ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funimaexglem GIF version

Theorem funimaexglem 5341
Description: Lemma for funimaexg 5342. It constitutes the interesting part of funimaexg 5342, in which 𝐵 ⊆ dom 𝐴. (Contributed by Jim Kingdon, 27-Dec-2018.)
Assertion
Ref Expression
funimaexglem ((Fun 𝐴𝐵𝐶𝐵 ⊆ dom 𝐴) → (𝐴𝐵) ∈ V)

Proof of Theorem funimaexglem
Dummy variables 𝑏 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dffun7 5285 . . . . . . . . . 10 (Fun 𝐴 ↔ (Rel 𝐴 ∧ ∀𝑥 ∈ dom 𝐴∃*𝑦 𝑥𝐴𝑦))
21simprbi 275 . . . . . . . . 9 (Fun 𝐴 → ∀𝑥 ∈ dom 𝐴∃*𝑦 𝑥𝐴𝑦)
323ad2ant1 1020 . . . . . . . 8 ((Fun 𝐴𝐵𝐶𝐵 ⊆ dom 𝐴) → ∀𝑥 ∈ dom 𝐴∃*𝑦 𝑥𝐴𝑦)
4 ssralv 3247 . . . . . . . . 9 (𝐵 ⊆ dom 𝐴 → (∀𝑥 ∈ dom 𝐴∃*𝑦 𝑥𝐴𝑦 → ∀𝑥𝐵 ∃*𝑦 𝑥𝐴𝑦))
543ad2ant3 1022 . . . . . . . 8 ((Fun 𝐴𝐵𝐶𝐵 ⊆ dom 𝐴) → (∀𝑥 ∈ dom 𝐴∃*𝑦 𝑥𝐴𝑦 → ∀𝑥𝐵 ∃*𝑦 𝑥𝐴𝑦))
63, 5mpd 13 . . . . . . 7 ((Fun 𝐴𝐵𝐶𝐵 ⊆ dom 𝐴) → ∀𝑥𝐵 ∃*𝑦 𝑥𝐴𝑦)
76alrimiv 1888 . . . . . 6 ((Fun 𝐴𝐵𝐶𝐵 ⊆ dom 𝐴) → ∀𝑧𝑥𝐵 ∃*𝑦 𝑥𝐴𝑦)
8 sseq1 3206 . . . . . . . . . . . . . . . . 17 (𝑏 = 𝐵 → (𝑏 ⊆ dom 𝐴𝐵 ⊆ dom 𝐴))
98biimpar 297 . . . . . . . . . . . . . . . 16 ((𝑏 = 𝐵𝐵 ⊆ dom 𝐴) → 𝑏 ⊆ dom 𝐴)
1093adant1 1017 . . . . . . . . . . . . . . 15 ((Fun 𝐴𝑏 = 𝐵𝐵 ⊆ dom 𝐴) → 𝑏 ⊆ dom 𝐴)
11 simp1 999 . . . . . . . . . . . . . . 15 ((Fun 𝐴𝑏 = 𝐵𝐵 ⊆ dom 𝐴) → Fun 𝐴)
1210, 11jca 306 . . . . . . . . . . . . . 14 ((Fun 𝐴𝑏 = 𝐵𝐵 ⊆ dom 𝐴) → (𝑏 ⊆ dom 𝐴 ∧ Fun 𝐴))
13 dffun8 5286 . . . . . . . . . . . . . . . . . 18 (Fun 𝐴 ↔ (Rel 𝐴 ∧ ∀𝑥 ∈ dom 𝐴∃!𝑦 𝑥𝐴𝑦))
1413simprbi 275 . . . . . . . . . . . . . . . . 17 (Fun 𝐴 → ∀𝑥 ∈ dom 𝐴∃!𝑦 𝑥𝐴𝑦)
1514adantl 277 . . . . . . . . . . . . . . . 16 ((𝑏 ⊆ dom 𝐴 ∧ Fun 𝐴) → ∀𝑥 ∈ dom 𝐴∃!𝑦 𝑥𝐴𝑦)
16 ssel 3177 . . . . . . . . . . . . . . . . 17 (𝑏 ⊆ dom 𝐴 → (𝑥𝑏𝑥 ∈ dom 𝐴))
1716adantr 276 . . . . . . . . . . . . . . . 16 ((𝑏 ⊆ dom 𝐴 ∧ Fun 𝐴) → (𝑥𝑏𝑥 ∈ dom 𝐴))
18 rsp 2544 . . . . . . . . . . . . . . . 16 (∀𝑥 ∈ dom 𝐴∃!𝑦 𝑥𝐴𝑦 → (𝑥 ∈ dom 𝐴 → ∃!𝑦 𝑥𝐴𝑦))
1915, 17, 18sylsyld 58 . . . . . . . . . . . . . . 15 ((𝑏 ⊆ dom 𝐴 ∧ Fun 𝐴) → (𝑥𝑏 → ∃!𝑦 𝑥𝐴𝑦))
2019ralrimiv 2569 . . . . . . . . . . . . . 14 ((𝑏 ⊆ dom 𝐴 ∧ Fun 𝐴) → ∀𝑥𝑏 ∃!𝑦 𝑥𝐴𝑦)
21 zfrep6 4150 . . . . . . . . . . . . . 14 (∀𝑥𝑏 ∃!𝑦 𝑥𝐴𝑦 → ∃𝑧𝑥𝑏𝑦𝑧 𝑥𝐴𝑦)
2212, 20, 213syl 17 . . . . . . . . . . . . 13 ((Fun 𝐴𝑏 = 𝐵𝐵 ⊆ dom 𝐴) → ∃𝑧𝑥𝑏𝑦𝑧 𝑥𝐴𝑦)
23 raleq 2693 . . . . . . . . . . . . . . 15 (𝑏 = 𝐵 → (∀𝑥𝑏𝑦𝑧 𝑥𝐴𝑦 ↔ ∀𝑥𝐵𝑦𝑧 𝑥𝐴𝑦))
2423exbidv 1839 . . . . . . . . . . . . . 14 (𝑏 = 𝐵 → (∃𝑧𝑥𝑏𝑦𝑧 𝑥𝐴𝑦 ↔ ∃𝑧𝑥𝐵𝑦𝑧 𝑥𝐴𝑦))
25243ad2ant2 1021 . . . . . . . . . . . . 13 ((Fun 𝐴𝑏 = 𝐵𝐵 ⊆ dom 𝐴) → (∃𝑧𝑥𝑏𝑦𝑧 𝑥𝐴𝑦 ↔ ∃𝑧𝑥𝐵𝑦𝑧 𝑥𝐴𝑦))
2622, 25mpbid 147 . . . . . . . . . . . 12 ((Fun 𝐴𝑏 = 𝐵𝐵 ⊆ dom 𝐴) → ∃𝑧𝑥𝐵𝑦𝑧 𝑥𝐴𝑦)
27263com12 1209 . . . . . . . . . . 11 ((𝑏 = 𝐵 ∧ Fun 𝐴𝐵 ⊆ dom 𝐴) → ∃𝑧𝑥𝐵𝑦𝑧 𝑥𝐴𝑦)
28273expib 1208 . . . . . . . . . 10 (𝑏 = 𝐵 → ((Fun 𝐴𝐵 ⊆ dom 𝐴) → ∃𝑧𝑥𝐵𝑦𝑧 𝑥𝐴𝑦))
2928vtocleg 2835 . . . . . . . . 9 (𝐵𝐶 → ((Fun 𝐴𝐵 ⊆ dom 𝐴) → ∃𝑧𝑥𝐵𝑦𝑧 𝑥𝐴𝑦))
30293impib 1203 . . . . . . . 8 ((𝐵𝐶 ∧ Fun 𝐴𝐵 ⊆ dom 𝐴) → ∃𝑧𝑥𝐵𝑦𝑧 𝑥𝐴𝑦)
31303com12 1209 . . . . . . 7 ((Fun 𝐴𝐵𝐶𝐵 ⊆ dom 𝐴) → ∃𝑧𝑥𝐵𝑦𝑧 𝑥𝐴𝑦)
32 df-rex 2481 . . . . . . . . . 10 (∃𝑦𝑧 𝑥𝐴𝑦 ↔ ∃𝑦(𝑦𝑧𝑥𝐴𝑦))
33 exancom 1622 . . . . . . . . . 10 (∃𝑦(𝑦𝑧𝑥𝐴𝑦) ↔ ∃𝑦(𝑥𝐴𝑦𝑦𝑧))
3432, 33bitri 184 . . . . . . . . 9 (∃𝑦𝑧 𝑥𝐴𝑦 ↔ ∃𝑦(𝑥𝐴𝑦𝑦𝑧))
3534ralbii 2503 . . . . . . . 8 (∀𝑥𝐵𝑦𝑧 𝑥𝐴𝑦 ↔ ∀𝑥𝐵𝑦(𝑥𝐴𝑦𝑦𝑧))
3635exbii 1619 . . . . . . 7 (∃𝑧𝑥𝐵𝑦𝑧 𝑥𝐴𝑦 ↔ ∃𝑧𝑥𝐵𝑦(𝑥𝐴𝑦𝑦𝑧))
3731, 36sylib 122 . . . . . 6 ((Fun 𝐴𝐵𝐶𝐵 ⊆ dom 𝐴) → ∃𝑧𝑥𝐵𝑦(𝑥𝐴𝑦𝑦𝑧))
38 19.29 1634 . . . . . . 7 ((∀𝑧𝑥𝐵 ∃*𝑦 𝑥𝐴𝑦 ∧ ∃𝑧𝑥𝐵𝑦(𝑥𝐴𝑦𝑦𝑧)) → ∃𝑧(∀𝑥𝐵 ∃*𝑦 𝑥𝐴𝑦 ∧ ∀𝑥𝐵𝑦(𝑥𝐴𝑦𝑦𝑧)))
39 nfcv 2339 . . . . . . . . . . 11 𝑦𝐵
40 nfmo1 2057 . . . . . . . . . . 11 𝑦∃*𝑦 𝑥𝐴𝑦
4139, 40nfralxy 2535 . . . . . . . . . 10 𝑦𝑥𝐵 ∃*𝑦 𝑥𝐴𝑦
42 nfe1 1510 . . . . . . . . . . 11 𝑦𝑦(𝑥𝐴𝑦𝑦𝑧)
4339, 42nfralxy 2535 . . . . . . . . . 10 𝑦𝑥𝐵𝑦(𝑥𝐴𝑦𝑦𝑧)
4441, 43nfan 1579 . . . . . . . . 9 𝑦(∀𝑥𝐵 ∃*𝑦 𝑥𝐴𝑦 ∧ ∀𝑥𝐵𝑦(𝑥𝐴𝑦𝑦𝑧))
45 r19.26 2623 . . . . . . . . . 10 (∀𝑥𝐵 (∃*𝑦 𝑥𝐴𝑦 ∧ ∃𝑦(𝑥𝐴𝑦𝑦𝑧)) ↔ (∀𝑥𝐵 ∃*𝑦 𝑥𝐴𝑦 ∧ ∀𝑥𝐵𝑦(𝑥𝐴𝑦𝑦𝑧)))
46 mopick 2123 . . . . . . . . . . 11 ((∃*𝑦 𝑥𝐴𝑦 ∧ ∃𝑦(𝑥𝐴𝑦𝑦𝑧)) → (𝑥𝐴𝑦𝑦𝑧))
4746ralimi 2560 . . . . . . . . . 10 (∀𝑥𝐵 (∃*𝑦 𝑥𝐴𝑦 ∧ ∃𝑦(𝑥𝐴𝑦𝑦𝑧)) → ∀𝑥𝐵 (𝑥𝐴𝑦𝑦𝑧))
4845, 47sylbir 135 . . . . . . . . 9 ((∀𝑥𝐵 ∃*𝑦 𝑥𝐴𝑦 ∧ ∀𝑥𝐵𝑦(𝑥𝐴𝑦𝑦𝑧)) → ∀𝑥𝐵 (𝑥𝐴𝑦𝑦𝑧))
4944, 48alrimi 1536 . . . . . . . 8 ((∀𝑥𝐵 ∃*𝑦 𝑥𝐴𝑦 ∧ ∀𝑥𝐵𝑦(𝑥𝐴𝑦𝑦𝑧)) → ∀𝑦𝑥𝐵 (𝑥𝐴𝑦𝑦𝑧))
5049eximi 1614 . . . . . . 7 (∃𝑧(∀𝑥𝐵 ∃*𝑦 𝑥𝐴𝑦 ∧ ∀𝑥𝐵𝑦(𝑥𝐴𝑦𝑦𝑧)) → ∃𝑧𝑦𝑥𝐵 (𝑥𝐴𝑦𝑦𝑧))
5138, 50syl 14 . . . . . 6 ((∀𝑧𝑥𝐵 ∃*𝑦 𝑥𝐴𝑦 ∧ ∃𝑧𝑥𝐵𝑦(𝑥𝐴𝑦𝑦𝑧)) → ∃𝑧𝑦𝑥𝐵 (𝑥𝐴𝑦𝑦𝑧))
527, 37, 51syl2anc 411 . . . . 5 ((Fun 𝐴𝐵𝐶𝐵 ⊆ dom 𝐴) → ∃𝑧𝑦𝑥𝐵 (𝑥𝐴𝑦𝑦𝑧))
53 r19.23v 2606 . . . . . . 7 (∀𝑥𝐵 (𝑥𝐴𝑦𝑦𝑧) ↔ (∃𝑥𝐵 𝑥𝐴𝑦𝑦𝑧))
5453albii 1484 . . . . . 6 (∀𝑦𝑥𝐵 (𝑥𝐴𝑦𝑦𝑧) ↔ ∀𝑦(∃𝑥𝐵 𝑥𝐴𝑦𝑦𝑧))
5554exbii 1619 . . . . 5 (∃𝑧𝑦𝑥𝐵 (𝑥𝐴𝑦𝑦𝑧) ↔ ∃𝑧𝑦(∃𝑥𝐵 𝑥𝐴𝑦𝑦𝑧))
5652, 55sylib 122 . . . 4 ((Fun 𝐴𝐵𝐶𝐵 ⊆ dom 𝐴) → ∃𝑧𝑦(∃𝑥𝐵 𝑥𝐴𝑦𝑦𝑧))
57 abss 3252 . . . . 5 ({𝑦 ∣ ∃𝑥𝐵 𝑥𝐴𝑦} ⊆ 𝑧 ↔ ∀𝑦(∃𝑥𝐵 𝑥𝐴𝑦𝑦𝑧))
5857exbii 1619 . . . 4 (∃𝑧{𝑦 ∣ ∃𝑥𝐵 𝑥𝐴𝑦} ⊆ 𝑧 ↔ ∃𝑧𝑦(∃𝑥𝐵 𝑥𝐴𝑦𝑦𝑧))
5956, 58sylibr 134 . . 3 ((Fun 𝐴𝐵𝐶𝐵 ⊆ dom 𝐴) → ∃𝑧{𝑦 ∣ ∃𝑥𝐵 𝑥𝐴𝑦} ⊆ 𝑧)
60 dfima2 5011 . . . . 5 (𝐴𝐵) = {𝑦 ∣ ∃𝑥𝐵 𝑥𝐴𝑦}
6160sseq1i 3209 . . . 4 ((𝐴𝐵) ⊆ 𝑧 ↔ {𝑦 ∣ ∃𝑥𝐵 𝑥𝐴𝑦} ⊆ 𝑧)
6261exbii 1619 . . 3 (∃𝑧(𝐴𝐵) ⊆ 𝑧 ↔ ∃𝑧{𝑦 ∣ ∃𝑥𝐵 𝑥𝐴𝑦} ⊆ 𝑧)
6359, 62sylibr 134 . 2 ((Fun 𝐴𝐵𝐶𝐵 ⊆ dom 𝐴) → ∃𝑧(𝐴𝐵) ⊆ 𝑧)
64 vex 2766 . . . 4 𝑧 ∈ V
6564ssex 4170 . . 3 ((𝐴𝐵) ⊆ 𝑧 → (𝐴𝐵) ∈ V)
6665exlimiv 1612 . 2 (∃𝑧(𝐴𝐵) ⊆ 𝑧 → (𝐴𝐵) ∈ V)
6763, 66syl 14 1 ((Fun 𝐴𝐵𝐶𝐵 ⊆ dom 𝐴) → (𝐴𝐵) ∈ V)
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  wb 105  w3a 980  wal 1362   = wceq 1364  wex 1506  ∃!weu 2045  ∃*wmo 2046  wcel 2167  {cab 2182  wral 2475  wrex 2476  Vcvv 2763  wss 3157   class class class wbr 4033  dom cdm 4663  cima 4666  Rel wrel 4668  Fun wfun 5252
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-14 2170  ax-ext 2178  ax-coll 4148  ax-sep 4151  ax-pow 4207  ax-pr 4242
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-br 4034  df-opab 4095  df-id 4328  df-xp 4669  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-res 4675  df-ima 4676  df-fun 5260
This theorem is referenced by:  funimaexg  5342
  Copyright terms: Public domain W3C validator