Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  pwf1oexmid Unicode version

Theorem pwf1oexmid 15730
Description: An exercise related to  N copies of a singleton and the power set of a singleton (where the latter can also be thought of as representing truth values). Posed as an exercise by Martin Escardo online. (Contributed by Jim Kingdon, 3-Sep-2023.)
Hypothesis
Ref Expression
pwle2.t  |-  T  = 
U_ x  e.  N  ( { x }  X.  1o )
Assertion
Ref Expression
pwf1oexmid  |-  ( ( N  e.  om  /\  G : T -1-1-> ~P 1o )  ->  ( ran  G  =  ~P 1o  <->  ( N  =  2o  /\ EXMID ) ) )
Distinct variable group:    x, N
Allowed substitution hints:    T( x)    G( x)

Proof of Theorem pwf1oexmid
StepHypRef Expression
1 pwle2.t . . . . . 6  |-  T  = 
U_ x  e.  N  ( { x }  X.  1o )
21pwle2 15729 . . . . 5  |-  ( ( N  e.  om  /\  G : T -1-1-> ~P 1o )  ->  N  C_  2o )
32adantr 276 . . . 4  |-  ( ( ( N  e.  om  /\  G : T -1-1-> ~P 1o )  /\  ran  G  =  ~P 1o )  ->  N  C_  2o )
4 pw1dom2 7310 . . . . . 6  |-  2o  ~<_  ~P 1o
5 iunxpconst 4724 . . . . . . . . . . . 12  |-  U_ x  e.  N  ( {
x }  X.  1o )  =  ( N  X.  1o )
6 df1o2 6496 . . . . . . . . . . . . 13  |-  1o  =  { (/) }
76xpeq2i 4685 . . . . . . . . . . . 12  |-  ( N  X.  1o )  =  ( N  X.  { (/)
} )
81, 5, 73eqtri 2221 . . . . . . . . . . 11  |-  T  =  ( N  X.  { (/)
} )
9 peano1 4631 . . . . . . . . . . . 12  |-  (/)  e.  om
10 xpsneng 6890 . . . . . . . . . . . 12  |-  ( ( N  e.  om  /\  (/) 
e.  om )  ->  ( N  X.  { (/) } ) 
~~  N )
119, 10mpan2 425 . . . . . . . . . . 11  |-  ( N  e.  om  ->  ( N  X.  { (/) } ) 
~~  N )
128, 11eqbrtrid 4069 . . . . . . . . . 10  |-  ( N  e.  om  ->  T  ~~  N )
1312ad2antrr 488 . . . . . . . . 9  |-  ( ( ( N  e.  om  /\  G : T -1-1-> ~P 1o )  /\  ran  G  =  ~P 1o )  ->  T  ~~  N )
1413ensymd 6851 . . . . . . . 8  |-  ( ( ( N  e.  om  /\  G : T -1-1-> ~P 1o )  /\  ran  G  =  ~P 1o )  ->  N  ~~  T )
15 relen 6812 . . . . . . . . . 10  |-  Rel  ~~
16 brrelex1 4703 . . . . . . . . . 10  |-  ( ( Rel  ~~  /\  T  ~~  N )  ->  T  e.  _V )
1715, 13, 16sylancr 414 . . . . . . . . 9  |-  ( ( ( N  e.  om  /\  G : T -1-1-> ~P 1o )  /\  ran  G  =  ~P 1o )  ->  T  e.  _V )
18 simplr 528 . . . . . . . . . 10  |-  ( ( ( N  e.  om  /\  G : T -1-1-> ~P 1o )  /\  ran  G  =  ~P 1o )  ->  G : T -1-1-> ~P 1o )
19 simpr 110 . . . . . . . . . 10  |-  ( ( ( N  e.  om  /\  G : T -1-1-> ~P 1o )  /\  ran  G  =  ~P 1o )  ->  ran  G  =  ~P 1o )
20 dff1o5 5516 . . . . . . . . . 10  |-  ( G : T -1-1-onto-> ~P 1o  <->  ( G : T -1-1-> ~P 1o  /\  ran  G  =  ~P 1o ) )
2118, 19, 20sylanbrc 417 . . . . . . . . 9  |-  ( ( ( N  e.  om  /\  G : T -1-1-> ~P 1o )  /\  ran  G  =  ~P 1o )  ->  G : T -1-1-onto-> ~P 1o )
22 f1oeng 6825 . . . . . . . . 9  |-  ( ( T  e.  _V  /\  G : T -1-1-onto-> ~P 1o )  ->  T  ~~  ~P 1o )
2317, 21, 22syl2anc 411 . . . . . . . 8  |-  ( ( ( N  e.  om  /\  G : T -1-1-> ~P 1o )  /\  ran  G  =  ~P 1o )  ->  T  ~~  ~P 1o )
24 entr 6852 . . . . . . . 8  |-  ( ( N  ~~  T  /\  T  ~~  ~P 1o )  ->  N  ~~  ~P 1o )
2514, 23, 24syl2anc 411 . . . . . . 7  |-  ( ( ( N  e.  om  /\  G : T -1-1-> ~P 1o )  /\  ran  G  =  ~P 1o )  ->  N  ~~  ~P 1o )
2625ensymd 6851 . . . . . 6  |-  ( ( ( N  e.  om  /\  G : T -1-1-> ~P 1o )  /\  ran  G  =  ~P 1o )  ->  ~P 1o  ~~  N )
27 domentr 6859 . . . . . 6  |-  ( ( 2o  ~<_  ~P 1o  /\  ~P 1o  ~~  N )  ->  2o 
~<_  N )
284, 26, 27sylancr 414 . . . . 5  |-  ( ( ( N  e.  om  /\  G : T -1-1-> ~P 1o )  /\  ran  G  =  ~P 1o )  ->  2o 
~<_  N )
29 2onn 6588 . . . . . . 7  |-  2o  e.  om
30 nndomo 6934 . . . . . . 7  |-  ( ( 2o  e.  om  /\  N  e.  om )  ->  ( 2o  ~<_  N  <->  2o  C_  N
) )
3129, 30mpan 424 . . . . . 6  |-  ( N  e.  om  ->  ( 2o 
~<_  N  <->  2o  C_  N ) )
3231ad2antrr 488 . . . . 5  |-  ( ( ( N  e.  om  /\  G : T -1-1-> ~P 1o )  /\  ran  G  =  ~P 1o )  -> 
( 2o  ~<_  N  <->  2o  C_  N
) )
3328, 32mpbid 147 . . . 4  |-  ( ( ( N  e.  om  /\  G : T -1-1-> ~P 1o )  /\  ran  G  =  ~P 1o )  ->  2o  C_  N )
343, 33eqssd 3201 . . 3  |-  ( ( ( N  e.  om  /\  G : T -1-1-> ~P 1o )  /\  ran  G  =  ~P 1o )  ->  N  =  2o )
3526, 34breqtrd 4060 . . . 4  |-  ( ( ( N  e.  om  /\  G : T -1-1-> ~P 1o )  /\  ran  G  =  ~P 1o )  ->  ~P 1o  ~~  2o )
36 exmidpw 6978 . . . 4  |-  (EXMID  <->  ~P 1o  ~~  2o )
3735, 36sylibr 134 . . 3  |-  ( ( ( N  e.  om  /\  G : T -1-1-> ~P 1o )  /\  ran  G  =  ~P 1o )  -> EXMID )
3834, 37jca 306 . 2  |-  ( ( ( N  e.  om  /\  G : T -1-1-> ~P 1o )  /\  ran  G  =  ~P 1o )  -> 
( N  =  2o 
/\ EXMID
) )
39 simplr 528 . . . . 5  |-  ( ( ( N  e.  om  /\  G : T -1-1-> ~P 1o )  /\  ( N  =  2o  /\ EXMID ) )  ->  G : T -1-1-> ~P 1o )
4012ad2antrr 488 . . . . . . . 8  |-  ( ( ( N  e.  om  /\  G : T -1-1-> ~P 1o )  /\  ( N  =  2o  /\ EXMID ) )  ->  T  ~~  N )
41 simprl 529 . . . . . . . 8  |-  ( ( ( N  e.  om  /\  G : T -1-1-> ~P 1o )  /\  ( N  =  2o  /\ EXMID ) )  ->  N  =  2o )
4240, 41breqtrd 4060 . . . . . . 7  |-  ( ( ( N  e.  om  /\  G : T -1-1-> ~P 1o )  /\  ( N  =  2o  /\ EXMID ) )  ->  T  ~~  2o )
43 simprr 531 . . . . . . . . 9  |-  ( ( ( N  e.  om  /\  G : T -1-1-> ~P 1o )  /\  ( N  =  2o  /\ EXMID ) )  -> EXMID )
4443, 36sylib 122 . . . . . . . 8  |-  ( ( ( N  e.  om  /\  G : T -1-1-> ~P 1o )  /\  ( N  =  2o  /\ EXMID ) )  ->  ~P 1o  ~~  2o )
4544ensymd 6851 . . . . . . 7  |-  ( ( ( N  e.  om  /\  G : T -1-1-> ~P 1o )  /\  ( N  =  2o  /\ EXMID ) )  ->  2o  ~~  ~P 1o )
46 entr 6852 . . . . . . 7  |-  ( ( T  ~~  2o  /\  2o  ~~  ~P 1o )  ->  T  ~~  ~P 1o )
4742, 45, 46syl2anc 411 . . . . . 6  |-  ( ( ( N  e.  om  /\  G : T -1-1-> ~P 1o )  /\  ( N  =  2o  /\ EXMID ) )  ->  T  ~~  ~P 1o )
48 nnfi 6942 . . . . . . . 8  |-  ( 2o  e.  om  ->  2o  e.  Fin )
4929, 48mp1i 10 . . . . . . 7  |-  ( ( ( N  e.  om  /\  G : T -1-1-> ~P 1o )  /\  ( N  =  2o  /\ EXMID ) )  ->  2o  e.  Fin )
50 enfi 6943 . . . . . . . 8  |-  ( ~P 1o  ~~  2o  ->  ( ~P 1o  e.  Fin  <->  2o  e.  Fin ) )
5144, 50syl 14 . . . . . . 7  |-  ( ( ( N  e.  om  /\  G : T -1-1-> ~P 1o )  /\  ( N  =  2o  /\ EXMID ) )  -> 
( ~P 1o  e.  Fin 
<->  2o  e.  Fin )
)
5249, 51mpbird 167 . . . . . 6  |-  ( ( ( N  e.  om  /\  G : T -1-1-> ~P 1o )  /\  ( N  =  2o  /\ EXMID ) )  ->  ~P 1o  e.  Fin )
53 f1finf1o 7022 . . . . . 6  |-  ( ( T  ~~  ~P 1o  /\ 
~P 1o  e.  Fin )  ->  ( G : T -1-1-> ~P 1o  <->  G : T
-1-1-onto-> ~P 1o ) )
5447, 52, 53syl2anc 411 . . . . 5  |-  ( ( ( N  e.  om  /\  G : T -1-1-> ~P 1o )  /\  ( N  =  2o  /\ EXMID ) )  -> 
( G : T -1-1-> ~P 1o  <->  G : T -1-1-onto-> ~P 1o ) )
5539, 54mpbid 147 . . . 4  |-  ( ( ( N  e.  om  /\  G : T -1-1-> ~P 1o )  /\  ( N  =  2o  /\ EXMID ) )  ->  G : T -1-1-onto-> ~P 1o )
5655, 20sylib 122 . . 3  |-  ( ( ( N  e.  om  /\  G : T -1-1-> ~P 1o )  /\  ( N  =  2o  /\ EXMID ) )  -> 
( G : T -1-1-> ~P 1o  /\  ran  G  =  ~P 1o ) )
5756simprd 114 . 2  |-  ( ( ( N  e.  om  /\  G : T -1-1-> ~P 1o )  /\  ( N  =  2o  /\ EXMID ) )  ->  ran  G  =  ~P 1o )
5838, 57impbida 596 1  |-  ( ( N  e.  om  /\  G : T -1-1-> ~P 1o )  ->  ( ran  G  =  ~P 1o  <->  ( N  =  2o  /\ EXMID ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    <-> wb 105    = wceq 1364    e. wcel 2167   _Vcvv 2763    C_ wss 3157   (/)c0 3451   ~Pcpw 3606   {csn 3623   U_ciun 3917   class class class wbr 4034  EXMIDwem 4228   omcom 4627    X. cxp 4662   ran crn 4665   Rel wrel 4669   -1-1->wf1 5256   -1-1-onto->wf1o 5258   1oc1o 6476   2oc2o 6477    ~~ cen 6806    ~<_ cdom 6807   Fincfn 6808
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-coll 4149  ax-sep 4152  ax-nul 4160  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-iinf 4625
This theorem depends on definitions:  df-bi 117  df-dc 836  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-csb 3085  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-nul 3452  df-if 3563  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-iun 3919  df-br 4035  df-opab 4096  df-mpt 4097  df-tr 4133  df-exmid 4229  df-id 4329  df-iord 4402  df-on 4404  df-suc 4407  df-iom 4628  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-f1 5264  df-fo 5265  df-f1o 5266  df-fv 5267  df-1o 6483  df-2o 6484  df-er 6601  df-en 6809  df-dom 6810  df-fin 6811
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator