| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > xpeq2 | Unicode version | ||
| Description: Equality theorem for cross product. (Contributed by NM, 5-Jul-1994.) |
| Ref | Expression |
|---|---|
| xpeq2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq2 2269 |
. . . 4
| |
| 2 | 1 | anbi2d 464 |
. . 3
|
| 3 | 2 | opabbidv 4111 |
. 2
|
| 4 | df-xp 4682 |
. 2
| |
| 5 | df-xp 4682 |
. 2
| |
| 6 | 3, 4, 5 | 3eqtr4g 2263 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-11 1529 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-opab 4107 df-xp 4682 |
| This theorem is referenced by: xpeq12 4695 xpeq2i 4697 xpeq2d 4700 xpeq0r 5106 xpdisj2 5109 pmvalg 6748 xpcomeng 6925 djueq12 7143 txuni2 14761 txbas 14763 txopn 14770 txrest 14781 txdis 14782 txdis1cn 14783 xmettxlem 15014 xmettx 15015 |
| Copyright terms: Public domain | W3C validator |