ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funimaexglem GIF version

Theorem funimaexglem 5362
Description: Lemma for funimaexg 5363. It constitutes the interesting part of funimaexg 5363, in which 𝐵 ⊆ dom 𝐴. (Contributed by Jim Kingdon, 27-Dec-2018.)
Assertion
Ref Expression
funimaexglem ((Fun 𝐴𝐵𝐶𝐵 ⊆ dom 𝐴) → (𝐴𝐵) ∈ V)

Proof of Theorem funimaexglem
Dummy variables 𝑏 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dffun7 5303 . . . . . . . . . 10 (Fun 𝐴 ↔ (Rel 𝐴 ∧ ∀𝑥 ∈ dom 𝐴∃*𝑦 𝑥𝐴𝑦))
21simprbi 275 . . . . . . . . 9 (Fun 𝐴 → ∀𝑥 ∈ dom 𝐴∃*𝑦 𝑥𝐴𝑦)
323ad2ant1 1021 . . . . . . . 8 ((Fun 𝐴𝐵𝐶𝐵 ⊆ dom 𝐴) → ∀𝑥 ∈ dom 𝐴∃*𝑦 𝑥𝐴𝑦)
4 ssralv 3258 . . . . . . . . 9 (𝐵 ⊆ dom 𝐴 → (∀𝑥 ∈ dom 𝐴∃*𝑦 𝑥𝐴𝑦 → ∀𝑥𝐵 ∃*𝑦 𝑥𝐴𝑦))
543ad2ant3 1023 . . . . . . . 8 ((Fun 𝐴𝐵𝐶𝐵 ⊆ dom 𝐴) → (∀𝑥 ∈ dom 𝐴∃*𝑦 𝑥𝐴𝑦 → ∀𝑥𝐵 ∃*𝑦 𝑥𝐴𝑦))
63, 5mpd 13 . . . . . . 7 ((Fun 𝐴𝐵𝐶𝐵 ⊆ dom 𝐴) → ∀𝑥𝐵 ∃*𝑦 𝑥𝐴𝑦)
76alrimiv 1898 . . . . . 6 ((Fun 𝐴𝐵𝐶𝐵 ⊆ dom 𝐴) → ∀𝑧𝑥𝐵 ∃*𝑦 𝑥𝐴𝑦)
8 sseq1 3217 . . . . . . . . . . . . . . . . 17 (𝑏 = 𝐵 → (𝑏 ⊆ dom 𝐴𝐵 ⊆ dom 𝐴))
98biimpar 297 . . . . . . . . . . . . . . . 16 ((𝑏 = 𝐵𝐵 ⊆ dom 𝐴) → 𝑏 ⊆ dom 𝐴)
1093adant1 1018 . . . . . . . . . . . . . . 15 ((Fun 𝐴𝑏 = 𝐵𝐵 ⊆ dom 𝐴) → 𝑏 ⊆ dom 𝐴)
11 simp1 1000 . . . . . . . . . . . . . . 15 ((Fun 𝐴𝑏 = 𝐵𝐵 ⊆ dom 𝐴) → Fun 𝐴)
1210, 11jca 306 . . . . . . . . . . . . . 14 ((Fun 𝐴𝑏 = 𝐵𝐵 ⊆ dom 𝐴) → (𝑏 ⊆ dom 𝐴 ∧ Fun 𝐴))
13 dffun8 5304 . . . . . . . . . . . . . . . . . 18 (Fun 𝐴 ↔ (Rel 𝐴 ∧ ∀𝑥 ∈ dom 𝐴∃!𝑦 𝑥𝐴𝑦))
1413simprbi 275 . . . . . . . . . . . . . . . . 17 (Fun 𝐴 → ∀𝑥 ∈ dom 𝐴∃!𝑦 𝑥𝐴𝑦)
1514adantl 277 . . . . . . . . . . . . . . . 16 ((𝑏 ⊆ dom 𝐴 ∧ Fun 𝐴) → ∀𝑥 ∈ dom 𝐴∃!𝑦 𝑥𝐴𝑦)
16 ssel 3188 . . . . . . . . . . . . . . . . 17 (𝑏 ⊆ dom 𝐴 → (𝑥𝑏𝑥 ∈ dom 𝐴))
1716adantr 276 . . . . . . . . . . . . . . . 16 ((𝑏 ⊆ dom 𝐴 ∧ Fun 𝐴) → (𝑥𝑏𝑥 ∈ dom 𝐴))
18 rsp 2554 . . . . . . . . . . . . . . . 16 (∀𝑥 ∈ dom 𝐴∃!𝑦 𝑥𝐴𝑦 → (𝑥 ∈ dom 𝐴 → ∃!𝑦 𝑥𝐴𝑦))
1915, 17, 18sylsyld 58 . . . . . . . . . . . . . . 15 ((𝑏 ⊆ dom 𝐴 ∧ Fun 𝐴) → (𝑥𝑏 → ∃!𝑦 𝑥𝐴𝑦))
2019ralrimiv 2579 . . . . . . . . . . . . . 14 ((𝑏 ⊆ dom 𝐴 ∧ Fun 𝐴) → ∀𝑥𝑏 ∃!𝑦 𝑥𝐴𝑦)
21 zfrep6 4165 . . . . . . . . . . . . . 14 (∀𝑥𝑏 ∃!𝑦 𝑥𝐴𝑦 → ∃𝑧𝑥𝑏𝑦𝑧 𝑥𝐴𝑦)
2212, 20, 213syl 17 . . . . . . . . . . . . 13 ((Fun 𝐴𝑏 = 𝐵𝐵 ⊆ dom 𝐴) → ∃𝑧𝑥𝑏𝑦𝑧 𝑥𝐴𝑦)
23 raleq 2703 . . . . . . . . . . . . . . 15 (𝑏 = 𝐵 → (∀𝑥𝑏𝑦𝑧 𝑥𝐴𝑦 ↔ ∀𝑥𝐵𝑦𝑧 𝑥𝐴𝑦))
2423exbidv 1849 . . . . . . . . . . . . . 14 (𝑏 = 𝐵 → (∃𝑧𝑥𝑏𝑦𝑧 𝑥𝐴𝑦 ↔ ∃𝑧𝑥𝐵𝑦𝑧 𝑥𝐴𝑦))
25243ad2ant2 1022 . . . . . . . . . . . . 13 ((Fun 𝐴𝑏 = 𝐵𝐵 ⊆ dom 𝐴) → (∃𝑧𝑥𝑏𝑦𝑧 𝑥𝐴𝑦 ↔ ∃𝑧𝑥𝐵𝑦𝑧 𝑥𝐴𝑦))
2622, 25mpbid 147 . . . . . . . . . . . 12 ((Fun 𝐴𝑏 = 𝐵𝐵 ⊆ dom 𝐴) → ∃𝑧𝑥𝐵𝑦𝑧 𝑥𝐴𝑦)
27263com12 1210 . . . . . . . . . . 11 ((𝑏 = 𝐵 ∧ Fun 𝐴𝐵 ⊆ dom 𝐴) → ∃𝑧𝑥𝐵𝑦𝑧 𝑥𝐴𝑦)
28273expib 1209 . . . . . . . . . 10 (𝑏 = 𝐵 → ((Fun 𝐴𝐵 ⊆ dom 𝐴) → ∃𝑧𝑥𝐵𝑦𝑧 𝑥𝐴𝑦))
2928vtocleg 2845 . . . . . . . . 9 (𝐵𝐶 → ((Fun 𝐴𝐵 ⊆ dom 𝐴) → ∃𝑧𝑥𝐵𝑦𝑧 𝑥𝐴𝑦))
30293impib 1204 . . . . . . . 8 ((𝐵𝐶 ∧ Fun 𝐴𝐵 ⊆ dom 𝐴) → ∃𝑧𝑥𝐵𝑦𝑧 𝑥𝐴𝑦)
31303com12 1210 . . . . . . 7 ((Fun 𝐴𝐵𝐶𝐵 ⊆ dom 𝐴) → ∃𝑧𝑥𝐵𝑦𝑧 𝑥𝐴𝑦)
32 df-rex 2491 . . . . . . . . . 10 (∃𝑦𝑧 𝑥𝐴𝑦 ↔ ∃𝑦(𝑦𝑧𝑥𝐴𝑦))
33 exancom 1632 . . . . . . . . . 10 (∃𝑦(𝑦𝑧𝑥𝐴𝑦) ↔ ∃𝑦(𝑥𝐴𝑦𝑦𝑧))
3432, 33bitri 184 . . . . . . . . 9 (∃𝑦𝑧 𝑥𝐴𝑦 ↔ ∃𝑦(𝑥𝐴𝑦𝑦𝑧))
3534ralbii 2513 . . . . . . . 8 (∀𝑥𝐵𝑦𝑧 𝑥𝐴𝑦 ↔ ∀𝑥𝐵𝑦(𝑥𝐴𝑦𝑦𝑧))
3635exbii 1629 . . . . . . 7 (∃𝑧𝑥𝐵𝑦𝑧 𝑥𝐴𝑦 ↔ ∃𝑧𝑥𝐵𝑦(𝑥𝐴𝑦𝑦𝑧))
3731, 36sylib 122 . . . . . 6 ((Fun 𝐴𝐵𝐶𝐵 ⊆ dom 𝐴) → ∃𝑧𝑥𝐵𝑦(𝑥𝐴𝑦𝑦𝑧))
38 19.29 1644 . . . . . . 7 ((∀𝑧𝑥𝐵 ∃*𝑦 𝑥𝐴𝑦 ∧ ∃𝑧𝑥𝐵𝑦(𝑥𝐴𝑦𝑦𝑧)) → ∃𝑧(∀𝑥𝐵 ∃*𝑦 𝑥𝐴𝑦 ∧ ∀𝑥𝐵𝑦(𝑥𝐴𝑦𝑦𝑧)))
39 nfcv 2349 . . . . . . . . . . 11 𝑦𝐵
40 nfmo1 2067 . . . . . . . . . . 11 𝑦∃*𝑦 𝑥𝐴𝑦
4139, 40nfralxy 2545 . . . . . . . . . 10 𝑦𝑥𝐵 ∃*𝑦 𝑥𝐴𝑦
42 nfe1 1520 . . . . . . . . . . 11 𝑦𝑦(𝑥𝐴𝑦𝑦𝑧)
4339, 42nfralxy 2545 . . . . . . . . . 10 𝑦𝑥𝐵𝑦(𝑥𝐴𝑦𝑦𝑧)
4441, 43nfan 1589 . . . . . . . . 9 𝑦(∀𝑥𝐵 ∃*𝑦 𝑥𝐴𝑦 ∧ ∀𝑥𝐵𝑦(𝑥𝐴𝑦𝑦𝑧))
45 r19.26 2633 . . . . . . . . . 10 (∀𝑥𝐵 (∃*𝑦 𝑥𝐴𝑦 ∧ ∃𝑦(𝑥𝐴𝑦𝑦𝑧)) ↔ (∀𝑥𝐵 ∃*𝑦 𝑥𝐴𝑦 ∧ ∀𝑥𝐵𝑦(𝑥𝐴𝑦𝑦𝑧)))
46 mopick 2133 . . . . . . . . . . 11 ((∃*𝑦 𝑥𝐴𝑦 ∧ ∃𝑦(𝑥𝐴𝑦𝑦𝑧)) → (𝑥𝐴𝑦𝑦𝑧))
4746ralimi 2570 . . . . . . . . . 10 (∀𝑥𝐵 (∃*𝑦 𝑥𝐴𝑦 ∧ ∃𝑦(𝑥𝐴𝑦𝑦𝑧)) → ∀𝑥𝐵 (𝑥𝐴𝑦𝑦𝑧))
4845, 47sylbir 135 . . . . . . . . 9 ((∀𝑥𝐵 ∃*𝑦 𝑥𝐴𝑦 ∧ ∀𝑥𝐵𝑦(𝑥𝐴𝑦𝑦𝑧)) → ∀𝑥𝐵 (𝑥𝐴𝑦𝑦𝑧))
4944, 48alrimi 1546 . . . . . . . 8 ((∀𝑥𝐵 ∃*𝑦 𝑥𝐴𝑦 ∧ ∀𝑥𝐵𝑦(𝑥𝐴𝑦𝑦𝑧)) → ∀𝑦𝑥𝐵 (𝑥𝐴𝑦𝑦𝑧))
5049eximi 1624 . . . . . . 7 (∃𝑧(∀𝑥𝐵 ∃*𝑦 𝑥𝐴𝑦 ∧ ∀𝑥𝐵𝑦(𝑥𝐴𝑦𝑦𝑧)) → ∃𝑧𝑦𝑥𝐵 (𝑥𝐴𝑦𝑦𝑧))
5138, 50syl 14 . . . . . 6 ((∀𝑧𝑥𝐵 ∃*𝑦 𝑥𝐴𝑦 ∧ ∃𝑧𝑥𝐵𝑦(𝑥𝐴𝑦𝑦𝑧)) → ∃𝑧𝑦𝑥𝐵 (𝑥𝐴𝑦𝑦𝑧))
527, 37, 51syl2anc 411 . . . . 5 ((Fun 𝐴𝐵𝐶𝐵 ⊆ dom 𝐴) → ∃𝑧𝑦𝑥𝐵 (𝑥𝐴𝑦𝑦𝑧))
53 r19.23v 2616 . . . . . . 7 (∀𝑥𝐵 (𝑥𝐴𝑦𝑦𝑧) ↔ (∃𝑥𝐵 𝑥𝐴𝑦𝑦𝑧))
5453albii 1494 . . . . . 6 (∀𝑦𝑥𝐵 (𝑥𝐴𝑦𝑦𝑧) ↔ ∀𝑦(∃𝑥𝐵 𝑥𝐴𝑦𝑦𝑧))
5554exbii 1629 . . . . 5 (∃𝑧𝑦𝑥𝐵 (𝑥𝐴𝑦𝑦𝑧) ↔ ∃𝑧𝑦(∃𝑥𝐵 𝑥𝐴𝑦𝑦𝑧))
5652, 55sylib 122 . . . 4 ((Fun 𝐴𝐵𝐶𝐵 ⊆ dom 𝐴) → ∃𝑧𝑦(∃𝑥𝐵 𝑥𝐴𝑦𝑦𝑧))
57 abss 3263 . . . . 5 ({𝑦 ∣ ∃𝑥𝐵 𝑥𝐴𝑦} ⊆ 𝑧 ↔ ∀𝑦(∃𝑥𝐵 𝑥𝐴𝑦𝑦𝑧))
5857exbii 1629 . . . 4 (∃𝑧{𝑦 ∣ ∃𝑥𝐵 𝑥𝐴𝑦} ⊆ 𝑧 ↔ ∃𝑧𝑦(∃𝑥𝐵 𝑥𝐴𝑦𝑦𝑧))
5956, 58sylibr 134 . . 3 ((Fun 𝐴𝐵𝐶𝐵 ⊆ dom 𝐴) → ∃𝑧{𝑦 ∣ ∃𝑥𝐵 𝑥𝐴𝑦} ⊆ 𝑧)
60 dfima2 5029 . . . . 5 (𝐴𝐵) = {𝑦 ∣ ∃𝑥𝐵 𝑥𝐴𝑦}
6160sseq1i 3220 . . . 4 ((𝐴𝐵) ⊆ 𝑧 ↔ {𝑦 ∣ ∃𝑥𝐵 𝑥𝐴𝑦} ⊆ 𝑧)
6261exbii 1629 . . 3 (∃𝑧(𝐴𝐵) ⊆ 𝑧 ↔ ∃𝑧{𝑦 ∣ ∃𝑥𝐵 𝑥𝐴𝑦} ⊆ 𝑧)
6359, 62sylibr 134 . 2 ((Fun 𝐴𝐵𝐶𝐵 ⊆ dom 𝐴) → ∃𝑧(𝐴𝐵) ⊆ 𝑧)
64 vex 2776 . . . 4 𝑧 ∈ V
6564ssex 4185 . . 3 ((𝐴𝐵) ⊆ 𝑧 → (𝐴𝐵) ∈ V)
6665exlimiv 1622 . 2 (∃𝑧(𝐴𝐵) ⊆ 𝑧 → (𝐴𝐵) ∈ V)
6763, 66syl 14 1 ((Fun 𝐴𝐵𝐶𝐵 ⊆ dom 𝐴) → (𝐴𝐵) ∈ V)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 981  wal 1371   = wceq 1373  wex 1516  ∃!weu 2055  ∃*wmo 2056  wcel 2177  {cab 2192  wral 2485  wrex 2486  Vcvv 2773  wss 3167   class class class wbr 4047  dom cdm 4679  cima 4682  Rel wrel 4684  Fun wfun 5270
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-14 2180  ax-ext 2188  ax-coll 4163  ax-sep 4166  ax-pow 4222  ax-pr 4257
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2193  df-cleq 2199  df-clel 2202  df-nfc 2338  df-ral 2490  df-rex 2491  df-v 2775  df-un 3171  df-in 3173  df-ss 3180  df-pw 3619  df-sn 3640  df-pr 3641  df-op 3643  df-br 4048  df-opab 4110  df-id 4344  df-xp 4685  df-cnv 4687  df-co 4688  df-dm 4689  df-rn 4690  df-res 4691  df-ima 4692  df-fun 5278
This theorem is referenced by:  funimaexg  5363
  Copyright terms: Public domain W3C validator