ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  xpcomco GIF version

Theorem xpcomco 6773
Description: Composition with the bijection of xpcomf1o 6772 swaps the arguments to a mapping. (Contributed by Mario Carneiro, 30-May-2015.)
Hypotheses
Ref Expression
xpcomf1o.1 𝐹 = (𝑥 ∈ (𝐴 × 𝐵) ↦ {𝑥})
xpcomco.1 𝐺 = (𝑦𝐵, 𝑧𝐴𝐶)
Assertion
Ref Expression
xpcomco (𝐺𝐹) = (𝑧𝐴, 𝑦𝐵𝐶)
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝐵,𝑦,𝑧   𝑦,𝐹,𝑧
Allowed substitution hints:   𝐶(𝑥,𝑦,𝑧)   𝐹(𝑥)   𝐺(𝑥,𝑦,𝑧)

Proof of Theorem xpcomco
Dummy variables 𝑣 𝑢 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 xpcomf1o.1 . . . . . . . . . 10 𝐹 = (𝑥 ∈ (𝐴 × 𝐵) ↦ {𝑥})
21xpcomf1o 6772 . . . . . . . . 9 𝐹:(𝐴 × 𝐵)–1-1-onto→(𝐵 × 𝐴)
3 f1ofun 5418 . . . . . . . . 9 (𝐹:(𝐴 × 𝐵)–1-1-onto→(𝐵 × 𝐴) → Fun 𝐹)
4 funbrfv2b 5515 . . . . . . . . 9 (Fun 𝐹 → (𝑢𝐹𝑤 ↔ (𝑢 ∈ dom 𝐹 ∧ (𝐹𝑢) = 𝑤)))
52, 3, 4mp2b 8 . . . . . . . 8 (𝑢𝐹𝑤 ↔ (𝑢 ∈ dom 𝐹 ∧ (𝐹𝑢) = 𝑤))
6 ancom 264 . . . . . . . 8 ((𝑢 ∈ dom 𝐹 ∧ (𝐹𝑢) = 𝑤) ↔ ((𝐹𝑢) = 𝑤𝑢 ∈ dom 𝐹))
7 eqcom 2159 . . . . . . . . 9 ((𝐹𝑢) = 𝑤𝑤 = (𝐹𝑢))
8 f1odm 5420 . . . . . . . . . . 11 (𝐹:(𝐴 × 𝐵)–1-1-onto→(𝐵 × 𝐴) → dom 𝐹 = (𝐴 × 𝐵))
92, 8ax-mp 5 . . . . . . . . . 10 dom 𝐹 = (𝐴 × 𝐵)
109eleq2i 2224 . . . . . . . . 9 (𝑢 ∈ dom 𝐹𝑢 ∈ (𝐴 × 𝐵))
117, 10anbi12i 456 . . . . . . . 8 (((𝐹𝑢) = 𝑤𝑢 ∈ dom 𝐹) ↔ (𝑤 = (𝐹𝑢) ∧ 𝑢 ∈ (𝐴 × 𝐵)))
125, 6, 113bitri 205 . . . . . . 7 (𝑢𝐹𝑤 ↔ (𝑤 = (𝐹𝑢) ∧ 𝑢 ∈ (𝐴 × 𝐵)))
1312anbi1i 454 . . . . . 6 ((𝑢𝐹𝑤𝑤𝐺𝑣) ↔ ((𝑤 = (𝐹𝑢) ∧ 𝑢 ∈ (𝐴 × 𝐵)) ∧ 𝑤𝐺𝑣))
14 anass 399 . . . . . 6 (((𝑤 = (𝐹𝑢) ∧ 𝑢 ∈ (𝐴 × 𝐵)) ∧ 𝑤𝐺𝑣) ↔ (𝑤 = (𝐹𝑢) ∧ (𝑢 ∈ (𝐴 × 𝐵) ∧ 𝑤𝐺𝑣)))
1513, 14bitri 183 . . . . 5 ((𝑢𝐹𝑤𝑤𝐺𝑣) ↔ (𝑤 = (𝐹𝑢) ∧ (𝑢 ∈ (𝐴 × 𝐵) ∧ 𝑤𝐺𝑣)))
1615exbii 1585 . . . 4 (∃𝑤(𝑢𝐹𝑤𝑤𝐺𝑣) ↔ ∃𝑤(𝑤 = (𝐹𝑢) ∧ (𝑢 ∈ (𝐴 × 𝐵) ∧ 𝑤𝐺𝑣)))
17 vex 2715 . . . . . . 7 𝑢 ∈ V
181mptfvex 5555 . . . . . . 7 ((∀𝑥 {𝑥} ∈ V ∧ 𝑢 ∈ V) → (𝐹𝑢) ∈ V)
1917, 18mpan2 422 . . . . . 6 (∀𝑥 {𝑥} ∈ V → (𝐹𝑢) ∈ V)
20 vex 2715 . . . . . . . . 9 𝑥 ∈ V
2120snex 4148 . . . . . . . 8 {𝑥} ∈ V
2221cnvex 5126 . . . . . . 7 {𝑥} ∈ V
2322uniex 4399 . . . . . 6 {𝑥} ∈ V
2419, 23mpg 1431 . . . . 5 (𝐹𝑢) ∈ V
25 breq1 3970 . . . . . 6 (𝑤 = (𝐹𝑢) → (𝑤𝐺𝑣 ↔ (𝐹𝑢)𝐺𝑣))
2625anbi2d 460 . . . . 5 (𝑤 = (𝐹𝑢) → ((𝑢 ∈ (𝐴 × 𝐵) ∧ 𝑤𝐺𝑣) ↔ (𝑢 ∈ (𝐴 × 𝐵) ∧ (𝐹𝑢)𝐺𝑣)))
2724, 26ceqsexv 2751 . . . 4 (∃𝑤(𝑤 = (𝐹𝑢) ∧ (𝑢 ∈ (𝐴 × 𝐵) ∧ 𝑤𝐺𝑣)) ↔ (𝑢 ∈ (𝐴 × 𝐵) ∧ (𝐹𝑢)𝐺𝑣))
28 elxp 4605 . . . . . 6 (𝑢 ∈ (𝐴 × 𝐵) ↔ ∃𝑧𝑦(𝑢 = ⟨𝑧, 𝑦⟩ ∧ (𝑧𝐴𝑦𝐵)))
2928anbi1i 454 . . . . 5 ((𝑢 ∈ (𝐴 × 𝐵) ∧ (𝐹𝑢)𝐺𝑣) ↔ (∃𝑧𝑦(𝑢 = ⟨𝑧, 𝑦⟩ ∧ (𝑧𝐴𝑦𝐵)) ∧ (𝐹𝑢)𝐺𝑣))
30 nfcv 2299 . . . . . . 7 𝑧(𝐹𝑢)
31 xpcomco.1 . . . . . . . 8 𝐺 = (𝑦𝐵, 𝑧𝐴𝐶)
32 nfmpo2 5891 . . . . . . . 8 𝑧(𝑦𝐵, 𝑧𝐴𝐶)
3331, 32nfcxfr 2296 . . . . . . 7 𝑧𝐺
34 nfcv 2299 . . . . . . 7 𝑧𝑣
3530, 33, 34nfbr 4012 . . . . . 6 𝑧(𝐹𝑢)𝐺𝑣
363519.41 1666 . . . . 5 (∃𝑧(∃𝑦(𝑢 = ⟨𝑧, 𝑦⟩ ∧ (𝑧𝐴𝑦𝐵)) ∧ (𝐹𝑢)𝐺𝑣) ↔ (∃𝑧𝑦(𝑢 = ⟨𝑧, 𝑦⟩ ∧ (𝑧𝐴𝑦𝐵)) ∧ (𝐹𝑢)𝐺𝑣))
37 nfcv 2299 . . . . . . . . 9 𝑦(𝐹𝑢)
38 nfmpo1 5890 . . . . . . . . . 10 𝑦(𝑦𝐵, 𝑧𝐴𝐶)
3931, 38nfcxfr 2296 . . . . . . . . 9 𝑦𝐺
40 nfcv 2299 . . . . . . . . 9 𝑦𝑣
4137, 39, 40nfbr 4012 . . . . . . . 8 𝑦(𝐹𝑢)𝐺𝑣
424119.41 1666 . . . . . . 7 (∃𝑦((𝑢 = ⟨𝑧, 𝑦⟩ ∧ (𝑧𝐴𝑦𝐵)) ∧ (𝐹𝑢)𝐺𝑣) ↔ (∃𝑦(𝑢 = ⟨𝑧, 𝑦⟩ ∧ (𝑧𝐴𝑦𝐵)) ∧ (𝐹𝑢)𝐺𝑣))
43 anass 399 . . . . . . . . 9 (((𝑢 = ⟨𝑧, 𝑦⟩ ∧ (𝑧𝐴𝑦𝐵)) ∧ (𝐹𝑢)𝐺𝑣) ↔ (𝑢 = ⟨𝑧, 𝑦⟩ ∧ ((𝑧𝐴𝑦𝐵) ∧ (𝐹𝑢)𝐺𝑣)))
44 fveq2 5470 . . . . . . . . . . . . . 14 (𝑢 = ⟨𝑧, 𝑦⟩ → (𝐹𝑢) = (𝐹‘⟨𝑧, 𝑦⟩))
45 opelxpi 4620 . . . . . . . . . . . . . . 15 ((𝑧𝐴𝑦𝐵) → ⟨𝑧, 𝑦⟩ ∈ (𝐴 × 𝐵))
46 sneq 3572 . . . . . . . . . . . . . . . . . . 19 (𝑥 = ⟨𝑧, 𝑦⟩ → {𝑥} = {⟨𝑧, 𝑦⟩})
4746cnveqd 4764 . . . . . . . . . . . . . . . . . 18 (𝑥 = ⟨𝑧, 𝑦⟩ → {𝑥} = {⟨𝑧, 𝑦⟩})
4847unieqd 3785 . . . . . . . . . . . . . . . . 17 (𝑥 = ⟨𝑧, 𝑦⟩ → {𝑥} = {⟨𝑧, 𝑦⟩})
49 vex 2715 . . . . . . . . . . . . . . . . . 18 𝑧 ∈ V
50 vex 2715 . . . . . . . . . . . . . . . . . 18 𝑦 ∈ V
51 opswapg 5074 . . . . . . . . . . . . . . . . . 18 ((𝑧 ∈ V ∧ 𝑦 ∈ V) → {⟨𝑧, 𝑦⟩} = ⟨𝑦, 𝑧⟩)
5249, 50, 51mp2an 423 . . . . . . . . . . . . . . . . 17 {⟨𝑧, 𝑦⟩} = ⟨𝑦, 𝑧
5348, 52eqtrdi 2206 . . . . . . . . . . . . . . . 16 (𝑥 = ⟨𝑧, 𝑦⟩ → {𝑥} = ⟨𝑦, 𝑧⟩)
5450, 49opex 4191 . . . . . . . . . . . . . . . 16 𝑦, 𝑧⟩ ∈ V
5553, 1, 54fvmpt 5547 . . . . . . . . . . . . . . 15 (⟨𝑧, 𝑦⟩ ∈ (𝐴 × 𝐵) → (𝐹‘⟨𝑧, 𝑦⟩) = ⟨𝑦, 𝑧⟩)
5645, 55syl 14 . . . . . . . . . . . . . 14 ((𝑧𝐴𝑦𝐵) → (𝐹‘⟨𝑧, 𝑦⟩) = ⟨𝑦, 𝑧⟩)
5744, 56sylan9eq 2210 . . . . . . . . . . . . 13 ((𝑢 = ⟨𝑧, 𝑦⟩ ∧ (𝑧𝐴𝑦𝐵)) → (𝐹𝑢) = ⟨𝑦, 𝑧⟩)
5857breq1d 3977 . . . . . . . . . . . 12 ((𝑢 = ⟨𝑧, 𝑦⟩ ∧ (𝑧𝐴𝑦𝐵)) → ((𝐹𝑢)𝐺𝑣 ↔ ⟨𝑦, 𝑧𝐺𝑣))
59 df-br 3968 . . . . . . . . . . . . . . . 16 (⟨𝑦, 𝑧𝐺𝑣 ↔ ⟨⟨𝑦, 𝑧⟩, 𝑣⟩ ∈ 𝐺)
60 df-mpo 5831 . . . . . . . . . . . . . . . . . 18 (𝑦𝐵, 𝑧𝐴𝐶) = {⟨⟨𝑦, 𝑧⟩, 𝑣⟩ ∣ ((𝑦𝐵𝑧𝐴) ∧ 𝑣 = 𝐶)}
6131, 60eqtri 2178 . . . . . . . . . . . . . . . . 17 𝐺 = {⟨⟨𝑦, 𝑧⟩, 𝑣⟩ ∣ ((𝑦𝐵𝑧𝐴) ∧ 𝑣 = 𝐶)}
6261eleq2i 2224 . . . . . . . . . . . . . . . 16 (⟨⟨𝑦, 𝑧⟩, 𝑣⟩ ∈ 𝐺 ↔ ⟨⟨𝑦, 𝑧⟩, 𝑣⟩ ∈ {⟨⟨𝑦, 𝑧⟩, 𝑣⟩ ∣ ((𝑦𝐵𝑧𝐴) ∧ 𝑣 = 𝐶)})
63 oprabid 5855 . . . . . . . . . . . . . . . 16 (⟨⟨𝑦, 𝑧⟩, 𝑣⟩ ∈ {⟨⟨𝑦, 𝑧⟩, 𝑣⟩ ∣ ((𝑦𝐵𝑧𝐴) ∧ 𝑣 = 𝐶)} ↔ ((𝑦𝐵𝑧𝐴) ∧ 𝑣 = 𝐶))
6459, 62, 633bitri 205 . . . . . . . . . . . . . . 15 (⟨𝑦, 𝑧𝐺𝑣 ↔ ((𝑦𝐵𝑧𝐴) ∧ 𝑣 = 𝐶))
6564baib 905 . . . . . . . . . . . . . 14 ((𝑦𝐵𝑧𝐴) → (⟨𝑦, 𝑧𝐺𝑣𝑣 = 𝐶))
6665ancoms 266 . . . . . . . . . . . . 13 ((𝑧𝐴𝑦𝐵) → (⟨𝑦, 𝑧𝐺𝑣𝑣 = 𝐶))
6766adantl 275 . . . . . . . . . . . 12 ((𝑢 = ⟨𝑧, 𝑦⟩ ∧ (𝑧𝐴𝑦𝐵)) → (⟨𝑦, 𝑧𝐺𝑣𝑣 = 𝐶))
6858, 67bitrd 187 . . . . . . . . . . 11 ((𝑢 = ⟨𝑧, 𝑦⟩ ∧ (𝑧𝐴𝑦𝐵)) → ((𝐹𝑢)𝐺𝑣𝑣 = 𝐶))
6968pm5.32da 448 . . . . . . . . . 10 (𝑢 = ⟨𝑧, 𝑦⟩ → (((𝑧𝐴𝑦𝐵) ∧ (𝐹𝑢)𝐺𝑣) ↔ ((𝑧𝐴𝑦𝐵) ∧ 𝑣 = 𝐶)))
7069pm5.32i 450 . . . . . . . . 9 ((𝑢 = ⟨𝑧, 𝑦⟩ ∧ ((𝑧𝐴𝑦𝐵) ∧ (𝐹𝑢)𝐺𝑣)) ↔ (𝑢 = ⟨𝑧, 𝑦⟩ ∧ ((𝑧𝐴𝑦𝐵) ∧ 𝑣 = 𝐶)))
7143, 70bitri 183 . . . . . . . 8 (((𝑢 = ⟨𝑧, 𝑦⟩ ∧ (𝑧𝐴𝑦𝐵)) ∧ (𝐹𝑢)𝐺𝑣) ↔ (𝑢 = ⟨𝑧, 𝑦⟩ ∧ ((𝑧𝐴𝑦𝐵) ∧ 𝑣 = 𝐶)))
7271exbii 1585 . . . . . . 7 (∃𝑦((𝑢 = ⟨𝑧, 𝑦⟩ ∧ (𝑧𝐴𝑦𝐵)) ∧ (𝐹𝑢)𝐺𝑣) ↔ ∃𝑦(𝑢 = ⟨𝑧, 𝑦⟩ ∧ ((𝑧𝐴𝑦𝐵) ∧ 𝑣 = 𝐶)))
7342, 72bitr3i 185 . . . . . 6 ((∃𝑦(𝑢 = ⟨𝑧, 𝑦⟩ ∧ (𝑧𝐴𝑦𝐵)) ∧ (𝐹𝑢)𝐺𝑣) ↔ ∃𝑦(𝑢 = ⟨𝑧, 𝑦⟩ ∧ ((𝑧𝐴𝑦𝐵) ∧ 𝑣 = 𝐶)))
7473exbii 1585 . . . . 5 (∃𝑧(∃𝑦(𝑢 = ⟨𝑧, 𝑦⟩ ∧ (𝑧𝐴𝑦𝐵)) ∧ (𝐹𝑢)𝐺𝑣) ↔ ∃𝑧𝑦(𝑢 = ⟨𝑧, 𝑦⟩ ∧ ((𝑧𝐴𝑦𝐵) ∧ 𝑣 = 𝐶)))
7529, 36, 743bitr2i 207 . . . 4 ((𝑢 ∈ (𝐴 × 𝐵) ∧ (𝐹𝑢)𝐺𝑣) ↔ ∃𝑧𝑦(𝑢 = ⟨𝑧, 𝑦⟩ ∧ ((𝑧𝐴𝑦𝐵) ∧ 𝑣 = 𝐶)))
7616, 27, 753bitri 205 . . 3 (∃𝑤(𝑢𝐹𝑤𝑤𝐺𝑣) ↔ ∃𝑧𝑦(𝑢 = ⟨𝑧, 𝑦⟩ ∧ ((𝑧𝐴𝑦𝐵) ∧ 𝑣 = 𝐶)))
7776opabbii 4033 . 2 {⟨𝑢, 𝑣⟩ ∣ ∃𝑤(𝑢𝐹𝑤𝑤𝐺𝑣)} = {⟨𝑢, 𝑣⟩ ∣ ∃𝑧𝑦(𝑢 = ⟨𝑧, 𝑦⟩ ∧ ((𝑧𝐴𝑦𝐵) ∧ 𝑣 = 𝐶))}
78 df-co 4597 . 2 (𝐺𝐹) = {⟨𝑢, 𝑣⟩ ∣ ∃𝑤(𝑢𝐹𝑤𝑤𝐺𝑣)}
79 df-mpo 5831 . . 3 (𝑧𝐴, 𝑦𝐵𝐶) = {⟨⟨𝑧, 𝑦⟩, 𝑣⟩ ∣ ((𝑧𝐴𝑦𝐵) ∧ 𝑣 = 𝐶)}
80 dfoprab2 5870 . . 3 {⟨⟨𝑧, 𝑦⟩, 𝑣⟩ ∣ ((𝑧𝐴𝑦𝐵) ∧ 𝑣 = 𝐶)} = {⟨𝑢, 𝑣⟩ ∣ ∃𝑧𝑦(𝑢 = ⟨𝑧, 𝑦⟩ ∧ ((𝑧𝐴𝑦𝐵) ∧ 𝑣 = 𝐶))}
8179, 80eqtri 2178 . 2 (𝑧𝐴, 𝑦𝐵𝐶) = {⟨𝑢, 𝑣⟩ ∣ ∃𝑧𝑦(𝑢 = ⟨𝑧, 𝑦⟩ ∧ ((𝑧𝐴𝑦𝐵) ∧ 𝑣 = 𝐶))}
8277, 78, 813eqtr4i 2188 1 (𝐺𝐹) = (𝑧𝐴, 𝑦𝐵𝐶)
Colors of variables: wff set class
Syntax hints:  wa 103  wb 104  wal 1333   = wceq 1335  wex 1472  wcel 2128  Vcvv 2712  {csn 3561  cop 3564   cuni 3774   class class class wbr 3967  {copab 4026  cmpt 4027   × cxp 4586  ccnv 4587  dom cdm 4588  ccom 4592  Fun wfun 5166  1-1-ontowf1o 5171  cfv 5172  {coprab 5827  cmpo 5828
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1427  ax-7 1428  ax-gen 1429  ax-ie1 1473  ax-ie2 1474  ax-8 1484  ax-10 1485  ax-11 1486  ax-i12 1487  ax-bndl 1489  ax-4 1490  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-13 2130  ax-14 2131  ax-ext 2139  ax-sep 4084  ax-pow 4137  ax-pr 4171  ax-un 4395  ax-setind 4498
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1338  df-fal 1341  df-nf 1441  df-sb 1743  df-eu 2009  df-mo 2010  df-clab 2144  df-cleq 2150  df-clel 2153  df-nfc 2288  df-ne 2328  df-ral 2440  df-rex 2441  df-v 2714  df-sbc 2938  df-csb 3032  df-dif 3104  df-un 3106  df-in 3108  df-ss 3115  df-pw 3546  df-sn 3567  df-pr 3568  df-op 3570  df-uni 3775  df-br 3968  df-opab 4028  df-mpt 4029  df-id 4255  df-xp 4594  df-rel 4595  df-cnv 4596  df-co 4597  df-dm 4598  df-rn 4599  df-iota 5137  df-fun 5174  df-fn 5175  df-f 5176  df-f1 5177  df-fo 5178  df-f1o 5179  df-fv 5180  df-oprab 5830  df-mpo 5831  df-1st 6090  df-2nd 6091
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator