ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xpeq2 Unicode version

Theorem xpeq2 4690
Description: Equality theorem for cross product. (Contributed by NM, 5-Jul-1994.)
Assertion
Ref Expression
xpeq2  |-  ( A  =  B  ->  ( C  X.  A )  =  ( C  X.  B
) )

Proof of Theorem xpeq2
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eleq2 2269 . . . 4  |-  ( A  =  B  ->  (
y  e.  A  <->  y  e.  B ) )
21anbi2d 464 . . 3  |-  ( A  =  B  ->  (
( x  e.  C  /\  y  e.  A
)  <->  ( x  e.  C  /\  y  e.  B ) ) )
32opabbidv 4110 . 2  |-  ( A  =  B  ->  { <. x ,  y >.  |  ( x  e.  C  /\  y  e.  A ) }  =  { <. x ,  y >.  |  ( x  e.  C  /\  y  e.  B ) } )
4 df-xp 4681 . 2  |-  ( C  X.  A )  =  { <. x ,  y
>.  |  ( x  e.  C  /\  y  e.  A ) }
5 df-xp 4681 . 2  |-  ( C  X.  B )  =  { <. x ,  y
>.  |  ( x  e.  C  /\  y  e.  B ) }
63, 4, 53eqtr4g 2263 1  |-  ( A  =  B  ->  ( C  X.  A )  =  ( C  X.  B
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 104    = wceq 1373    e. wcel 2176   {copab 4104    X. cxp 4673
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-11 1529  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-ext 2187
This theorem depends on definitions:  df-bi 117  df-tru 1376  df-nf 1484  df-sb 1786  df-clab 2192  df-cleq 2198  df-clel 2201  df-opab 4106  df-xp 4681
This theorem is referenced by:  xpeq12  4694  xpeq2i  4696  xpeq2d  4699  xpeq0r  5105  xpdisj2  5108  pmvalg  6746  xpcomeng  6923  djueq12  7141  txuni2  14728  txbas  14730  txopn  14737  txrest  14748  txdis  14749  txdis1cn  14750  xmettxlem  14981  xmettx  14982
  Copyright terms: Public domain W3C validator