Mathbox for Jim Kingdon |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > Mathboxes > pwf1oexmid | Unicode version |
Description: An exercise related to copies of a singleton and the power set of a singleton (where the latter can also be thought of as representing truth values). Posed as an exercise by Martin Escardo online. (Contributed by Jim Kingdon, 3-Sep-2023.) |
Ref | Expression |
---|---|
pwle2.t |
Ref | Expression |
---|---|
pwf1oexmid | EXMID |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pwle2.t | . . . . . 6 | |
2 | 1 | pwle2 13878 | . . . . 5 |
3 | 2 | adantr 274 | . . . 4 |
4 | pw1dom2 7183 | . . . . . 6 | |
5 | iunxpconst 4664 | . . . . . . . . . . . 12 | |
6 | df1o2 6397 | . . . . . . . . . . . . 13 | |
7 | 6 | xpeq2i 4625 | . . . . . . . . . . . 12 |
8 | 1, 5, 7 | 3eqtri 2190 | . . . . . . . . . . 11 |
9 | peano1 4571 | . . . . . . . . . . . 12 | |
10 | xpsneng 6788 | . . . . . . . . . . . 12 | |
11 | 9, 10 | mpan2 422 | . . . . . . . . . . 11 |
12 | 8, 11 | eqbrtrid 4017 | . . . . . . . . . 10 |
13 | 12 | ad2antrr 480 | . . . . . . . . 9 |
14 | 13 | ensymd 6749 | . . . . . . . 8 |
15 | relen 6710 | . . . . . . . . . 10 | |
16 | brrelex1 4643 | . . . . . . . . . 10 | |
17 | 15, 13, 16 | sylancr 411 | . . . . . . . . 9 |
18 | simplr 520 | . . . . . . . . . 10 | |
19 | simpr 109 | . . . . . . . . . 10 | |
20 | dff1o5 5441 | . . . . . . . . . 10 | |
21 | 18, 19, 20 | sylanbrc 414 | . . . . . . . . 9 |
22 | f1oeng 6723 | . . . . . . . . 9 | |
23 | 17, 21, 22 | syl2anc 409 | . . . . . . . 8 |
24 | entr 6750 | . . . . . . . 8 | |
25 | 14, 23, 24 | syl2anc 409 | . . . . . . 7 |
26 | 25 | ensymd 6749 | . . . . . 6 |
27 | domentr 6757 | . . . . . 6 | |
28 | 4, 26, 27 | sylancr 411 | . . . . 5 |
29 | 2onn 6489 | . . . . . . 7 | |
30 | nndomo 6830 | . . . . . . 7 | |
31 | 29, 30 | mpan 421 | . . . . . 6 |
32 | 31 | ad2antrr 480 | . . . . 5 |
33 | 28, 32 | mpbid 146 | . . . 4 |
34 | 3, 33 | eqssd 3159 | . . 3 |
35 | 26, 34 | breqtrd 4008 | . . . 4 |
36 | exmidpw 6874 | . . . 4 EXMID | |
37 | 35, 36 | sylibr 133 | . . 3 EXMID |
38 | 34, 37 | jca 304 | . 2 EXMID |
39 | simplr 520 | . . . . 5 EXMID | |
40 | 12 | ad2antrr 480 | . . . . . . . 8 EXMID |
41 | simprl 521 | . . . . . . . 8 EXMID | |
42 | 40, 41 | breqtrd 4008 | . . . . . . 7 EXMID |
43 | simprr 522 | . . . . . . . . 9 EXMID EXMID | |
44 | 43, 36 | sylib 121 | . . . . . . . 8 EXMID |
45 | 44 | ensymd 6749 | . . . . . . 7 EXMID |
46 | entr 6750 | . . . . . . 7 | |
47 | 42, 45, 46 | syl2anc 409 | . . . . . 6 EXMID |
48 | nnfi 6838 | . . . . . . . 8 | |
49 | 29, 48 | mp1i 10 | . . . . . . 7 EXMID |
50 | enfi 6839 | . . . . . . . 8 | |
51 | 44, 50 | syl 14 | . . . . . . 7 EXMID |
52 | 49, 51 | mpbird 166 | . . . . . 6 EXMID |
53 | f1finf1o 6912 | . . . . . 6 | |
54 | 47, 52, 53 | syl2anc 409 | . . . . 5 EXMID |
55 | 39, 54 | mpbid 146 | . . . 4 EXMID |
56 | 55, 20 | sylib 121 | . . 3 EXMID |
57 | 56 | simprd 113 | . 2 EXMID |
58 | 38, 57 | impbida 586 | 1 EXMID |
Colors of variables: wff set class |
Syntax hints: wi 4 wa 103 wb 104 wceq 1343 wcel 2136 cvv 2726 wss 3116 c0 3409 cpw 3559 csn 3576 ciun 3866 class class class wbr 3982 EXMIDwem 4173 com 4567 cxp 4602 crn 4605 wrel 4609 wf1 5185 wf1o 5187 c1o 6377 c2o 6378 cen 6704 cdom 6705 cfn 6706 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1435 ax-7 1436 ax-gen 1437 ax-ie1 1481 ax-ie2 1482 ax-8 1492 ax-10 1493 ax-11 1494 ax-i12 1495 ax-bndl 1497 ax-4 1498 ax-17 1514 ax-i9 1518 ax-ial 1522 ax-i5r 1523 ax-13 2138 ax-14 2139 ax-ext 2147 ax-coll 4097 ax-sep 4100 ax-nul 4108 ax-pow 4153 ax-pr 4187 ax-un 4411 ax-setind 4514 ax-iinf 4565 |
This theorem depends on definitions: df-bi 116 df-dc 825 df-3or 969 df-3an 970 df-tru 1346 df-fal 1349 df-nf 1449 df-sb 1751 df-eu 2017 df-mo 2018 df-clab 2152 df-cleq 2158 df-clel 2161 df-nfc 2297 df-ne 2337 df-ral 2449 df-rex 2450 df-reu 2451 df-rab 2453 df-v 2728 df-sbc 2952 df-csb 3046 df-dif 3118 df-un 3120 df-in 3122 df-ss 3129 df-nul 3410 df-if 3521 df-pw 3561 df-sn 3582 df-pr 3583 df-op 3585 df-uni 3790 df-int 3825 df-iun 3868 df-br 3983 df-opab 4044 df-mpt 4045 df-tr 4081 df-exmid 4174 df-id 4271 df-iord 4344 df-on 4346 df-suc 4349 df-iom 4568 df-xp 4610 df-rel 4611 df-cnv 4612 df-co 4613 df-dm 4614 df-rn 4615 df-res 4616 df-ima 4617 df-iota 5153 df-fun 5190 df-fn 5191 df-f 5192 df-f1 5193 df-fo 5194 df-f1o 5195 df-fv 5196 df-1o 6384 df-2o 6385 df-er 6501 df-en 6707 df-dom 6708 df-fin 6709 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |