ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfopab2 GIF version

Theorem dfopab2 6157
Description: A way to define an ordered-pair class abstraction without using existential quantifiers. (Contributed by NM, 18-Aug-2006.) (Revised by Mario Carneiro, 31-Aug-2015.)
Assertion
Ref Expression
dfopab2 {⟨𝑥, 𝑦⟩ ∣ 𝜑} = {𝑧 ∈ (V × V) ∣ [(1st𝑧) / 𝑥][(2nd𝑧) / 𝑦]𝜑}
Distinct variable groups:   𝜑,𝑧   𝑥,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem dfopab2
StepHypRef Expression
1 nfsbc1v 2969 . . . . 5 𝑥[(1st𝑧) / 𝑥][(2nd𝑧) / 𝑦]𝜑
2119.41 1674 . . . 4 (∃𝑥(∃𝑦 𝑧 = ⟨𝑥, 𝑦⟩ ∧ [(1st𝑧) / 𝑥][(2nd𝑧) / 𝑦]𝜑) ↔ (∃𝑥𝑦 𝑧 = ⟨𝑥, 𝑦⟩ ∧ [(1st𝑧) / 𝑥][(2nd𝑧) / 𝑦]𝜑))
3 sbcopeq1a 6155 . . . . . . . 8 (𝑧 = ⟨𝑥, 𝑦⟩ → ([(1st𝑧) / 𝑥][(2nd𝑧) / 𝑦]𝜑𝜑))
43pm5.32i 450 . . . . . . 7 ((𝑧 = ⟨𝑥, 𝑦⟩ ∧ [(1st𝑧) / 𝑥][(2nd𝑧) / 𝑦]𝜑) ↔ (𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑))
54exbii 1593 . . . . . 6 (∃𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ [(1st𝑧) / 𝑥][(2nd𝑧) / 𝑦]𝜑) ↔ ∃𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑))
6 nfcv 2308 . . . . . . . 8 𝑦(1st𝑧)
7 nfsbc1v 2969 . . . . . . . 8 𝑦[(2nd𝑧) / 𝑦]𝜑
86, 7nfsbc 2971 . . . . . . 7 𝑦[(1st𝑧) / 𝑥][(2nd𝑧) / 𝑦]𝜑
9819.41 1674 . . . . . 6 (∃𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ [(1st𝑧) / 𝑥][(2nd𝑧) / 𝑦]𝜑) ↔ (∃𝑦 𝑧 = ⟨𝑥, 𝑦⟩ ∧ [(1st𝑧) / 𝑥][(2nd𝑧) / 𝑦]𝜑))
105, 9bitr3i 185 . . . . 5 (∃𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ (∃𝑦 𝑧 = ⟨𝑥, 𝑦⟩ ∧ [(1st𝑧) / 𝑥][(2nd𝑧) / 𝑦]𝜑))
1110exbii 1593 . . . 4 (∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ ∃𝑥(∃𝑦 𝑧 = ⟨𝑥, 𝑦⟩ ∧ [(1st𝑧) / 𝑥][(2nd𝑧) / 𝑦]𝜑))
12 elvv 4666 . . . . 5 (𝑧 ∈ (V × V) ↔ ∃𝑥𝑦 𝑧 = ⟨𝑥, 𝑦⟩)
1312anbi1i 454 . . . 4 ((𝑧 ∈ (V × V) ∧ [(1st𝑧) / 𝑥][(2nd𝑧) / 𝑦]𝜑) ↔ (∃𝑥𝑦 𝑧 = ⟨𝑥, 𝑦⟩ ∧ [(1st𝑧) / 𝑥][(2nd𝑧) / 𝑦]𝜑))
142, 11, 133bitr4i 211 . . 3 (∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ (𝑧 ∈ (V × V) ∧ [(1st𝑧) / 𝑥][(2nd𝑧) / 𝑦]𝜑))
1514abbii 2282 . 2 {𝑧 ∣ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)} = {𝑧 ∣ (𝑧 ∈ (V × V) ∧ [(1st𝑧) / 𝑥][(2nd𝑧) / 𝑦]𝜑)}
16 df-opab 4044 . 2 {⟨𝑥, 𝑦⟩ ∣ 𝜑} = {𝑧 ∣ ∃𝑥𝑦(𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)}
17 df-rab 2453 . 2 {𝑧 ∈ (V × V) ∣ [(1st𝑧) / 𝑥][(2nd𝑧) / 𝑦]𝜑} = {𝑧 ∣ (𝑧 ∈ (V × V) ∧ [(1st𝑧) / 𝑥][(2nd𝑧) / 𝑦]𝜑)}
1815, 16, 173eqtr4i 2196 1 {⟨𝑥, 𝑦⟩ ∣ 𝜑} = {𝑧 ∈ (V × V) ∣ [(1st𝑧) / 𝑥][(2nd𝑧) / 𝑦]𝜑}
Colors of variables: wff set class
Syntax hints:  wa 103   = wceq 1343  wex 1480  wcel 2136  {cab 2151  {crab 2448  Vcvv 2726  [wsbc 2951  cop 3579  {copab 4042   × cxp 4602  cfv 5188  1st c1st 6106  2nd c2nd 6107
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-13 2138  ax-14 2139  ax-ext 2147  ax-sep 4100  ax-pow 4153  ax-pr 4187  ax-un 4411
This theorem depends on definitions:  df-bi 116  df-3an 970  df-tru 1346  df-nf 1449  df-sb 1751  df-eu 2017  df-mo 2018  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-ral 2449  df-rex 2450  df-rab 2453  df-v 2728  df-sbc 2952  df-un 3120  df-in 3122  df-ss 3129  df-pw 3561  df-sn 3582  df-pr 3583  df-op 3585  df-uni 3790  df-br 3983  df-opab 4044  df-mpt 4045  df-id 4271  df-xp 4610  df-rel 4611  df-cnv 4612  df-co 4613  df-dm 4614  df-rn 4615  df-iota 5153  df-fun 5190  df-fv 5196  df-1st 6108  df-2nd 6109
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator