ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funimaexglem GIF version

Theorem funimaexglem 5337
Description: Lemma for funimaexg 5338. It constitutes the interesting part of funimaexg 5338, in which 𝐵 ⊆ dom 𝐴. (Contributed by Jim Kingdon, 27-Dec-2018.)
Assertion
Ref Expression
funimaexglem ((Fun 𝐴𝐵𝐶𝐵 ⊆ dom 𝐴) → (𝐴𝐵) ∈ V)

Proof of Theorem funimaexglem
Dummy variables 𝑏 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dffun7 5281 . . . . . . . . . 10 (Fun 𝐴 ↔ (Rel 𝐴 ∧ ∀𝑥 ∈ dom 𝐴∃*𝑦 𝑥𝐴𝑦))
21simprbi 275 . . . . . . . . 9 (Fun 𝐴 → ∀𝑥 ∈ dom 𝐴∃*𝑦 𝑥𝐴𝑦)
323ad2ant1 1020 . . . . . . . 8 ((Fun 𝐴𝐵𝐶𝐵 ⊆ dom 𝐴) → ∀𝑥 ∈ dom 𝐴∃*𝑦 𝑥𝐴𝑦)
4 ssralv 3243 . . . . . . . . 9 (𝐵 ⊆ dom 𝐴 → (∀𝑥 ∈ dom 𝐴∃*𝑦 𝑥𝐴𝑦 → ∀𝑥𝐵 ∃*𝑦 𝑥𝐴𝑦))
543ad2ant3 1022 . . . . . . . 8 ((Fun 𝐴𝐵𝐶𝐵 ⊆ dom 𝐴) → (∀𝑥 ∈ dom 𝐴∃*𝑦 𝑥𝐴𝑦 → ∀𝑥𝐵 ∃*𝑦 𝑥𝐴𝑦))
63, 5mpd 13 . . . . . . 7 ((Fun 𝐴𝐵𝐶𝐵 ⊆ dom 𝐴) → ∀𝑥𝐵 ∃*𝑦 𝑥𝐴𝑦)
76alrimiv 1885 . . . . . 6 ((Fun 𝐴𝐵𝐶𝐵 ⊆ dom 𝐴) → ∀𝑧𝑥𝐵 ∃*𝑦 𝑥𝐴𝑦)
8 sseq1 3202 . . . . . . . . . . . . . . . . 17 (𝑏 = 𝐵 → (𝑏 ⊆ dom 𝐴𝐵 ⊆ dom 𝐴))
98biimpar 297 . . . . . . . . . . . . . . . 16 ((𝑏 = 𝐵𝐵 ⊆ dom 𝐴) → 𝑏 ⊆ dom 𝐴)
1093adant1 1017 . . . . . . . . . . . . . . 15 ((Fun 𝐴𝑏 = 𝐵𝐵 ⊆ dom 𝐴) → 𝑏 ⊆ dom 𝐴)
11 simp1 999 . . . . . . . . . . . . . . 15 ((Fun 𝐴𝑏 = 𝐵𝐵 ⊆ dom 𝐴) → Fun 𝐴)
1210, 11jca 306 . . . . . . . . . . . . . 14 ((Fun 𝐴𝑏 = 𝐵𝐵 ⊆ dom 𝐴) → (𝑏 ⊆ dom 𝐴 ∧ Fun 𝐴))
13 dffun8 5282 . . . . . . . . . . . . . . . . . 18 (Fun 𝐴 ↔ (Rel 𝐴 ∧ ∀𝑥 ∈ dom 𝐴∃!𝑦 𝑥𝐴𝑦))
1413simprbi 275 . . . . . . . . . . . . . . . . 17 (Fun 𝐴 → ∀𝑥 ∈ dom 𝐴∃!𝑦 𝑥𝐴𝑦)
1514adantl 277 . . . . . . . . . . . . . . . 16 ((𝑏 ⊆ dom 𝐴 ∧ Fun 𝐴) → ∀𝑥 ∈ dom 𝐴∃!𝑦 𝑥𝐴𝑦)
16 ssel 3173 . . . . . . . . . . . . . . . . 17 (𝑏 ⊆ dom 𝐴 → (𝑥𝑏𝑥 ∈ dom 𝐴))
1716adantr 276 . . . . . . . . . . . . . . . 16 ((𝑏 ⊆ dom 𝐴 ∧ Fun 𝐴) → (𝑥𝑏𝑥 ∈ dom 𝐴))
18 rsp 2541 . . . . . . . . . . . . . . . 16 (∀𝑥 ∈ dom 𝐴∃!𝑦 𝑥𝐴𝑦 → (𝑥 ∈ dom 𝐴 → ∃!𝑦 𝑥𝐴𝑦))
1915, 17, 18sylsyld 58 . . . . . . . . . . . . . . 15 ((𝑏 ⊆ dom 𝐴 ∧ Fun 𝐴) → (𝑥𝑏 → ∃!𝑦 𝑥𝐴𝑦))
2019ralrimiv 2566 . . . . . . . . . . . . . 14 ((𝑏 ⊆ dom 𝐴 ∧ Fun 𝐴) → ∀𝑥𝑏 ∃!𝑦 𝑥𝐴𝑦)
21 zfrep6 4146 . . . . . . . . . . . . . 14 (∀𝑥𝑏 ∃!𝑦 𝑥𝐴𝑦 → ∃𝑧𝑥𝑏𝑦𝑧 𝑥𝐴𝑦)
2212, 20, 213syl 17 . . . . . . . . . . . . 13 ((Fun 𝐴𝑏 = 𝐵𝐵 ⊆ dom 𝐴) → ∃𝑧𝑥𝑏𝑦𝑧 𝑥𝐴𝑦)
23 raleq 2690 . . . . . . . . . . . . . . 15 (𝑏 = 𝐵 → (∀𝑥𝑏𝑦𝑧 𝑥𝐴𝑦 ↔ ∀𝑥𝐵𝑦𝑧 𝑥𝐴𝑦))
2423exbidv 1836 . . . . . . . . . . . . . 14 (𝑏 = 𝐵 → (∃𝑧𝑥𝑏𝑦𝑧 𝑥𝐴𝑦 ↔ ∃𝑧𝑥𝐵𝑦𝑧 𝑥𝐴𝑦))
25243ad2ant2 1021 . . . . . . . . . . . . 13 ((Fun 𝐴𝑏 = 𝐵𝐵 ⊆ dom 𝐴) → (∃𝑧𝑥𝑏𝑦𝑧 𝑥𝐴𝑦 ↔ ∃𝑧𝑥𝐵𝑦𝑧 𝑥𝐴𝑦))
2622, 25mpbid 147 . . . . . . . . . . . 12 ((Fun 𝐴𝑏 = 𝐵𝐵 ⊆ dom 𝐴) → ∃𝑧𝑥𝐵𝑦𝑧 𝑥𝐴𝑦)
27263com12 1209 . . . . . . . . . . 11 ((𝑏 = 𝐵 ∧ Fun 𝐴𝐵 ⊆ dom 𝐴) → ∃𝑧𝑥𝐵𝑦𝑧 𝑥𝐴𝑦)
28273expib 1208 . . . . . . . . . 10 (𝑏 = 𝐵 → ((Fun 𝐴𝐵 ⊆ dom 𝐴) → ∃𝑧𝑥𝐵𝑦𝑧 𝑥𝐴𝑦))
2928vtocleg 2831 . . . . . . . . 9 (𝐵𝐶 → ((Fun 𝐴𝐵 ⊆ dom 𝐴) → ∃𝑧𝑥𝐵𝑦𝑧 𝑥𝐴𝑦))
30293impib 1203 . . . . . . . 8 ((𝐵𝐶 ∧ Fun 𝐴𝐵 ⊆ dom 𝐴) → ∃𝑧𝑥𝐵𝑦𝑧 𝑥𝐴𝑦)
31303com12 1209 . . . . . . 7 ((Fun 𝐴𝐵𝐶𝐵 ⊆ dom 𝐴) → ∃𝑧𝑥𝐵𝑦𝑧 𝑥𝐴𝑦)
32 df-rex 2478 . . . . . . . . . 10 (∃𝑦𝑧 𝑥𝐴𝑦 ↔ ∃𝑦(𝑦𝑧𝑥𝐴𝑦))
33 exancom 1619 . . . . . . . . . 10 (∃𝑦(𝑦𝑧𝑥𝐴𝑦) ↔ ∃𝑦(𝑥𝐴𝑦𝑦𝑧))
3432, 33bitri 184 . . . . . . . . 9 (∃𝑦𝑧 𝑥𝐴𝑦 ↔ ∃𝑦(𝑥𝐴𝑦𝑦𝑧))
3534ralbii 2500 . . . . . . . 8 (∀𝑥𝐵𝑦𝑧 𝑥𝐴𝑦 ↔ ∀𝑥𝐵𝑦(𝑥𝐴𝑦𝑦𝑧))
3635exbii 1616 . . . . . . 7 (∃𝑧𝑥𝐵𝑦𝑧 𝑥𝐴𝑦 ↔ ∃𝑧𝑥𝐵𝑦(𝑥𝐴𝑦𝑦𝑧))
3731, 36sylib 122 . . . . . 6 ((Fun 𝐴𝐵𝐶𝐵 ⊆ dom 𝐴) → ∃𝑧𝑥𝐵𝑦(𝑥𝐴𝑦𝑦𝑧))
38 19.29 1631 . . . . . . 7 ((∀𝑧𝑥𝐵 ∃*𝑦 𝑥𝐴𝑦 ∧ ∃𝑧𝑥𝐵𝑦(𝑥𝐴𝑦𝑦𝑧)) → ∃𝑧(∀𝑥𝐵 ∃*𝑦 𝑥𝐴𝑦 ∧ ∀𝑥𝐵𝑦(𝑥𝐴𝑦𝑦𝑧)))
39 nfcv 2336 . . . . . . . . . . 11 𝑦𝐵
40 nfmo1 2054 . . . . . . . . . . 11 𝑦∃*𝑦 𝑥𝐴𝑦
4139, 40nfralxy 2532 . . . . . . . . . 10 𝑦𝑥𝐵 ∃*𝑦 𝑥𝐴𝑦
42 nfe1 1507 . . . . . . . . . . 11 𝑦𝑦(𝑥𝐴𝑦𝑦𝑧)
4339, 42nfralxy 2532 . . . . . . . . . 10 𝑦𝑥𝐵𝑦(𝑥𝐴𝑦𝑦𝑧)
4441, 43nfan 1576 . . . . . . . . 9 𝑦(∀𝑥𝐵 ∃*𝑦 𝑥𝐴𝑦 ∧ ∀𝑥𝐵𝑦(𝑥𝐴𝑦𝑦𝑧))
45 r19.26 2620 . . . . . . . . . 10 (∀𝑥𝐵 (∃*𝑦 𝑥𝐴𝑦 ∧ ∃𝑦(𝑥𝐴𝑦𝑦𝑧)) ↔ (∀𝑥𝐵 ∃*𝑦 𝑥𝐴𝑦 ∧ ∀𝑥𝐵𝑦(𝑥𝐴𝑦𝑦𝑧)))
46 mopick 2120 . . . . . . . . . . 11 ((∃*𝑦 𝑥𝐴𝑦 ∧ ∃𝑦(𝑥𝐴𝑦𝑦𝑧)) → (𝑥𝐴𝑦𝑦𝑧))
4746ralimi 2557 . . . . . . . . . 10 (∀𝑥𝐵 (∃*𝑦 𝑥𝐴𝑦 ∧ ∃𝑦(𝑥𝐴𝑦𝑦𝑧)) → ∀𝑥𝐵 (𝑥𝐴𝑦𝑦𝑧))
4845, 47sylbir 135 . . . . . . . . 9 ((∀𝑥𝐵 ∃*𝑦 𝑥𝐴𝑦 ∧ ∀𝑥𝐵𝑦(𝑥𝐴𝑦𝑦𝑧)) → ∀𝑥𝐵 (𝑥𝐴𝑦𝑦𝑧))
4944, 48alrimi 1533 . . . . . . . 8 ((∀𝑥𝐵 ∃*𝑦 𝑥𝐴𝑦 ∧ ∀𝑥𝐵𝑦(𝑥𝐴𝑦𝑦𝑧)) → ∀𝑦𝑥𝐵 (𝑥𝐴𝑦𝑦𝑧))
5049eximi 1611 . . . . . . 7 (∃𝑧(∀𝑥𝐵 ∃*𝑦 𝑥𝐴𝑦 ∧ ∀𝑥𝐵𝑦(𝑥𝐴𝑦𝑦𝑧)) → ∃𝑧𝑦𝑥𝐵 (𝑥𝐴𝑦𝑦𝑧))
5138, 50syl 14 . . . . . 6 ((∀𝑧𝑥𝐵 ∃*𝑦 𝑥𝐴𝑦 ∧ ∃𝑧𝑥𝐵𝑦(𝑥𝐴𝑦𝑦𝑧)) → ∃𝑧𝑦𝑥𝐵 (𝑥𝐴𝑦𝑦𝑧))
527, 37, 51syl2anc 411 . . . . 5 ((Fun 𝐴𝐵𝐶𝐵 ⊆ dom 𝐴) → ∃𝑧𝑦𝑥𝐵 (𝑥𝐴𝑦𝑦𝑧))
53 r19.23v 2603 . . . . . . 7 (∀𝑥𝐵 (𝑥𝐴𝑦𝑦𝑧) ↔ (∃𝑥𝐵 𝑥𝐴𝑦𝑦𝑧))
5453albii 1481 . . . . . 6 (∀𝑦𝑥𝐵 (𝑥𝐴𝑦𝑦𝑧) ↔ ∀𝑦(∃𝑥𝐵 𝑥𝐴𝑦𝑦𝑧))
5554exbii 1616 . . . . 5 (∃𝑧𝑦𝑥𝐵 (𝑥𝐴𝑦𝑦𝑧) ↔ ∃𝑧𝑦(∃𝑥𝐵 𝑥𝐴𝑦𝑦𝑧))
5652, 55sylib 122 . . . 4 ((Fun 𝐴𝐵𝐶𝐵 ⊆ dom 𝐴) → ∃𝑧𝑦(∃𝑥𝐵 𝑥𝐴𝑦𝑦𝑧))
57 abss 3248 . . . . 5 ({𝑦 ∣ ∃𝑥𝐵 𝑥𝐴𝑦} ⊆ 𝑧 ↔ ∀𝑦(∃𝑥𝐵 𝑥𝐴𝑦𝑦𝑧))
5857exbii 1616 . . . 4 (∃𝑧{𝑦 ∣ ∃𝑥𝐵 𝑥𝐴𝑦} ⊆ 𝑧 ↔ ∃𝑧𝑦(∃𝑥𝐵 𝑥𝐴𝑦𝑦𝑧))
5956, 58sylibr 134 . . 3 ((Fun 𝐴𝐵𝐶𝐵 ⊆ dom 𝐴) → ∃𝑧{𝑦 ∣ ∃𝑥𝐵 𝑥𝐴𝑦} ⊆ 𝑧)
60 dfima2 5007 . . . . 5 (𝐴𝐵) = {𝑦 ∣ ∃𝑥𝐵 𝑥𝐴𝑦}
6160sseq1i 3205 . . . 4 ((𝐴𝐵) ⊆ 𝑧 ↔ {𝑦 ∣ ∃𝑥𝐵 𝑥𝐴𝑦} ⊆ 𝑧)
6261exbii 1616 . . 3 (∃𝑧(𝐴𝐵) ⊆ 𝑧 ↔ ∃𝑧{𝑦 ∣ ∃𝑥𝐵 𝑥𝐴𝑦} ⊆ 𝑧)
6359, 62sylibr 134 . 2 ((Fun 𝐴𝐵𝐶𝐵 ⊆ dom 𝐴) → ∃𝑧(𝐴𝐵) ⊆ 𝑧)
64 vex 2763 . . . 4 𝑧 ∈ V
6564ssex 4166 . . 3 ((𝐴𝐵) ⊆ 𝑧 → (𝐴𝐵) ∈ V)
6665exlimiv 1609 . 2 (∃𝑧(𝐴𝐵) ⊆ 𝑧 → (𝐴𝐵) ∈ V)
6763, 66syl 14 1 ((Fun 𝐴𝐵𝐶𝐵 ⊆ dom 𝐴) → (𝐴𝐵) ∈ V)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 980  wal 1362   = wceq 1364  wex 1503  ∃!weu 2042  ∃*wmo 2043  wcel 2164  {cab 2179  wral 2472  wrex 2473  Vcvv 2760  wss 3153   class class class wbr 4029  dom cdm 4659  cima 4662  Rel wrel 4664  Fun wfun 5248
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-14 2167  ax-ext 2175  ax-coll 4144  ax-sep 4147  ax-pow 4203  ax-pr 4238
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1472  df-sb 1774  df-eu 2045  df-mo 2046  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-ral 2477  df-rex 2478  df-v 2762  df-un 3157  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-pr 3625  df-op 3627  df-br 4030  df-opab 4091  df-id 4324  df-xp 4665  df-cnv 4667  df-co 4668  df-dm 4669  df-rn 4670  df-res 4671  df-ima 4672  df-fun 5256
This theorem is referenced by:  funimaexg  5338
  Copyright terms: Public domain W3C validator