Users' Mathboxes Mathbox for Jim Kingdon < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  pwf1oexmid Unicode version

Theorem pwf1oexmid 14032
Description: An exercise related to  N copies of a singleton and the power set of a singleton (where the latter can also be thought of as representing truth values). Posed as an exercise by Martin Escardo online. (Contributed by Jim Kingdon, 3-Sep-2023.)
Hypothesis
Ref Expression
pwle2.t  |-  T  = 
U_ x  e.  N  ( { x }  X.  1o )
Assertion
Ref Expression
pwf1oexmid  |-  ( ( N  e.  om  /\  G : T -1-1-> ~P 1o )  ->  ( ran  G  =  ~P 1o  <->  ( N  =  2o  /\ EXMID ) ) )
Distinct variable group:    x, N
Allowed substitution hints:    T( x)    G( x)

Proof of Theorem pwf1oexmid
StepHypRef Expression
1 pwle2.t . . . . . 6  |-  T  = 
U_ x  e.  N  ( { x }  X.  1o )
21pwle2 14031 . . . . 5  |-  ( ( N  e.  om  /\  G : T -1-1-> ~P 1o )  ->  N  C_  2o )
32adantr 274 . . . 4  |-  ( ( ( N  e.  om  /\  G : T -1-1-> ~P 1o )  /\  ran  G  =  ~P 1o )  ->  N  C_  2o )
4 pw1dom2 7204 . . . . . 6  |-  2o  ~<_  ~P 1o
5 iunxpconst 4671 . . . . . . . . . . . 12  |-  U_ x  e.  N  ( {
x }  X.  1o )  =  ( N  X.  1o )
6 df1o2 6408 . . . . . . . . . . . . 13  |-  1o  =  { (/) }
76xpeq2i 4632 . . . . . . . . . . . 12  |-  ( N  X.  1o )  =  ( N  X.  { (/)
} )
81, 5, 73eqtri 2195 . . . . . . . . . . 11  |-  T  =  ( N  X.  { (/)
} )
9 peano1 4578 . . . . . . . . . . . 12  |-  (/)  e.  om
10 xpsneng 6800 . . . . . . . . . . . 12  |-  ( ( N  e.  om  /\  (/) 
e.  om )  ->  ( N  X.  { (/) } ) 
~~  N )
119, 10mpan2 423 . . . . . . . . . . 11  |-  ( N  e.  om  ->  ( N  X.  { (/) } ) 
~~  N )
128, 11eqbrtrid 4024 . . . . . . . . . 10  |-  ( N  e.  om  ->  T  ~~  N )
1312ad2antrr 485 . . . . . . . . 9  |-  ( ( ( N  e.  om  /\  G : T -1-1-> ~P 1o )  /\  ran  G  =  ~P 1o )  ->  T  ~~  N )
1413ensymd 6761 . . . . . . . 8  |-  ( ( ( N  e.  om  /\  G : T -1-1-> ~P 1o )  /\  ran  G  =  ~P 1o )  ->  N  ~~  T )
15 relen 6722 . . . . . . . . . 10  |-  Rel  ~~
16 brrelex1 4650 . . . . . . . . . 10  |-  ( ( Rel  ~~  /\  T  ~~  N )  ->  T  e.  _V )
1715, 13, 16sylancr 412 . . . . . . . . 9  |-  ( ( ( N  e.  om  /\  G : T -1-1-> ~P 1o )  /\  ran  G  =  ~P 1o )  ->  T  e.  _V )
18 simplr 525 . . . . . . . . . 10  |-  ( ( ( N  e.  om  /\  G : T -1-1-> ~P 1o )  /\  ran  G  =  ~P 1o )  ->  G : T -1-1-> ~P 1o )
19 simpr 109 . . . . . . . . . 10  |-  ( ( ( N  e.  om  /\  G : T -1-1-> ~P 1o )  /\  ran  G  =  ~P 1o )  ->  ran  G  =  ~P 1o )
20 dff1o5 5451 . . . . . . . . . 10  |-  ( G : T -1-1-onto-> ~P 1o  <->  ( G : T -1-1-> ~P 1o  /\  ran  G  =  ~P 1o ) )
2118, 19, 20sylanbrc 415 . . . . . . . . 9  |-  ( ( ( N  e.  om  /\  G : T -1-1-> ~P 1o )  /\  ran  G  =  ~P 1o )  ->  G : T -1-1-onto-> ~P 1o )
22 f1oeng 6735 . . . . . . . . 9  |-  ( ( T  e.  _V  /\  G : T -1-1-onto-> ~P 1o )  ->  T  ~~  ~P 1o )
2317, 21, 22syl2anc 409 . . . . . . . 8  |-  ( ( ( N  e.  om  /\  G : T -1-1-> ~P 1o )  /\  ran  G  =  ~P 1o )  ->  T  ~~  ~P 1o )
24 entr 6762 . . . . . . . 8  |-  ( ( N  ~~  T  /\  T  ~~  ~P 1o )  ->  N  ~~  ~P 1o )
2514, 23, 24syl2anc 409 . . . . . . 7  |-  ( ( ( N  e.  om  /\  G : T -1-1-> ~P 1o )  /\  ran  G  =  ~P 1o )  ->  N  ~~  ~P 1o )
2625ensymd 6761 . . . . . 6  |-  ( ( ( N  e.  om  /\  G : T -1-1-> ~P 1o )  /\  ran  G  =  ~P 1o )  ->  ~P 1o  ~~  N )
27 domentr 6769 . . . . . 6  |-  ( ( 2o  ~<_  ~P 1o  /\  ~P 1o  ~~  N )  ->  2o 
~<_  N )
284, 26, 27sylancr 412 . . . . 5  |-  ( ( ( N  e.  om  /\  G : T -1-1-> ~P 1o )  /\  ran  G  =  ~P 1o )  ->  2o 
~<_  N )
29 2onn 6500 . . . . . . 7  |-  2o  e.  om
30 nndomo 6842 . . . . . . 7  |-  ( ( 2o  e.  om  /\  N  e.  om )  ->  ( 2o  ~<_  N  <->  2o  C_  N
) )
3129, 30mpan 422 . . . . . 6  |-  ( N  e.  om  ->  ( 2o 
~<_  N  <->  2o  C_  N ) )
3231ad2antrr 485 . . . . 5  |-  ( ( ( N  e.  om  /\  G : T -1-1-> ~P 1o )  /\  ran  G  =  ~P 1o )  -> 
( 2o  ~<_  N  <->  2o  C_  N
) )
3328, 32mpbid 146 . . . 4  |-  ( ( ( N  e.  om  /\  G : T -1-1-> ~P 1o )  /\  ran  G  =  ~P 1o )  ->  2o  C_  N )
343, 33eqssd 3164 . . 3  |-  ( ( ( N  e.  om  /\  G : T -1-1-> ~P 1o )  /\  ran  G  =  ~P 1o )  ->  N  =  2o )
3526, 34breqtrd 4015 . . . 4  |-  ( ( ( N  e.  om  /\  G : T -1-1-> ~P 1o )  /\  ran  G  =  ~P 1o )  ->  ~P 1o  ~~  2o )
36 exmidpw 6886 . . . 4  |-  (EXMID  <->  ~P 1o  ~~  2o )
3735, 36sylibr 133 . . 3  |-  ( ( ( N  e.  om  /\  G : T -1-1-> ~P 1o )  /\  ran  G  =  ~P 1o )  -> EXMID )
3834, 37jca 304 . 2  |-  ( ( ( N  e.  om  /\  G : T -1-1-> ~P 1o )  /\  ran  G  =  ~P 1o )  -> 
( N  =  2o 
/\ EXMID
) )
39 simplr 525 . . . . 5  |-  ( ( ( N  e.  om  /\  G : T -1-1-> ~P 1o )  /\  ( N  =  2o  /\ EXMID ) )  ->  G : T -1-1-> ~P 1o )
4012ad2antrr 485 . . . . . . . 8  |-  ( ( ( N  e.  om  /\  G : T -1-1-> ~P 1o )  /\  ( N  =  2o  /\ EXMID ) )  ->  T  ~~  N )
41 simprl 526 . . . . . . . 8  |-  ( ( ( N  e.  om  /\  G : T -1-1-> ~P 1o )  /\  ( N  =  2o  /\ EXMID ) )  ->  N  =  2o )
4240, 41breqtrd 4015 . . . . . . 7  |-  ( ( ( N  e.  om  /\  G : T -1-1-> ~P 1o )  /\  ( N  =  2o  /\ EXMID ) )  ->  T  ~~  2o )
43 simprr 527 . . . . . . . . 9  |-  ( ( ( N  e.  om  /\  G : T -1-1-> ~P 1o )  /\  ( N  =  2o  /\ EXMID ) )  -> EXMID )
4443, 36sylib 121 . . . . . . . 8  |-  ( ( ( N  e.  om  /\  G : T -1-1-> ~P 1o )  /\  ( N  =  2o  /\ EXMID ) )  ->  ~P 1o  ~~  2o )
4544ensymd 6761 . . . . . . 7  |-  ( ( ( N  e.  om  /\  G : T -1-1-> ~P 1o )  /\  ( N  =  2o  /\ EXMID ) )  ->  2o  ~~  ~P 1o )
46 entr 6762 . . . . . . 7  |-  ( ( T  ~~  2o  /\  2o  ~~  ~P 1o )  ->  T  ~~  ~P 1o )
4742, 45, 46syl2anc 409 . . . . . 6  |-  ( ( ( N  e.  om  /\  G : T -1-1-> ~P 1o )  /\  ( N  =  2o  /\ EXMID ) )  ->  T  ~~  ~P 1o )
48 nnfi 6850 . . . . . . . 8  |-  ( 2o  e.  om  ->  2o  e.  Fin )
4929, 48mp1i 10 . . . . . . 7  |-  ( ( ( N  e.  om  /\  G : T -1-1-> ~P 1o )  /\  ( N  =  2o  /\ EXMID ) )  ->  2o  e.  Fin )
50 enfi 6851 . . . . . . . 8  |-  ( ~P 1o  ~~  2o  ->  ( ~P 1o  e.  Fin  <->  2o  e.  Fin ) )
5144, 50syl 14 . . . . . . 7  |-  ( ( ( N  e.  om  /\  G : T -1-1-> ~P 1o )  /\  ( N  =  2o  /\ EXMID ) )  -> 
( ~P 1o  e.  Fin 
<->  2o  e.  Fin )
)
5249, 51mpbird 166 . . . . . 6  |-  ( ( ( N  e.  om  /\  G : T -1-1-> ~P 1o )  /\  ( N  =  2o  /\ EXMID ) )  ->  ~P 1o  e.  Fin )
53 f1finf1o 6924 . . . . . 6  |-  ( ( T  ~~  ~P 1o  /\ 
~P 1o  e.  Fin )  ->  ( G : T -1-1-> ~P 1o  <->  G : T
-1-1-onto-> ~P 1o ) )
5447, 52, 53syl2anc 409 . . . . 5  |-  ( ( ( N  e.  om  /\  G : T -1-1-> ~P 1o )  /\  ( N  =  2o  /\ EXMID ) )  -> 
( G : T -1-1-> ~P 1o  <->  G : T -1-1-onto-> ~P 1o ) )
5539, 54mpbid 146 . . . 4  |-  ( ( ( N  e.  om  /\  G : T -1-1-> ~P 1o )  /\  ( N  =  2o  /\ EXMID ) )  ->  G : T -1-1-onto-> ~P 1o )
5655, 20sylib 121 . . 3  |-  ( ( ( N  e.  om  /\  G : T -1-1-> ~P 1o )  /\  ( N  =  2o  /\ EXMID ) )  -> 
( G : T -1-1-> ~P 1o  /\  ran  G  =  ~P 1o ) )
5756simprd 113 . 2  |-  ( ( ( N  e.  om  /\  G : T -1-1-> ~P 1o )  /\  ( N  =  2o  /\ EXMID ) )  ->  ran  G  =  ~P 1o )
5838, 57impbida 591 1  |-  ( ( N  e.  om  /\  G : T -1-1-> ~P 1o )  ->  ( ran  G  =  ~P 1o  <->  ( N  =  2o  /\ EXMID ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1348    e. wcel 2141   _Vcvv 2730    C_ wss 3121   (/)c0 3414   ~Pcpw 3566   {csn 3583   U_ciun 3873   class class class wbr 3989  EXMIDwem 4180   omcom 4574    X. cxp 4609   ran crn 4612   Rel wrel 4616   -1-1->wf1 5195   -1-1-onto->wf1o 5197   1oc1o 6388   2oc2o 6389    ~~ cen 6716    ~<_ cdom 6717   Fincfn 6718
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528  ax-13 2143  ax-14 2144  ax-ext 2152  ax-coll 4104  ax-sep 4107  ax-nul 4115  ax-pow 4160  ax-pr 4194  ax-un 4418  ax-setind 4521  ax-iinf 4572
This theorem depends on definitions:  df-bi 116  df-dc 830  df-3or 974  df-3an 975  df-tru 1351  df-fal 1354  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023  df-clab 2157  df-cleq 2163  df-clel 2166  df-nfc 2301  df-ne 2341  df-ral 2453  df-rex 2454  df-reu 2455  df-rab 2457  df-v 2732  df-sbc 2956  df-csb 3050  df-dif 3123  df-un 3125  df-in 3127  df-ss 3134  df-nul 3415  df-if 3527  df-pw 3568  df-sn 3589  df-pr 3590  df-op 3592  df-uni 3797  df-int 3832  df-iun 3875  df-br 3990  df-opab 4051  df-mpt 4052  df-tr 4088  df-exmid 4181  df-id 4278  df-iord 4351  df-on 4353  df-suc 4356  df-iom 4575  df-xp 4617  df-rel 4618  df-cnv 4619  df-co 4620  df-dm 4621  df-rn 4622  df-res 4623  df-ima 4624  df-iota 5160  df-fun 5200  df-fn 5201  df-f 5202  df-f1 5203  df-fo 5204  df-f1o 5205  df-fv 5206  df-1o 6395  df-2o 6396  df-er 6513  df-en 6719  df-dom 6720  df-fin 6721
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator