Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >   Mathboxes  >  bj-inex GIF version

Theorem bj-inex 13276
Description: The intersection of two sets is a set, from bounded separation. (Contributed by BJ, 19-Nov-2019.) (Proof modification is discouraged.)
Assertion
Ref Expression
bj-inex ((𝐴𝑉𝐵𝑊) → (𝐴𝐵) ∈ V)

Proof of Theorem bj-inex
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elisset 2703 . 2 (𝐴𝑉 → ∃𝑥 𝑥 = 𝐴)
2 elisset 2703 . 2 (𝐵𝑊 → ∃𝑦 𝑦 = 𝐵)
3 ax-17 1507 . . . 4 (∃𝑦 𝑦 = 𝐵 → ∀𝑥𝑦 𝑦 = 𝐵)
4 19.29r 1601 . . . 4 ((∃𝑥 𝑥 = 𝐴 ∧ ∀𝑥𝑦 𝑦 = 𝐵) → ∃𝑥(𝑥 = 𝐴 ∧ ∃𝑦 𝑦 = 𝐵))
53, 4sylan2 284 . . 3 ((∃𝑥 𝑥 = 𝐴 ∧ ∃𝑦 𝑦 = 𝐵) → ∃𝑥(𝑥 = 𝐴 ∧ ∃𝑦 𝑦 = 𝐵))
6 ax-17 1507 . . . . 5 (𝑥 = 𝐴 → ∀𝑦 𝑥 = 𝐴)
7 19.29 1600 . . . . 5 ((∀𝑦 𝑥 = 𝐴 ∧ ∃𝑦 𝑦 = 𝐵) → ∃𝑦(𝑥 = 𝐴𝑦 = 𝐵))
86, 7sylan 281 . . . 4 ((𝑥 = 𝐴 ∧ ∃𝑦 𝑦 = 𝐵) → ∃𝑦(𝑥 = 𝐴𝑦 = 𝐵))
98eximi 1580 . . 3 (∃𝑥(𝑥 = 𝐴 ∧ ∃𝑦 𝑦 = 𝐵) → ∃𝑥𝑦(𝑥 = 𝐴𝑦 = 𝐵))
10 ineq12 3277 . . . . 5 ((𝑥 = 𝐴𝑦 = 𝐵) → (𝑥𝑦) = (𝐴𝐵))
11102eximi 1581 . . . 4 (∃𝑥𝑦(𝑥 = 𝐴𝑦 = 𝐵) → ∃𝑥𝑦(𝑥𝑦) = (𝐴𝐵))
12 dfin5 3083 . . . . . . 7 (𝑥𝑦) = {𝑧𝑥𝑧𝑦}
13 vex 2692 . . . . . . . 8 𝑥 ∈ V
14 ax-bdel 13190 . . . . . . . . 9 BOUNDED 𝑧𝑦
15 bdcv 13217 . . . . . . . . 9 BOUNDED 𝑥
1614, 15bdrabexg 13275 . . . . . . . 8 (𝑥 ∈ V → {𝑧𝑥𝑧𝑦} ∈ V)
1713, 16ax-mp 5 . . . . . . 7 {𝑧𝑥𝑧𝑦} ∈ V
1812, 17eqeltri 2213 . . . . . 6 (𝑥𝑦) ∈ V
19 eleq1 2203 . . . . . 6 ((𝑥𝑦) = (𝐴𝐵) → ((𝑥𝑦) ∈ V ↔ (𝐴𝐵) ∈ V))
2018, 19mpbii 147 . . . . 5 ((𝑥𝑦) = (𝐴𝐵) → (𝐴𝐵) ∈ V)
2120exlimivv 1869 . . . 4 (∃𝑥𝑦(𝑥𝑦) = (𝐴𝐵) → (𝐴𝐵) ∈ V)
2211, 21syl 14 . . 3 (∃𝑥𝑦(𝑥 = 𝐴𝑦 = 𝐵) → (𝐴𝐵) ∈ V)
235, 9, 223syl 17 . 2 ((∃𝑥 𝑥 = 𝐴 ∧ ∃𝑦 𝑦 = 𝐵) → (𝐴𝐵) ∈ V)
241, 2, 23syl2an 287 1 ((𝐴𝑉𝐵𝑊) → (𝐴𝐵) ∈ V)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wal 1330   = wceq 1332  wex 1469  wcel 1481  {crab 2421  Vcvv 2689  cin 3075
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1483  ax-10 1484  ax-11 1485  ax-i12 1486  ax-bndl 1487  ax-4 1488  ax-17 1507  ax-i9 1511  ax-ial 1515  ax-i5r 1516  ax-ext 2122  ax-bd0 13182  ax-bdan 13184  ax-bdel 13190  ax-bdsb 13191  ax-bdsep 13253
This theorem depends on definitions:  df-bi 116  df-tru 1335  df-nf 1438  df-sb 1737  df-clab 2127  df-cleq 2133  df-clel 2136  df-nfc 2271  df-rab 2426  df-v 2691  df-in 3082  df-ss 3089  df-bdc 13210
This theorem is referenced by:  speano5  13313
  Copyright terms: Public domain W3C validator