Mathbox for Jim Kingdon |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > Mathboxes > pwf1oexmid | Unicode version |
Description: An exercise related to copies of a singleton and the power set of a singleton (where the latter can also be thought of as representing truth values). Posed as an exercise by Martin Escardo online. (Contributed by Jim Kingdon, 3-Sep-2023.) |
Ref | Expression |
---|---|
pwle2.t |
Ref | Expression |
---|---|
pwf1oexmid | EXMID |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pwle2.t | . . . . . 6 | |
2 | 1 | pwle2 14031 | . . . . 5 |
3 | 2 | adantr 274 | . . . 4 |
4 | pw1dom2 7204 | . . . . . 6 | |
5 | iunxpconst 4671 | . . . . . . . . . . . 12 | |
6 | df1o2 6408 | . . . . . . . . . . . . 13 | |
7 | 6 | xpeq2i 4632 | . . . . . . . . . . . 12 |
8 | 1, 5, 7 | 3eqtri 2195 | . . . . . . . . . . 11 |
9 | peano1 4578 | . . . . . . . . . . . 12 | |
10 | xpsneng 6800 | . . . . . . . . . . . 12 | |
11 | 9, 10 | mpan2 423 | . . . . . . . . . . 11 |
12 | 8, 11 | eqbrtrid 4024 | . . . . . . . . . 10 |
13 | 12 | ad2antrr 485 | . . . . . . . . 9 |
14 | 13 | ensymd 6761 | . . . . . . . 8 |
15 | relen 6722 | . . . . . . . . . 10 | |
16 | brrelex1 4650 | . . . . . . . . . 10 | |
17 | 15, 13, 16 | sylancr 412 | . . . . . . . . 9 |
18 | simplr 525 | . . . . . . . . . 10 | |
19 | simpr 109 | . . . . . . . . . 10 | |
20 | dff1o5 5451 | . . . . . . . . . 10 | |
21 | 18, 19, 20 | sylanbrc 415 | . . . . . . . . 9 |
22 | f1oeng 6735 | . . . . . . . . 9 | |
23 | 17, 21, 22 | syl2anc 409 | . . . . . . . 8 |
24 | entr 6762 | . . . . . . . 8 | |
25 | 14, 23, 24 | syl2anc 409 | . . . . . . 7 |
26 | 25 | ensymd 6761 | . . . . . 6 |
27 | domentr 6769 | . . . . . 6 | |
28 | 4, 26, 27 | sylancr 412 | . . . . 5 |
29 | 2onn 6500 | . . . . . . 7 | |
30 | nndomo 6842 | . . . . . . 7 | |
31 | 29, 30 | mpan 422 | . . . . . 6 |
32 | 31 | ad2antrr 485 | . . . . 5 |
33 | 28, 32 | mpbid 146 | . . . 4 |
34 | 3, 33 | eqssd 3164 | . . 3 |
35 | 26, 34 | breqtrd 4015 | . . . 4 |
36 | exmidpw 6886 | . . . 4 EXMID | |
37 | 35, 36 | sylibr 133 | . . 3 EXMID |
38 | 34, 37 | jca 304 | . 2 EXMID |
39 | simplr 525 | . . . . 5 EXMID | |
40 | 12 | ad2antrr 485 | . . . . . . . 8 EXMID |
41 | simprl 526 | . . . . . . . 8 EXMID | |
42 | 40, 41 | breqtrd 4015 | . . . . . . 7 EXMID |
43 | simprr 527 | . . . . . . . . 9 EXMID EXMID | |
44 | 43, 36 | sylib 121 | . . . . . . . 8 EXMID |
45 | 44 | ensymd 6761 | . . . . . . 7 EXMID |
46 | entr 6762 | . . . . . . 7 | |
47 | 42, 45, 46 | syl2anc 409 | . . . . . 6 EXMID |
48 | nnfi 6850 | . . . . . . . 8 | |
49 | 29, 48 | mp1i 10 | . . . . . . 7 EXMID |
50 | enfi 6851 | . . . . . . . 8 | |
51 | 44, 50 | syl 14 | . . . . . . 7 EXMID |
52 | 49, 51 | mpbird 166 | . . . . . 6 EXMID |
53 | f1finf1o 6924 | . . . . . 6 | |
54 | 47, 52, 53 | syl2anc 409 | . . . . 5 EXMID |
55 | 39, 54 | mpbid 146 | . . . 4 EXMID |
56 | 55, 20 | sylib 121 | . . 3 EXMID |
57 | 56 | simprd 113 | . 2 EXMID |
58 | 38, 57 | impbida 591 | 1 EXMID |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1348 wcel 2141 cvv 2730 wss 3121 c0 3414 cpw 3566 csn 3583 ciun 3873 class class class wbr 3989 EXMIDwem 4180 com 4574 cxp 4609 crn 4612 wrel 4616 wf1 5195 wf1o 5197 c1o 6388 c2o 6389 cen 6716 cdom 6717 cfn 6718 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 609 ax-in2 610 ax-io 704 ax-5 1440 ax-7 1441 ax-gen 1442 ax-ie1 1486 ax-ie2 1487 ax-8 1497 ax-10 1498 ax-11 1499 ax-i12 1500 ax-bndl 1502 ax-4 1503 ax-17 1519 ax-i9 1523 ax-ial 1527 ax-i5r 1528 ax-13 2143 ax-14 2144 ax-ext 2152 ax-coll 4104 ax-sep 4107 ax-nul 4115 ax-pow 4160 ax-pr 4194 ax-un 4418 ax-setind 4521 ax-iinf 4572 |
This theorem depends on definitions: df-bi 116 df-dc 830 df-3or 974 df-3an 975 df-tru 1351 df-fal 1354 df-nf 1454 df-sb 1756 df-eu 2022 df-mo 2023 df-clab 2157 df-cleq 2163 df-clel 2166 df-nfc 2301 df-ne 2341 df-ral 2453 df-rex 2454 df-reu 2455 df-rab 2457 df-v 2732 df-sbc 2956 df-csb 3050 df-dif 3123 df-un 3125 df-in 3127 df-ss 3134 df-nul 3415 df-if 3527 df-pw 3568 df-sn 3589 df-pr 3590 df-op 3592 df-uni 3797 df-int 3832 df-iun 3875 df-br 3990 df-opab 4051 df-mpt 4052 df-tr 4088 df-exmid 4181 df-id 4278 df-iord 4351 df-on 4353 df-suc 4356 df-iom 4575 df-xp 4617 df-rel 4618 df-cnv 4619 df-co 4620 df-dm 4621 df-rn 4622 df-res 4623 df-ima 4624 df-iota 5160 df-fun 5200 df-fn 5201 df-f 5202 df-f1 5203 df-fo 5204 df-f1o 5205 df-fv 5206 df-1o 6395 df-2o 6396 df-er 6513 df-en 6719 df-dom 6720 df-fin 6721 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |