| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > xpeq2 | Unicode version | ||
| Description: Equality theorem for cross product. (Contributed by NM, 5-Jul-1994.) |
| Ref | Expression |
|---|---|
| xpeq2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq2 2269 |
. . . 4
| |
| 2 | 1 | anbi2d 464 |
. . 3
|
| 3 | 2 | opabbidv 4110 |
. 2
|
| 4 | df-xp 4681 |
. 2
| |
| 5 | df-xp 4681 |
. 2
| |
| 6 | 3, 4, 5 | 3eqtr4g 2263 |
1
|
| Colors of variables: wff set class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-11 1529 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-ext 2187 |
| This theorem depends on definitions: df-bi 117 df-tru 1376 df-nf 1484 df-sb 1786 df-clab 2192 df-cleq 2198 df-clel 2201 df-opab 4106 df-xp 4681 |
| This theorem is referenced by: xpeq12 4694 xpeq2i 4696 xpeq2d 4699 xpeq0r 5105 xpdisj2 5108 pmvalg 6746 xpcomeng 6923 djueq12 7141 txuni2 14728 txbas 14730 txopn 14737 txrest 14748 txdis 14749 txdis1cn 14750 xmettxlem 14981 xmettx 14982 |
| Copyright terms: Public domain | W3C validator |