ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funimaexglem GIF version

Theorem funimaexglem 5271
Description: Lemma for funimaexg 5272. It constitutes the interesting part of funimaexg 5272, in which 𝐵 ⊆ dom 𝐴. (Contributed by Jim Kingdon, 27-Dec-2018.)
Assertion
Ref Expression
funimaexglem ((Fun 𝐴𝐵𝐶𝐵 ⊆ dom 𝐴) → (𝐴𝐵) ∈ V)

Proof of Theorem funimaexglem
Dummy variables 𝑏 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dffun7 5215 . . . . . . . . . 10 (Fun 𝐴 ↔ (Rel 𝐴 ∧ ∀𝑥 ∈ dom 𝐴∃*𝑦 𝑥𝐴𝑦))
21simprbi 273 . . . . . . . . 9 (Fun 𝐴 → ∀𝑥 ∈ dom 𝐴∃*𝑦 𝑥𝐴𝑦)
323ad2ant1 1008 . . . . . . . 8 ((Fun 𝐴𝐵𝐶𝐵 ⊆ dom 𝐴) → ∀𝑥 ∈ dom 𝐴∃*𝑦 𝑥𝐴𝑦)
4 ssralv 3206 . . . . . . . . 9 (𝐵 ⊆ dom 𝐴 → (∀𝑥 ∈ dom 𝐴∃*𝑦 𝑥𝐴𝑦 → ∀𝑥𝐵 ∃*𝑦 𝑥𝐴𝑦))
543ad2ant3 1010 . . . . . . . 8 ((Fun 𝐴𝐵𝐶𝐵 ⊆ dom 𝐴) → (∀𝑥 ∈ dom 𝐴∃*𝑦 𝑥𝐴𝑦 → ∀𝑥𝐵 ∃*𝑦 𝑥𝐴𝑦))
63, 5mpd 13 . . . . . . 7 ((Fun 𝐴𝐵𝐶𝐵 ⊆ dom 𝐴) → ∀𝑥𝐵 ∃*𝑦 𝑥𝐴𝑦)
76alrimiv 1862 . . . . . 6 ((Fun 𝐴𝐵𝐶𝐵 ⊆ dom 𝐴) → ∀𝑧𝑥𝐵 ∃*𝑦 𝑥𝐴𝑦)
8 sseq1 3165 . . . . . . . . . . . . . . . . 17 (𝑏 = 𝐵 → (𝑏 ⊆ dom 𝐴𝐵 ⊆ dom 𝐴))
98biimpar 295 . . . . . . . . . . . . . . . 16 ((𝑏 = 𝐵𝐵 ⊆ dom 𝐴) → 𝑏 ⊆ dom 𝐴)
1093adant1 1005 . . . . . . . . . . . . . . 15 ((Fun 𝐴𝑏 = 𝐵𝐵 ⊆ dom 𝐴) → 𝑏 ⊆ dom 𝐴)
11 simp1 987 . . . . . . . . . . . . . . 15 ((Fun 𝐴𝑏 = 𝐵𝐵 ⊆ dom 𝐴) → Fun 𝐴)
1210, 11jca 304 . . . . . . . . . . . . . 14 ((Fun 𝐴𝑏 = 𝐵𝐵 ⊆ dom 𝐴) → (𝑏 ⊆ dom 𝐴 ∧ Fun 𝐴))
13 dffun8 5216 . . . . . . . . . . . . . . . . . 18 (Fun 𝐴 ↔ (Rel 𝐴 ∧ ∀𝑥 ∈ dom 𝐴∃!𝑦 𝑥𝐴𝑦))
1413simprbi 273 . . . . . . . . . . . . . . . . 17 (Fun 𝐴 → ∀𝑥 ∈ dom 𝐴∃!𝑦 𝑥𝐴𝑦)
1514adantl 275 . . . . . . . . . . . . . . . 16 ((𝑏 ⊆ dom 𝐴 ∧ Fun 𝐴) → ∀𝑥 ∈ dom 𝐴∃!𝑦 𝑥𝐴𝑦)
16 ssel 3136 . . . . . . . . . . . . . . . . 17 (𝑏 ⊆ dom 𝐴 → (𝑥𝑏𝑥 ∈ dom 𝐴))
1716adantr 274 . . . . . . . . . . . . . . . 16 ((𝑏 ⊆ dom 𝐴 ∧ Fun 𝐴) → (𝑥𝑏𝑥 ∈ dom 𝐴))
18 rsp 2513 . . . . . . . . . . . . . . . 16 (∀𝑥 ∈ dom 𝐴∃!𝑦 𝑥𝐴𝑦 → (𝑥 ∈ dom 𝐴 → ∃!𝑦 𝑥𝐴𝑦))
1915, 17, 18sylsyld 58 . . . . . . . . . . . . . . 15 ((𝑏 ⊆ dom 𝐴 ∧ Fun 𝐴) → (𝑥𝑏 → ∃!𝑦 𝑥𝐴𝑦))
2019ralrimiv 2538 . . . . . . . . . . . . . 14 ((𝑏 ⊆ dom 𝐴 ∧ Fun 𝐴) → ∀𝑥𝑏 ∃!𝑦 𝑥𝐴𝑦)
21 zfrep6 4099 . . . . . . . . . . . . . 14 (∀𝑥𝑏 ∃!𝑦 𝑥𝐴𝑦 → ∃𝑧𝑥𝑏𝑦𝑧 𝑥𝐴𝑦)
2212, 20, 213syl 17 . . . . . . . . . . . . 13 ((Fun 𝐴𝑏 = 𝐵𝐵 ⊆ dom 𝐴) → ∃𝑧𝑥𝑏𝑦𝑧 𝑥𝐴𝑦)
23 raleq 2661 . . . . . . . . . . . . . . 15 (𝑏 = 𝐵 → (∀𝑥𝑏𝑦𝑧 𝑥𝐴𝑦 ↔ ∀𝑥𝐵𝑦𝑧 𝑥𝐴𝑦))
2423exbidv 1813 . . . . . . . . . . . . . 14 (𝑏 = 𝐵 → (∃𝑧𝑥𝑏𝑦𝑧 𝑥𝐴𝑦 ↔ ∃𝑧𝑥𝐵𝑦𝑧 𝑥𝐴𝑦))
25243ad2ant2 1009 . . . . . . . . . . . . 13 ((Fun 𝐴𝑏 = 𝐵𝐵 ⊆ dom 𝐴) → (∃𝑧𝑥𝑏𝑦𝑧 𝑥𝐴𝑦 ↔ ∃𝑧𝑥𝐵𝑦𝑧 𝑥𝐴𝑦))
2622, 25mpbid 146 . . . . . . . . . . . 12 ((Fun 𝐴𝑏 = 𝐵𝐵 ⊆ dom 𝐴) → ∃𝑧𝑥𝐵𝑦𝑧 𝑥𝐴𝑦)
27263com12 1197 . . . . . . . . . . 11 ((𝑏 = 𝐵 ∧ Fun 𝐴𝐵 ⊆ dom 𝐴) → ∃𝑧𝑥𝐵𝑦𝑧 𝑥𝐴𝑦)
28273expib 1196 . . . . . . . . . 10 (𝑏 = 𝐵 → ((Fun 𝐴𝐵 ⊆ dom 𝐴) → ∃𝑧𝑥𝐵𝑦𝑧 𝑥𝐴𝑦))
2928vtocleg 2797 . . . . . . . . 9 (𝐵𝐶 → ((Fun 𝐴𝐵 ⊆ dom 𝐴) → ∃𝑧𝑥𝐵𝑦𝑧 𝑥𝐴𝑦))
30293impib 1191 . . . . . . . 8 ((𝐵𝐶 ∧ Fun 𝐴𝐵 ⊆ dom 𝐴) → ∃𝑧𝑥𝐵𝑦𝑧 𝑥𝐴𝑦)
31303com12 1197 . . . . . . 7 ((Fun 𝐴𝐵𝐶𝐵 ⊆ dom 𝐴) → ∃𝑧𝑥𝐵𝑦𝑧 𝑥𝐴𝑦)
32 df-rex 2450 . . . . . . . . . 10 (∃𝑦𝑧 𝑥𝐴𝑦 ↔ ∃𝑦(𝑦𝑧𝑥𝐴𝑦))
33 exancom 1596 . . . . . . . . . 10 (∃𝑦(𝑦𝑧𝑥𝐴𝑦) ↔ ∃𝑦(𝑥𝐴𝑦𝑦𝑧))
3432, 33bitri 183 . . . . . . . . 9 (∃𝑦𝑧 𝑥𝐴𝑦 ↔ ∃𝑦(𝑥𝐴𝑦𝑦𝑧))
3534ralbii 2472 . . . . . . . 8 (∀𝑥𝐵𝑦𝑧 𝑥𝐴𝑦 ↔ ∀𝑥𝐵𝑦(𝑥𝐴𝑦𝑦𝑧))
3635exbii 1593 . . . . . . 7 (∃𝑧𝑥𝐵𝑦𝑧 𝑥𝐴𝑦 ↔ ∃𝑧𝑥𝐵𝑦(𝑥𝐴𝑦𝑦𝑧))
3731, 36sylib 121 . . . . . 6 ((Fun 𝐴𝐵𝐶𝐵 ⊆ dom 𝐴) → ∃𝑧𝑥𝐵𝑦(𝑥𝐴𝑦𝑦𝑧))
38 19.29 1608 . . . . . . 7 ((∀𝑧𝑥𝐵 ∃*𝑦 𝑥𝐴𝑦 ∧ ∃𝑧𝑥𝐵𝑦(𝑥𝐴𝑦𝑦𝑧)) → ∃𝑧(∀𝑥𝐵 ∃*𝑦 𝑥𝐴𝑦 ∧ ∀𝑥𝐵𝑦(𝑥𝐴𝑦𝑦𝑧)))
39 nfcv 2308 . . . . . . . . . . 11 𝑦𝐵
40 nfmo1 2026 . . . . . . . . . . 11 𝑦∃*𝑦 𝑥𝐴𝑦
4139, 40nfralxy 2504 . . . . . . . . . 10 𝑦𝑥𝐵 ∃*𝑦 𝑥𝐴𝑦
42 nfe1 1484 . . . . . . . . . . 11 𝑦𝑦(𝑥𝐴𝑦𝑦𝑧)
4339, 42nfralxy 2504 . . . . . . . . . 10 𝑦𝑥𝐵𝑦(𝑥𝐴𝑦𝑦𝑧)
4441, 43nfan 1553 . . . . . . . . 9 𝑦(∀𝑥𝐵 ∃*𝑦 𝑥𝐴𝑦 ∧ ∀𝑥𝐵𝑦(𝑥𝐴𝑦𝑦𝑧))
45 r19.26 2592 . . . . . . . . . 10 (∀𝑥𝐵 (∃*𝑦 𝑥𝐴𝑦 ∧ ∃𝑦(𝑥𝐴𝑦𝑦𝑧)) ↔ (∀𝑥𝐵 ∃*𝑦 𝑥𝐴𝑦 ∧ ∀𝑥𝐵𝑦(𝑥𝐴𝑦𝑦𝑧)))
46 mopick 2092 . . . . . . . . . . 11 ((∃*𝑦 𝑥𝐴𝑦 ∧ ∃𝑦(𝑥𝐴𝑦𝑦𝑧)) → (𝑥𝐴𝑦𝑦𝑧))
4746ralimi 2529 . . . . . . . . . 10 (∀𝑥𝐵 (∃*𝑦 𝑥𝐴𝑦 ∧ ∃𝑦(𝑥𝐴𝑦𝑦𝑧)) → ∀𝑥𝐵 (𝑥𝐴𝑦𝑦𝑧))
4845, 47sylbir 134 . . . . . . . . 9 ((∀𝑥𝐵 ∃*𝑦 𝑥𝐴𝑦 ∧ ∀𝑥𝐵𝑦(𝑥𝐴𝑦𝑦𝑧)) → ∀𝑥𝐵 (𝑥𝐴𝑦𝑦𝑧))
4944, 48alrimi 1510 . . . . . . . 8 ((∀𝑥𝐵 ∃*𝑦 𝑥𝐴𝑦 ∧ ∀𝑥𝐵𝑦(𝑥𝐴𝑦𝑦𝑧)) → ∀𝑦𝑥𝐵 (𝑥𝐴𝑦𝑦𝑧))
5049eximi 1588 . . . . . . 7 (∃𝑧(∀𝑥𝐵 ∃*𝑦 𝑥𝐴𝑦 ∧ ∀𝑥𝐵𝑦(𝑥𝐴𝑦𝑦𝑧)) → ∃𝑧𝑦𝑥𝐵 (𝑥𝐴𝑦𝑦𝑧))
5138, 50syl 14 . . . . . 6 ((∀𝑧𝑥𝐵 ∃*𝑦 𝑥𝐴𝑦 ∧ ∃𝑧𝑥𝐵𝑦(𝑥𝐴𝑦𝑦𝑧)) → ∃𝑧𝑦𝑥𝐵 (𝑥𝐴𝑦𝑦𝑧))
527, 37, 51syl2anc 409 . . . . 5 ((Fun 𝐴𝐵𝐶𝐵 ⊆ dom 𝐴) → ∃𝑧𝑦𝑥𝐵 (𝑥𝐴𝑦𝑦𝑧))
53 r19.23v 2575 . . . . . . 7 (∀𝑥𝐵 (𝑥𝐴𝑦𝑦𝑧) ↔ (∃𝑥𝐵 𝑥𝐴𝑦𝑦𝑧))
5453albii 1458 . . . . . 6 (∀𝑦𝑥𝐵 (𝑥𝐴𝑦𝑦𝑧) ↔ ∀𝑦(∃𝑥𝐵 𝑥𝐴𝑦𝑦𝑧))
5554exbii 1593 . . . . 5 (∃𝑧𝑦𝑥𝐵 (𝑥𝐴𝑦𝑦𝑧) ↔ ∃𝑧𝑦(∃𝑥𝐵 𝑥𝐴𝑦𝑦𝑧))
5652, 55sylib 121 . . . 4 ((Fun 𝐴𝐵𝐶𝐵 ⊆ dom 𝐴) → ∃𝑧𝑦(∃𝑥𝐵 𝑥𝐴𝑦𝑦𝑧))
57 abss 3211 . . . . 5 ({𝑦 ∣ ∃𝑥𝐵 𝑥𝐴𝑦} ⊆ 𝑧 ↔ ∀𝑦(∃𝑥𝐵 𝑥𝐴𝑦𝑦𝑧))
5857exbii 1593 . . . 4 (∃𝑧{𝑦 ∣ ∃𝑥𝐵 𝑥𝐴𝑦} ⊆ 𝑧 ↔ ∃𝑧𝑦(∃𝑥𝐵 𝑥𝐴𝑦𝑦𝑧))
5956, 58sylibr 133 . . 3 ((Fun 𝐴𝐵𝐶𝐵 ⊆ dom 𝐴) → ∃𝑧{𝑦 ∣ ∃𝑥𝐵 𝑥𝐴𝑦} ⊆ 𝑧)
60 dfima2 4948 . . . . 5 (𝐴𝐵) = {𝑦 ∣ ∃𝑥𝐵 𝑥𝐴𝑦}
6160sseq1i 3168 . . . 4 ((𝐴𝐵) ⊆ 𝑧 ↔ {𝑦 ∣ ∃𝑥𝐵 𝑥𝐴𝑦} ⊆ 𝑧)
6261exbii 1593 . . 3 (∃𝑧(𝐴𝐵) ⊆ 𝑧 ↔ ∃𝑧{𝑦 ∣ ∃𝑥𝐵 𝑥𝐴𝑦} ⊆ 𝑧)
6359, 62sylibr 133 . 2 ((Fun 𝐴𝐵𝐶𝐵 ⊆ dom 𝐴) → ∃𝑧(𝐴𝐵) ⊆ 𝑧)
64 vex 2729 . . . 4 𝑧 ∈ V
6564ssex 4119 . . 3 ((𝐴𝐵) ⊆ 𝑧 → (𝐴𝐵) ∈ V)
6665exlimiv 1586 . 2 (∃𝑧(𝐴𝐵) ⊆ 𝑧 → (𝐴𝐵) ∈ V)
6763, 66syl 14 1 ((Fun 𝐴𝐵𝐶𝐵 ⊆ dom 𝐴) → (𝐴𝐵) ∈ V)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  wb 104  w3a 968  wal 1341   = wceq 1343  wex 1480  ∃!weu 2014  ∃*wmo 2015  wcel 2136  {cab 2151  wral 2444  wrex 2445  Vcvv 2726  wss 3116   class class class wbr 3982  dom cdm 4604  cima 4607  Rel wrel 4609  Fun wfun 5182
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-14 2139  ax-ext 2147  ax-coll 4097  ax-sep 4100  ax-pow 4153  ax-pr 4187
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-v 2728  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-br 3983  df-opab 4044  df-id 4271  df-xp 4610  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-res 4616  df-ima 4617  df-fun 5190
This theorem is referenced by:  funimaexg  5272
  Copyright terms: Public domain W3C validator