| Step | Hyp | Ref
| Expression |
| 1 | | elisset 2777 |
. 2
⊢ (𝐴 ∈ 𝑉 → ∃𝑥 𝑥 = 𝐴) |
| 2 | | elisset 2777 |
. 2
⊢ (𝐵 ∈ 𝑊 → ∃𝑦 𝑦 = 𝐵) |
| 3 | | ax-17 1540 |
. . . 4
⊢
(∃𝑦 𝑦 = 𝐵 → ∀𝑥∃𝑦 𝑦 = 𝐵) |
| 4 | | 19.29r 1635 |
. . . 4
⊢
((∃𝑥 𝑥 = 𝐴 ∧ ∀𝑥∃𝑦 𝑦 = 𝐵) → ∃𝑥(𝑥 = 𝐴 ∧ ∃𝑦 𝑦 = 𝐵)) |
| 5 | 3, 4 | sylan2 286 |
. . 3
⊢
((∃𝑥 𝑥 = 𝐴 ∧ ∃𝑦 𝑦 = 𝐵) → ∃𝑥(𝑥 = 𝐴 ∧ ∃𝑦 𝑦 = 𝐵)) |
| 6 | | ax-17 1540 |
. . . . 5
⊢ (𝑥 = 𝐴 → ∀𝑦 𝑥 = 𝐴) |
| 7 | | 19.29 1634 |
. . . . 5
⊢
((∀𝑦 𝑥 = 𝐴 ∧ ∃𝑦 𝑦 = 𝐵) → ∃𝑦(𝑥 = 𝐴 ∧ 𝑦 = 𝐵)) |
| 8 | 6, 7 | sylan 283 |
. . . 4
⊢ ((𝑥 = 𝐴 ∧ ∃𝑦 𝑦 = 𝐵) → ∃𝑦(𝑥 = 𝐴 ∧ 𝑦 = 𝐵)) |
| 9 | 8 | eximi 1614 |
. . 3
⊢
(∃𝑥(𝑥 = 𝐴 ∧ ∃𝑦 𝑦 = 𝐵) → ∃𝑥∃𝑦(𝑥 = 𝐴 ∧ 𝑦 = 𝐵)) |
| 10 | | ineq12 3359 |
. . . . 5
⊢ ((𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝑥 ∩ 𝑦) = (𝐴 ∩ 𝐵)) |
| 11 | 10 | 2eximi 1615 |
. . . 4
⊢
(∃𝑥∃𝑦(𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → ∃𝑥∃𝑦(𝑥 ∩ 𝑦) = (𝐴 ∩ 𝐵)) |
| 12 | | dfin5 3164 |
. . . . . . 7
⊢ (𝑥 ∩ 𝑦) = {𝑧 ∈ 𝑥 ∣ 𝑧 ∈ 𝑦} |
| 13 | | vex 2766 |
. . . . . . . 8
⊢ 𝑥 ∈ V |
| 14 | | ax-bdel 15467 |
. . . . . . . . 9
⊢
BOUNDED 𝑧 ∈ 𝑦 |
| 15 | | bdcv 15494 |
. . . . . . . . 9
⊢
BOUNDED 𝑥 |
| 16 | 14, 15 | bdrabexg 15552 |
. . . . . . . 8
⊢ (𝑥 ∈ V → {𝑧 ∈ 𝑥 ∣ 𝑧 ∈ 𝑦} ∈ V) |
| 17 | 13, 16 | ax-mp 5 |
. . . . . . 7
⊢ {𝑧 ∈ 𝑥 ∣ 𝑧 ∈ 𝑦} ∈ V |
| 18 | 12, 17 | eqeltri 2269 |
. . . . . 6
⊢ (𝑥 ∩ 𝑦) ∈ V |
| 19 | | eleq1 2259 |
. . . . . 6
⊢ ((𝑥 ∩ 𝑦) = (𝐴 ∩ 𝐵) → ((𝑥 ∩ 𝑦) ∈ V ↔ (𝐴 ∩ 𝐵) ∈ V)) |
| 20 | 18, 19 | mpbii 148 |
. . . . 5
⊢ ((𝑥 ∩ 𝑦) = (𝐴 ∩ 𝐵) → (𝐴 ∩ 𝐵) ∈ V) |
| 21 | 20 | exlimivv 1911 |
. . . 4
⊢
(∃𝑥∃𝑦(𝑥 ∩ 𝑦) = (𝐴 ∩ 𝐵) → (𝐴 ∩ 𝐵) ∈ V) |
| 22 | 11, 21 | syl 14 |
. . 3
⊢
(∃𝑥∃𝑦(𝑥 = 𝐴 ∧ 𝑦 = 𝐵) → (𝐴 ∩ 𝐵) ∈ V) |
| 23 | 5, 9, 22 | 3syl 17 |
. 2
⊢
((∃𝑥 𝑥 = 𝐴 ∧ ∃𝑦 𝑦 = 𝐵) → (𝐴 ∩ 𝐵) ∈ V) |
| 24 | 1, 2, 23 | syl2an 289 |
1
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ∩ 𝐵) ∈ V) |