Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  pwf1oexmid Unicode version

Theorem pwf1oexmid 13713
Description: An exercise related to  N copies of a singleton and the power set of a singleton (where the latter can also be thought of as representing truth values). Posed as an exercise by Martin Escardo online. (Contributed by Jim Kingdon, 3-Sep-2023.)
Hypothesis
Ref Expression
pwle2.t  |-  T  = 
U_ x  e.  N  ( { x }  X.  1o )
Assertion
Ref Expression
pwf1oexmid  |-  ( ( N  e.  om  /\  G : T -1-1-> ~P 1o )  ->  ( ran  G  =  ~P 1o  <->  ( N  =  2o  /\ EXMID ) ) )
Distinct variable group:    x, N
Allowed substitution hints:    T( x)    G( x)

Proof of Theorem pwf1oexmid
StepHypRef Expression
1 pwle2.t . . . . . 6  |-  T  = 
U_ x  e.  N  ( { x }  X.  1o )
21pwle2 13712 . . . . 5  |-  ( ( N  e.  om  /\  G : T -1-1-> ~P 1o )  ->  N  C_  2o )
32adantr 274 . . . 4  |-  ( ( ( N  e.  om  /\  G : T -1-1-> ~P 1o )  /\  ran  G  =  ~P 1o )  ->  N  C_  2o )
4 pw1dom2 7174 . . . . . 6  |-  2o  ~<_  ~P 1o
5 iunxpconst 4658 . . . . . . . . . . . 12  |-  U_ x  e.  N  ( {
x }  X.  1o )  =  ( N  X.  1o )
6 df1o2 6388 . . . . . . . . . . . . 13  |-  1o  =  { (/) }
76xpeq2i 4619 . . . . . . . . . . . 12  |-  ( N  X.  1o )  =  ( N  X.  { (/)
} )
81, 5, 73eqtri 2189 . . . . . . . . . . 11  |-  T  =  ( N  X.  { (/)
} )
9 peano1 4565 . . . . . . . . . . . 12  |-  (/)  e.  om
10 xpsneng 6779 . . . . . . . . . . . 12  |-  ( ( N  e.  om  /\  (/) 
e.  om )  ->  ( N  X.  { (/) } ) 
~~  N )
119, 10mpan2 422 . . . . . . . . . . 11  |-  ( N  e.  om  ->  ( N  X.  { (/) } ) 
~~  N )
128, 11eqbrtrid 4011 . . . . . . . . . 10  |-  ( N  e.  om  ->  T  ~~  N )
1312ad2antrr 480 . . . . . . . . 9  |-  ( ( ( N  e.  om  /\  G : T -1-1-> ~P 1o )  /\  ran  G  =  ~P 1o )  ->  T  ~~  N )
1413ensymd 6740 . . . . . . . 8  |-  ( ( ( N  e.  om  /\  G : T -1-1-> ~P 1o )  /\  ran  G  =  ~P 1o )  ->  N  ~~  T )
15 relen 6701 . . . . . . . . . 10  |-  Rel  ~~
16 brrelex1 4637 . . . . . . . . . 10  |-  ( ( Rel  ~~  /\  T  ~~  N )  ->  T  e.  _V )
1715, 13, 16sylancr 411 . . . . . . . . 9  |-  ( ( ( N  e.  om  /\  G : T -1-1-> ~P 1o )  /\  ran  G  =  ~P 1o )  ->  T  e.  _V )
18 simplr 520 . . . . . . . . . 10  |-  ( ( ( N  e.  om  /\  G : T -1-1-> ~P 1o )  /\  ran  G  =  ~P 1o )  ->  G : T -1-1-> ~P 1o )
19 simpr 109 . . . . . . . . . 10  |-  ( ( ( N  e.  om  /\  G : T -1-1-> ~P 1o )  /\  ran  G  =  ~P 1o )  ->  ran  G  =  ~P 1o )
20 dff1o5 5435 . . . . . . . . . 10  |-  ( G : T -1-1-onto-> ~P 1o  <->  ( G : T -1-1-> ~P 1o  /\  ran  G  =  ~P 1o ) )
2118, 19, 20sylanbrc 414 . . . . . . . . 9  |-  ( ( ( N  e.  om  /\  G : T -1-1-> ~P 1o )  /\  ran  G  =  ~P 1o )  ->  G : T -1-1-onto-> ~P 1o )
22 f1oeng 6714 . . . . . . . . 9  |-  ( ( T  e.  _V  /\  G : T -1-1-onto-> ~P 1o )  ->  T  ~~  ~P 1o )
2317, 21, 22syl2anc 409 . . . . . . . 8  |-  ( ( ( N  e.  om  /\  G : T -1-1-> ~P 1o )  /\  ran  G  =  ~P 1o )  ->  T  ~~  ~P 1o )
24 entr 6741 . . . . . . . 8  |-  ( ( N  ~~  T  /\  T  ~~  ~P 1o )  ->  N  ~~  ~P 1o )
2514, 23, 24syl2anc 409 . . . . . . 7  |-  ( ( ( N  e.  om  /\  G : T -1-1-> ~P 1o )  /\  ran  G  =  ~P 1o )  ->  N  ~~  ~P 1o )
2625ensymd 6740 . . . . . 6  |-  ( ( ( N  e.  om  /\  G : T -1-1-> ~P 1o )  /\  ran  G  =  ~P 1o )  ->  ~P 1o  ~~  N )
27 domentr 6748 . . . . . 6  |-  ( ( 2o  ~<_  ~P 1o  /\  ~P 1o  ~~  N )  ->  2o 
~<_  N )
284, 26, 27sylancr 411 . . . . 5  |-  ( ( ( N  e.  om  /\  G : T -1-1-> ~P 1o )  /\  ran  G  =  ~P 1o )  ->  2o 
~<_  N )
29 2onn 6480 . . . . . . 7  |-  2o  e.  om
30 nndomo 6821 . . . . . . 7  |-  ( ( 2o  e.  om  /\  N  e.  om )  ->  ( 2o  ~<_  N  <->  2o  C_  N
) )
3129, 30mpan 421 . . . . . 6  |-  ( N  e.  om  ->  ( 2o 
~<_  N  <->  2o  C_  N ) )
3231ad2antrr 480 . . . . 5  |-  ( ( ( N  e.  om  /\  G : T -1-1-> ~P 1o )  /\  ran  G  =  ~P 1o )  -> 
( 2o  ~<_  N  <->  2o  C_  N
) )
3328, 32mpbid 146 . . . 4  |-  ( ( ( N  e.  om  /\  G : T -1-1-> ~P 1o )  /\  ran  G  =  ~P 1o )  ->  2o  C_  N )
343, 33eqssd 3154 . . 3  |-  ( ( ( N  e.  om  /\  G : T -1-1-> ~P 1o )  /\  ran  G  =  ~P 1o )  ->  N  =  2o )
3526, 34breqtrd 4002 . . . 4  |-  ( ( ( N  e.  om  /\  G : T -1-1-> ~P 1o )  /\  ran  G  =  ~P 1o )  ->  ~P 1o  ~~  2o )
36 exmidpw 6865 . . . 4  |-  (EXMID  <->  ~P 1o  ~~  2o )
3735, 36sylibr 133 . . 3  |-  ( ( ( N  e.  om  /\  G : T -1-1-> ~P 1o )  /\  ran  G  =  ~P 1o )  -> EXMID )
3834, 37jca 304 . 2  |-  ( ( ( N  e.  om  /\  G : T -1-1-> ~P 1o )  /\  ran  G  =  ~P 1o )  -> 
( N  =  2o 
/\ EXMID
) )
39 simplr 520 . . . . 5  |-  ( ( ( N  e.  om  /\  G : T -1-1-> ~P 1o )  /\  ( N  =  2o  /\ EXMID ) )  ->  G : T -1-1-> ~P 1o )
4012ad2antrr 480 . . . . . . . 8  |-  ( ( ( N  e.  om  /\  G : T -1-1-> ~P 1o )  /\  ( N  =  2o  /\ EXMID ) )  ->  T  ~~  N )
41 simprl 521 . . . . . . . 8  |-  ( ( ( N  e.  om  /\  G : T -1-1-> ~P 1o )  /\  ( N  =  2o  /\ EXMID ) )  ->  N  =  2o )
4240, 41breqtrd 4002 . . . . . . 7  |-  ( ( ( N  e.  om  /\  G : T -1-1-> ~P 1o )  /\  ( N  =  2o  /\ EXMID ) )  ->  T  ~~  2o )
43 simprr 522 . . . . . . . . 9  |-  ( ( ( N  e.  om  /\  G : T -1-1-> ~P 1o )  /\  ( N  =  2o  /\ EXMID ) )  -> EXMID )
4443, 36sylib 121 . . . . . . . 8  |-  ( ( ( N  e.  om  /\  G : T -1-1-> ~P 1o )  /\  ( N  =  2o  /\ EXMID ) )  ->  ~P 1o  ~~  2o )
4544ensymd 6740 . . . . . . 7  |-  ( ( ( N  e.  om  /\  G : T -1-1-> ~P 1o )  /\  ( N  =  2o  /\ EXMID ) )  ->  2o  ~~  ~P 1o )
46 entr 6741 . . . . . . 7  |-  ( ( T  ~~  2o  /\  2o  ~~  ~P 1o )  ->  T  ~~  ~P 1o )
4742, 45, 46syl2anc 409 . . . . . 6  |-  ( ( ( N  e.  om  /\  G : T -1-1-> ~P 1o )  /\  ( N  =  2o  /\ EXMID ) )  ->  T  ~~  ~P 1o )
48 nnfi 6829 . . . . . . . 8  |-  ( 2o  e.  om  ->  2o  e.  Fin )
4929, 48mp1i 10 . . . . . . 7  |-  ( ( ( N  e.  om  /\  G : T -1-1-> ~P 1o )  /\  ( N  =  2o  /\ EXMID ) )  ->  2o  e.  Fin )
50 enfi 6830 . . . . . . . 8  |-  ( ~P 1o  ~~  2o  ->  ( ~P 1o  e.  Fin  <->  2o  e.  Fin ) )
5144, 50syl 14 . . . . . . 7  |-  ( ( ( N  e.  om  /\  G : T -1-1-> ~P 1o )  /\  ( N  =  2o  /\ EXMID ) )  -> 
( ~P 1o  e.  Fin 
<->  2o  e.  Fin )
)
5249, 51mpbird 166 . . . . . 6  |-  ( ( ( N  e.  om  /\  G : T -1-1-> ~P 1o )  /\  ( N  =  2o  /\ EXMID ) )  ->  ~P 1o  e.  Fin )
53 f1finf1o 6903 . . . . . 6  |-  ( ( T  ~~  ~P 1o  /\ 
~P 1o  e.  Fin )  ->  ( G : T -1-1-> ~P 1o  <->  G : T
-1-1-onto-> ~P 1o ) )
5447, 52, 53syl2anc 409 . . . . 5  |-  ( ( ( N  e.  om  /\  G : T -1-1-> ~P 1o )  /\  ( N  =  2o  /\ EXMID ) )  -> 
( G : T -1-1-> ~P 1o  <->  G : T -1-1-onto-> ~P 1o ) )
5539, 54mpbid 146 . . . 4  |-  ( ( ( N  e.  om  /\  G : T -1-1-> ~P 1o )  /\  ( N  =  2o  /\ EXMID ) )  ->  G : T -1-1-onto-> ~P 1o )
5655, 20sylib 121 . . 3  |-  ( ( ( N  e.  om  /\  G : T -1-1-> ~P 1o )  /\  ( N  =  2o  /\ EXMID ) )  -> 
( G : T -1-1-> ~P 1o  /\  ran  G  =  ~P 1o ) )
5756simprd 113 . 2  |-  ( ( ( N  e.  om  /\  G : T -1-1-> ~P 1o )  /\  ( N  =  2o  /\ EXMID ) )  ->  ran  G  =  ~P 1o )
5838, 57impbida 586 1  |-  ( ( N  e.  om  /\  G : T -1-1-> ~P 1o )  ->  ( ran  G  =  ~P 1o  <->  ( N  =  2o  /\ EXMID ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1342    e. wcel 2135   _Vcvv 2721    C_ wss 3111   (/)c0 3404   ~Pcpw 3553   {csn 3570   U_ciun 3860   class class class wbr 3976  EXMIDwem 4167   omcom 4561    X. cxp 4596   ran crn 4599   Rel wrel 4603   -1-1->wf1 5179   -1-1-onto->wf1o 5181   1oc1o 6368   2oc2o 6369    ~~ cen 6695    ~<_ cdom 6696   Fincfn 6697
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1434  ax-7 1435  ax-gen 1436  ax-ie1 1480  ax-ie2 1481  ax-8 1491  ax-10 1492  ax-11 1493  ax-i12 1494  ax-bndl 1496  ax-4 1497  ax-17 1513  ax-i9 1517  ax-ial 1521  ax-i5r 1522  ax-13 2137  ax-14 2138  ax-ext 2146  ax-coll 4091  ax-sep 4094  ax-nul 4102  ax-pow 4147  ax-pr 4181  ax-un 4405  ax-setind 4508  ax-iinf 4559
This theorem depends on definitions:  df-bi 116  df-dc 825  df-3or 968  df-3an 969  df-tru 1345  df-fal 1348  df-nf 1448  df-sb 1750  df-eu 2016  df-mo 2017  df-clab 2151  df-cleq 2157  df-clel 2160  df-nfc 2295  df-ne 2335  df-ral 2447  df-rex 2448  df-reu 2449  df-rab 2451  df-v 2723  df-sbc 2947  df-csb 3041  df-dif 3113  df-un 3115  df-in 3117  df-ss 3124  df-nul 3405  df-if 3516  df-pw 3555  df-sn 3576  df-pr 3577  df-op 3579  df-uni 3784  df-int 3819  df-iun 3862  df-br 3977  df-opab 4038  df-mpt 4039  df-tr 4075  df-exmid 4168  df-id 4265  df-iord 4338  df-on 4340  df-suc 4343  df-iom 4562  df-xp 4604  df-rel 4605  df-cnv 4606  df-co 4607  df-dm 4608  df-rn 4609  df-res 4610  df-ima 4611  df-iota 5147  df-fun 5184  df-fn 5185  df-f 5186  df-f1 5187  df-fo 5188  df-f1o 5189  df-fv 5190  df-1o 6375  df-2o 6376  df-er 6492  df-en 6698  df-dom 6699  df-fin 6700
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator