ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xpeq2 Unicode version

Theorem xpeq2 4708
Description: Equality theorem for cross product. (Contributed by NM, 5-Jul-1994.)
Assertion
Ref Expression
xpeq2  |-  ( A  =  B  ->  ( C  X.  A )  =  ( C  X.  B
) )

Proof of Theorem xpeq2
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eleq2 2271 . . . 4  |-  ( A  =  B  ->  (
y  e.  A  <->  y  e.  B ) )
21anbi2d 464 . . 3  |-  ( A  =  B  ->  (
( x  e.  C  /\  y  e.  A
)  <->  ( x  e.  C  /\  y  e.  B ) ) )
32opabbidv 4126 . 2  |-  ( A  =  B  ->  { <. x ,  y >.  |  ( x  e.  C  /\  y  e.  A ) }  =  { <. x ,  y >.  |  ( x  e.  C  /\  y  e.  B ) } )
4 df-xp 4699 . 2  |-  ( C  X.  A )  =  { <. x ,  y
>.  |  ( x  e.  C  /\  y  e.  A ) }
5 df-xp 4699 . 2  |-  ( C  X.  B )  =  { <. x ,  y
>.  |  ( x  e.  C  /\  y  e.  B ) }
63, 4, 53eqtr4g 2265 1  |-  ( A  =  B  ->  ( C  X.  A )  =  ( C  X.  B
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2178   {copab 4120    X. cxp 4691
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-11 1530  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-ext 2189
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1485  df-sb 1787  df-clab 2194  df-cleq 2200  df-clel 2203  df-opab 4122  df-xp 4699
This theorem is referenced by:  xpeq12  4712  xpeq2i  4714  xpeq2d  4717  xpeq0r  5124  xpdisj2  5127  pmvalg  6769  xpcomeng  6948  djueq12  7167  txuni2  14843  txbas  14845  txopn  14852  txrest  14863  txdis  14864  txdis1cn  14865  xmettxlem  15096  xmettx  15097
  Copyright terms: Public domain W3C validator