G  =  ~P 1o )  -> EXMID )
3834, 37jca 306 . 2  |-  ( ( ( N  e.  om  /\  G : T -1-1-> ~P 1o )  /\  ran  G  =  ~P 1o )  -> 
( N  =  2o 
/\ EXMID
) )
39 simplr 528 . . . . 5  |-  ( ( ( N  e.  om  /\  G : T -1-1-> ~P 1o )  /\  ( N  =  2o  /\ EXMID ) )  ->  G : T -1-1-> ~P 1o )
4012ad2antrr 488 . . . . . . . 8  |-  ( ( ( N  e.  om  /\  G : T -1-1-> ~P 1o )  /\  ( N  =  2o  /\ EXMID ) )  ->  T  ~~  N )
41 simprl 529 . . . . . . . 8  |-  ( ( ( N  e.  om  /\  G : T -1-1-> ~P 1o )  /\  ( N  =  2o  /\ EXMID ) )  ->  N  =  2o )
4240, 41breqtrd 4069 . . . . . . 7  |-  ( ( ( N  e.  om  /\  G : T -1-1-> ~P 1o )  /\  ( N  =  2o  /\ EXMID ) )  ->  T  ~~  2o )
43 simprr 531 . . . . . . . . 9  |-  ( ( ( N  e.  om  /\  G : T -1-1-> ~P 1o )  /\  ( N  =  2o  /\ EXMID ) )  -> EXMID )
4443, 36sylib 122 . . . . . . . 8  |-  ( ( ( N  e.  om  /\  G : T -1-1-> ~P 1o )  /\  ( N  =  2o  /\ EXMID ) )  ->  ~P 1o  ~~  2o )
4544ensymd 6860 . . . . . . 7  |-  ( ( ( N  e.  om  /\  G : T -1-1-> ~P 1o )  /\  ( N  =  2o  /\ EXMID ) )  ->  2o  ~~  ~P 1o )
46 entr 6861 . . . . . . 7  |-  ( ( T  ~~  2o  /\  2o  ~~  ~P 1o )  ->  T  ~~  ~P 1o )
4742, 45, 46syl2anc 411 . . . . . 6  |-  ( ( ( N  e.  om  /\  G : T -1-1-> ~P 1o )  /\  ( N  =  2o  /\ EXMID ) )  ->  T  ~~  ~P 1o )
48 nnfi 6951 . . . . . . . 8  |-  ( 2o  e.  om  ->  2o  e.  Fin )
4929, 48mp1i 10 . . . . . . 7  |-  ( ( ( N  e.  om  /\  G : T -1-1-> ~P 1o )  /\  ( N  =  2o  /\ EXMID ) )  ->  2o  e.  Fin )
50 enfi 6952 . . . . . . . 8  |-  ( ~P 1o  ~~  2o  ->  ( ~P 1o  e.  Fin  <->  2o  e.  Fin ) )
5144, 50syl 14 . . . . . . 7  |-  ( ( ( N  e.  om  /\  G : T -1-1-> ~P 1o )  /\  ( N  =  2o  /\ EXMID ) )  -> 
( ~P 1o  e.  Fin 
<->  2o  e.  Fin )
)
5249, 51mpbird 167 . . . . . 6  |-  ( ( ( N  e.  om  /\  G : T -1-1-> ~P 1o )  /\  ( N  =  2o  /\ EXMID ) )  ->  ~P 1o  e.  Fin )
53 f1finf1o 7031 . . . . . 6  |-  ( ( T  ~~  ~P 1o  /\ 
~P 1o  e.  Fin )  ->  ( G : T -1-1-> ~P 1o  <->  G : T
-1-1-onto-> ~P 1o ) )
5447, 52, 53syl2anc 411 . . . . 5  |-  ( ( ( N  e.  om  /\  G : T -1-1-> ~P 1o )  /\  ( N  =  2o  /\ EXMID ) )  -> 
( G : T -1-1-> ~P 1o  <->  G : T -1-1-onto-> ~P 1o ) )
5539, 54mpbid 147 . . . 4  |-  ( ( ( N  e.  om  /\  G : T -1-1-> ~P 1o )  /\  ( N  =  2o  /\ EXMID ) )  ->  G : T -1-1-onto-> ~P 1o )
5655, 20sylib 122 . . 3  |-  ( ( ( N  e.  om  /\  G : T -1-1-> ~P 1o )  /\  ( N  =  2o  /\ EXMID ) )  -> 
( G : T -1-1-> ~P 1o  /\  ran  G  =  ~P 1o ) )
5756simprd 114 . 2  |-  ( ( ( N  e.  om  /\  G : T -1-1-> ~P 1o )  /\  ( N  =  2o  /\ EXMID ) )  ->  ran  G  =  ~P 1o )
5838, 57impbida 596 1  |-  ( ( N  e.  om  /\  G : T -1-1-> ~P 1o )  ->  ( ran  G  =  ~P 1o  <->  ( N  =  2o  /\ EXMID ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1372    e. wcel 2175   _Vcvv 2771    C_ wss 3165   (/)c0 3459   ~Pcpw 3615   {csn 3632   U_ciun 3926   class class class wbr 4043  EXMIDwem 4237   omcom 4636    X. cxp 4671   ran crn 4674   Rel wrel 4678   -1-1->wf1 5265   -1-1-onto->wf1o 5267   1oc1o 6485   2oc2o 6486    ~~ cen 6815    ~<_ cdom 6816   Fincfn 6817
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1469  ax-7 1470  ax-gen 1471  ax-ie1 1515  ax-ie2 1516  ax-8 1526  ax-10 1527  ax-11 1528  ax-i12 1529  ax-bndl 1531  ax-4 1532  ax-17 1548  ax-i9 1552  ax-ial 1556  ax-i5r 1557  ax-13 2177  ax-14 2178  ax-ext 2186  ax-coll 4158  ax-sep 4161  ax-nul 4169  ax-pow 4217  ax-pr 4252  ax-un 4478  ax-setind 4583  ax-iinf 4634
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1375  df-fal 1378  df-nf 1483  df-sb 1785  df-eu 2056  df-mo 2057  df-clab 2191  df-cleq 2197  df-clel 2200  df-nfc 2336  df-ne 2376  df-ral 2488  df-rex 2489  df-reu 2490  df-rab 2492  df-v 2773  df-sbc 2998  df-csb 3093  df-dif 3167  df-un 3169  df-in 3171  df-ss 3178  df-nul 3460  df-if 3571  df-pw 3617  df-sn 3638  df-pr 3639  df-op 3641  df-uni 3850  df-int 3885  df-iun 3928  df-br 4044  df-opab 4105  df-mpt 4106  df-tr 4142  df-exmid 4238  df-id 4338  df-iord 4411  df-on 4413  df-suc 4416  df-iom 4637  df-xp 4679  df-rel 4680  df-cnv 4681  df-co 4682  df-dm 4683  df-rn 4684  df-res 4685  df-ima 4686  df-iota 5229  df-fun 5270  df-fn 5271  df-f 5272  df-f1 5273  df-fo 5274  df-f1o 5275  df-fv 5276  df-1o 6492  df-2o 6493  df-er 6610  df-en 6818  df-dom 6819  df-fin 6820
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator