Step | Hyp | Ref
| Expression |
1 | | xpcomf1o.1 |
. . . . . . . . . 10
⊢ 𝐹 = (𝑥 ∈ (𝐴 × 𝐵) ↦ ∪ ◡{𝑥}) |
2 | 1 | xpcomf1o 6803 |
. . . . . . . . 9
⊢ 𝐹:(𝐴 × 𝐵)–1-1-onto→(𝐵 × 𝐴) |
3 | | f1ofun 5444 |
. . . . . . . . 9
⊢ (𝐹:(𝐴 × 𝐵)–1-1-onto→(𝐵 × 𝐴) → Fun 𝐹) |
4 | | funbrfv2b 5541 |
. . . . . . . . 9
⊢ (Fun
𝐹 → (𝑢𝐹𝑤 ↔ (𝑢 ∈ dom 𝐹 ∧ (𝐹‘𝑢) = 𝑤))) |
5 | 2, 3, 4 | mp2b 8 |
. . . . . . . 8
⊢ (𝑢𝐹𝑤 ↔ (𝑢 ∈ dom 𝐹 ∧ (𝐹‘𝑢) = 𝑤)) |
6 | | ancom 264 |
. . . . . . . 8
⊢ ((𝑢 ∈ dom 𝐹 ∧ (𝐹‘𝑢) = 𝑤) ↔ ((𝐹‘𝑢) = 𝑤 ∧ 𝑢 ∈ dom 𝐹)) |
7 | | eqcom 2172 |
. . . . . . . . 9
⊢ ((𝐹‘𝑢) = 𝑤 ↔ 𝑤 = (𝐹‘𝑢)) |
8 | | f1odm 5446 |
. . . . . . . . . . 11
⊢ (𝐹:(𝐴 × 𝐵)–1-1-onto→(𝐵 × 𝐴) → dom 𝐹 = (𝐴 × 𝐵)) |
9 | 2, 8 | ax-mp 5 |
. . . . . . . . . 10
⊢ dom 𝐹 = (𝐴 × 𝐵) |
10 | 9 | eleq2i 2237 |
. . . . . . . . 9
⊢ (𝑢 ∈ dom 𝐹 ↔ 𝑢 ∈ (𝐴 × 𝐵)) |
11 | 7, 10 | anbi12i 457 |
. . . . . . . 8
⊢ (((𝐹‘𝑢) = 𝑤 ∧ 𝑢 ∈ dom 𝐹) ↔ (𝑤 = (𝐹‘𝑢) ∧ 𝑢 ∈ (𝐴 × 𝐵))) |
12 | 5, 6, 11 | 3bitri 205 |
. . . . . . 7
⊢ (𝑢𝐹𝑤 ↔ (𝑤 = (𝐹‘𝑢) ∧ 𝑢 ∈ (𝐴 × 𝐵))) |
13 | 12 | anbi1i 455 |
. . . . . 6
⊢ ((𝑢𝐹𝑤 ∧ 𝑤𝐺𝑣) ↔ ((𝑤 = (𝐹‘𝑢) ∧ 𝑢 ∈ (𝐴 × 𝐵)) ∧ 𝑤𝐺𝑣)) |
14 | | anass 399 |
. . . . . 6
⊢ (((𝑤 = (𝐹‘𝑢) ∧ 𝑢 ∈ (𝐴 × 𝐵)) ∧ 𝑤𝐺𝑣) ↔ (𝑤 = (𝐹‘𝑢) ∧ (𝑢 ∈ (𝐴 × 𝐵) ∧ 𝑤𝐺𝑣))) |
15 | 13, 14 | bitri 183 |
. . . . 5
⊢ ((𝑢𝐹𝑤 ∧ 𝑤𝐺𝑣) ↔ (𝑤 = (𝐹‘𝑢) ∧ (𝑢 ∈ (𝐴 × 𝐵) ∧ 𝑤𝐺𝑣))) |
16 | 15 | exbii 1598 |
. . . 4
⊢
(∃𝑤(𝑢𝐹𝑤 ∧ 𝑤𝐺𝑣) ↔ ∃𝑤(𝑤 = (𝐹‘𝑢) ∧ (𝑢 ∈ (𝐴 × 𝐵) ∧ 𝑤𝐺𝑣))) |
17 | | vex 2733 |
. . . . . . 7
⊢ 𝑢 ∈ V |
18 | 1 | mptfvex 5581 |
. . . . . . 7
⊢
((∀𝑥∪ ◡{𝑥} ∈ V ∧ 𝑢 ∈ V) → (𝐹‘𝑢) ∈ V) |
19 | 17, 18 | mpan2 423 |
. . . . . 6
⊢
(∀𝑥∪ ◡{𝑥} ∈ V → (𝐹‘𝑢) ∈ V) |
20 | | vex 2733 |
. . . . . . . . 9
⊢ 𝑥 ∈ V |
21 | 20 | snex 4171 |
. . . . . . . 8
⊢ {𝑥} ∈ V |
22 | 21 | cnvex 5149 |
. . . . . . 7
⊢ ◡{𝑥} ∈ V |
23 | 22 | uniex 4422 |
. . . . . 6
⊢ ∪ ◡{𝑥} ∈ V |
24 | 19, 23 | mpg 1444 |
. . . . 5
⊢ (𝐹‘𝑢) ∈ V |
25 | | breq1 3992 |
. . . . . 6
⊢ (𝑤 = (𝐹‘𝑢) → (𝑤𝐺𝑣 ↔ (𝐹‘𝑢)𝐺𝑣)) |
26 | 25 | anbi2d 461 |
. . . . 5
⊢ (𝑤 = (𝐹‘𝑢) → ((𝑢 ∈ (𝐴 × 𝐵) ∧ 𝑤𝐺𝑣) ↔ (𝑢 ∈ (𝐴 × 𝐵) ∧ (𝐹‘𝑢)𝐺𝑣))) |
27 | 24, 26 | ceqsexv 2769 |
. . . 4
⊢
(∃𝑤(𝑤 = (𝐹‘𝑢) ∧ (𝑢 ∈ (𝐴 × 𝐵) ∧ 𝑤𝐺𝑣)) ↔ (𝑢 ∈ (𝐴 × 𝐵) ∧ (𝐹‘𝑢)𝐺𝑣)) |
28 | | elxp 4628 |
. . . . . 6
⊢ (𝑢 ∈ (𝐴 × 𝐵) ↔ ∃𝑧∃𝑦(𝑢 = 〈𝑧, 𝑦〉 ∧ (𝑧 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵))) |
29 | 28 | anbi1i 455 |
. . . . 5
⊢ ((𝑢 ∈ (𝐴 × 𝐵) ∧ (𝐹‘𝑢)𝐺𝑣) ↔ (∃𝑧∃𝑦(𝑢 = 〈𝑧, 𝑦〉 ∧ (𝑧 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) ∧ (𝐹‘𝑢)𝐺𝑣)) |
30 | | nfcv 2312 |
. . . . . . 7
⊢
Ⅎ𝑧(𝐹‘𝑢) |
31 | | xpcomco.1 |
. . . . . . . 8
⊢ 𝐺 = (𝑦 ∈ 𝐵, 𝑧 ∈ 𝐴 ↦ 𝐶) |
32 | | nfmpo2 5921 |
. . . . . . . 8
⊢
Ⅎ𝑧(𝑦 ∈ 𝐵, 𝑧 ∈ 𝐴 ↦ 𝐶) |
33 | 31, 32 | nfcxfr 2309 |
. . . . . . 7
⊢
Ⅎ𝑧𝐺 |
34 | | nfcv 2312 |
. . . . . . 7
⊢
Ⅎ𝑧𝑣 |
35 | 30, 33, 34 | nfbr 4035 |
. . . . . 6
⊢
Ⅎ𝑧(𝐹‘𝑢)𝐺𝑣 |
36 | 35 | 19.41 1679 |
. . . . 5
⊢
(∃𝑧(∃𝑦(𝑢 = 〈𝑧, 𝑦〉 ∧ (𝑧 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) ∧ (𝐹‘𝑢)𝐺𝑣) ↔ (∃𝑧∃𝑦(𝑢 = 〈𝑧, 𝑦〉 ∧ (𝑧 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) ∧ (𝐹‘𝑢)𝐺𝑣)) |
37 | | nfcv 2312 |
. . . . . . . . 9
⊢
Ⅎ𝑦(𝐹‘𝑢) |
38 | | nfmpo1 5920 |
. . . . . . . . . 10
⊢
Ⅎ𝑦(𝑦 ∈ 𝐵, 𝑧 ∈ 𝐴 ↦ 𝐶) |
39 | 31, 38 | nfcxfr 2309 |
. . . . . . . . 9
⊢
Ⅎ𝑦𝐺 |
40 | | nfcv 2312 |
. . . . . . . . 9
⊢
Ⅎ𝑦𝑣 |
41 | 37, 39, 40 | nfbr 4035 |
. . . . . . . 8
⊢
Ⅎ𝑦(𝐹‘𝑢)𝐺𝑣 |
42 | 41 | 19.41 1679 |
. . . . . . 7
⊢
(∃𝑦((𝑢 = 〈𝑧, 𝑦〉 ∧ (𝑧 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) ∧ (𝐹‘𝑢)𝐺𝑣) ↔ (∃𝑦(𝑢 = 〈𝑧, 𝑦〉 ∧ (𝑧 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) ∧ (𝐹‘𝑢)𝐺𝑣)) |
43 | | anass 399 |
. . . . . . . . 9
⊢ (((𝑢 = 〈𝑧, 𝑦〉 ∧ (𝑧 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) ∧ (𝐹‘𝑢)𝐺𝑣) ↔ (𝑢 = 〈𝑧, 𝑦〉 ∧ ((𝑧 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ (𝐹‘𝑢)𝐺𝑣))) |
44 | | fveq2 5496 |
. . . . . . . . . . . . . 14
⊢ (𝑢 = 〈𝑧, 𝑦〉 → (𝐹‘𝑢) = (𝐹‘〈𝑧, 𝑦〉)) |
45 | | opelxpi 4643 |
. . . . . . . . . . . . . . 15
⊢ ((𝑧 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 〈𝑧, 𝑦〉 ∈ (𝐴 × 𝐵)) |
46 | | sneq 3594 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑥 = 〈𝑧, 𝑦〉 → {𝑥} = {〈𝑧, 𝑦〉}) |
47 | 46 | cnveqd 4787 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑥 = 〈𝑧, 𝑦〉 → ◡{𝑥} = ◡{〈𝑧, 𝑦〉}) |
48 | 47 | unieqd 3807 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑥 = 〈𝑧, 𝑦〉 → ∪
◡{𝑥} = ∪ ◡{〈𝑧, 𝑦〉}) |
49 | | vex 2733 |
. . . . . . . . . . . . . . . . . 18
⊢ 𝑧 ∈ V |
50 | | vex 2733 |
. . . . . . . . . . . . . . . . . 18
⊢ 𝑦 ∈ V |
51 | | opswapg 5097 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑧 ∈ V ∧ 𝑦 ∈ V) → ∪ ◡{〈𝑧, 𝑦〉} = 〈𝑦, 𝑧〉) |
52 | 49, 50, 51 | mp2an 424 |
. . . . . . . . . . . . . . . . 17
⊢ ∪ ◡{〈𝑧, 𝑦〉} = 〈𝑦, 𝑧〉 |
53 | 48, 52 | eqtrdi 2219 |
. . . . . . . . . . . . . . . 16
⊢ (𝑥 = 〈𝑧, 𝑦〉 → ∪
◡{𝑥} = 〈𝑦, 𝑧〉) |
54 | 50, 49 | opex 4214 |
. . . . . . . . . . . . . . . 16
⊢
〈𝑦, 𝑧〉 ∈ V |
55 | 53, 1, 54 | fvmpt 5573 |
. . . . . . . . . . . . . . 15
⊢
(〈𝑧, 𝑦〉 ∈ (𝐴 × 𝐵) → (𝐹‘〈𝑧, 𝑦〉) = 〈𝑦, 𝑧〉) |
56 | 45, 55 | syl 14 |
. . . . . . . . . . . . . 14
⊢ ((𝑧 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → (𝐹‘〈𝑧, 𝑦〉) = 〈𝑦, 𝑧〉) |
57 | 44, 56 | sylan9eq 2223 |
. . . . . . . . . . . . 13
⊢ ((𝑢 = 〈𝑧, 𝑦〉 ∧ (𝑧 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → (𝐹‘𝑢) = 〈𝑦, 𝑧〉) |
58 | 57 | breq1d 3999 |
. . . . . . . . . . . 12
⊢ ((𝑢 = 〈𝑧, 𝑦〉 ∧ (𝑧 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → ((𝐹‘𝑢)𝐺𝑣 ↔ 〈𝑦, 𝑧〉𝐺𝑣)) |
59 | | df-br 3990 |
. . . . . . . . . . . . . . . 16
⊢
(〈𝑦, 𝑧〉𝐺𝑣 ↔ 〈〈𝑦, 𝑧〉, 𝑣〉 ∈ 𝐺) |
60 | | df-mpo 5858 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑦 ∈ 𝐵, 𝑧 ∈ 𝐴 ↦ 𝐶) = {〈〈𝑦, 𝑧〉, 𝑣〉 ∣ ((𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐴) ∧ 𝑣 = 𝐶)} |
61 | 31, 60 | eqtri 2191 |
. . . . . . . . . . . . . . . . 17
⊢ 𝐺 = {〈〈𝑦, 𝑧〉, 𝑣〉 ∣ ((𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐴) ∧ 𝑣 = 𝐶)} |
62 | 61 | eleq2i 2237 |
. . . . . . . . . . . . . . . 16
⊢
(〈〈𝑦,
𝑧〉, 𝑣〉 ∈ 𝐺 ↔ 〈〈𝑦, 𝑧〉, 𝑣〉 ∈ {〈〈𝑦, 𝑧〉, 𝑣〉 ∣ ((𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐴) ∧ 𝑣 = 𝐶)}) |
63 | | oprabid 5885 |
. . . . . . . . . . . . . . . 16
⊢
(〈〈𝑦,
𝑧〉, 𝑣〉 ∈ {〈〈𝑦, 𝑧〉, 𝑣〉 ∣ ((𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐴) ∧ 𝑣 = 𝐶)} ↔ ((𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐴) ∧ 𝑣 = 𝐶)) |
64 | 59, 62, 63 | 3bitri 205 |
. . . . . . . . . . . . . . 15
⊢
(〈𝑦, 𝑧〉𝐺𝑣 ↔ ((𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐴) ∧ 𝑣 = 𝐶)) |
65 | 64 | baib 914 |
. . . . . . . . . . . . . 14
⊢ ((𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐴) → (〈𝑦, 𝑧〉𝐺𝑣 ↔ 𝑣 = 𝐶)) |
66 | 65 | ancoms 266 |
. . . . . . . . . . . . 13
⊢ ((𝑧 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → (〈𝑦, 𝑧〉𝐺𝑣 ↔ 𝑣 = 𝐶)) |
67 | 66 | adantl 275 |
. . . . . . . . . . . 12
⊢ ((𝑢 = 〈𝑧, 𝑦〉 ∧ (𝑧 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → (〈𝑦, 𝑧〉𝐺𝑣 ↔ 𝑣 = 𝐶)) |
68 | 58, 67 | bitrd 187 |
. . . . . . . . . . 11
⊢ ((𝑢 = 〈𝑧, 𝑦〉 ∧ (𝑧 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) → ((𝐹‘𝑢)𝐺𝑣 ↔ 𝑣 = 𝐶)) |
69 | 68 | pm5.32da 449 |
. . . . . . . . . 10
⊢ (𝑢 = 〈𝑧, 𝑦〉 → (((𝑧 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ (𝐹‘𝑢)𝐺𝑣) ↔ ((𝑧 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑣 = 𝐶))) |
70 | 69 | pm5.32i 451 |
. . . . . . . . 9
⊢ ((𝑢 = 〈𝑧, 𝑦〉 ∧ ((𝑧 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ (𝐹‘𝑢)𝐺𝑣)) ↔ (𝑢 = 〈𝑧, 𝑦〉 ∧ ((𝑧 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑣 = 𝐶))) |
71 | 43, 70 | bitri 183 |
. . . . . . . 8
⊢ (((𝑢 = 〈𝑧, 𝑦〉 ∧ (𝑧 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) ∧ (𝐹‘𝑢)𝐺𝑣) ↔ (𝑢 = 〈𝑧, 𝑦〉 ∧ ((𝑧 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑣 = 𝐶))) |
72 | 71 | exbii 1598 |
. . . . . . 7
⊢
(∃𝑦((𝑢 = 〈𝑧, 𝑦〉 ∧ (𝑧 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) ∧ (𝐹‘𝑢)𝐺𝑣) ↔ ∃𝑦(𝑢 = 〈𝑧, 𝑦〉 ∧ ((𝑧 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑣 = 𝐶))) |
73 | 42, 72 | bitr3i 185 |
. . . . . 6
⊢
((∃𝑦(𝑢 = 〈𝑧, 𝑦〉 ∧ (𝑧 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) ∧ (𝐹‘𝑢)𝐺𝑣) ↔ ∃𝑦(𝑢 = 〈𝑧, 𝑦〉 ∧ ((𝑧 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑣 = 𝐶))) |
74 | 73 | exbii 1598 |
. . . . 5
⊢
(∃𝑧(∃𝑦(𝑢 = 〈𝑧, 𝑦〉 ∧ (𝑧 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵)) ∧ (𝐹‘𝑢)𝐺𝑣) ↔ ∃𝑧∃𝑦(𝑢 = 〈𝑧, 𝑦〉 ∧ ((𝑧 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑣 = 𝐶))) |
75 | 29, 36, 74 | 3bitr2i 207 |
. . . 4
⊢ ((𝑢 ∈ (𝐴 × 𝐵) ∧ (𝐹‘𝑢)𝐺𝑣) ↔ ∃𝑧∃𝑦(𝑢 = 〈𝑧, 𝑦〉 ∧ ((𝑧 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑣 = 𝐶))) |
76 | 16, 27, 75 | 3bitri 205 |
. . 3
⊢
(∃𝑤(𝑢𝐹𝑤 ∧ 𝑤𝐺𝑣) ↔ ∃𝑧∃𝑦(𝑢 = 〈𝑧, 𝑦〉 ∧ ((𝑧 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑣 = 𝐶))) |
77 | 76 | opabbii 4056 |
. 2
⊢
{〈𝑢, 𝑣〉 ∣ ∃𝑤(𝑢𝐹𝑤 ∧ 𝑤𝐺𝑣)} = {〈𝑢, 𝑣〉 ∣ ∃𝑧∃𝑦(𝑢 = 〈𝑧, 𝑦〉 ∧ ((𝑧 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑣 = 𝐶))} |
78 | | df-co 4620 |
. 2
⊢ (𝐺 ∘ 𝐹) = {〈𝑢, 𝑣〉 ∣ ∃𝑤(𝑢𝐹𝑤 ∧ 𝑤𝐺𝑣)} |
79 | | df-mpo 5858 |
. . 3
⊢ (𝑧 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = {〈〈𝑧, 𝑦〉, 𝑣〉 ∣ ((𝑧 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑣 = 𝐶)} |
80 | | dfoprab2 5900 |
. . 3
⊢
{〈〈𝑧,
𝑦〉, 𝑣〉 ∣ ((𝑧 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑣 = 𝐶)} = {〈𝑢, 𝑣〉 ∣ ∃𝑧∃𝑦(𝑢 = 〈𝑧, 𝑦〉 ∧ ((𝑧 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑣 = 𝐶))} |
81 | 79, 80 | eqtri 2191 |
. 2
⊢ (𝑧 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) = {〈𝑢, 𝑣〉 ∣ ∃𝑧∃𝑦(𝑢 = 〈𝑧, 𝑦〉 ∧ ((𝑧 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑣 = 𝐶))} |
82 | 77, 78, 81 | 3eqtr4i 2201 |
1
⊢ (𝐺 ∘ 𝐹) = (𝑧 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐶) |