ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  eliunxp GIF version

Theorem eliunxp 4606
Description: Membership in a union of cross products. Analogue of elxp 4484 for nonconstant 𝐵(𝑥). (Contributed by Mario Carneiro, 29-Dec-2014.)
Assertion
Ref Expression
eliunxp (𝐶 𝑥𝐴 ({𝑥} × 𝐵) ↔ ∃𝑥𝑦(𝐶 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐴𝑦𝐵)))
Distinct variable groups:   𝑦,𝐴   𝑦,𝐵   𝑥,𝑦,𝐶
Allowed substitution hints:   𝐴(𝑥)   𝐵(𝑥)

Proof of Theorem eliunxp
StepHypRef Expression
1 relxp 4576 . . . . . 6 Rel ({𝑥} × 𝐵)
21rgenw 2441 . . . . 5 𝑥𝐴 Rel ({𝑥} × 𝐵)
3 reliun 4588 . . . . 5 (Rel 𝑥𝐴 ({𝑥} × 𝐵) ↔ ∀𝑥𝐴 Rel ({𝑥} × 𝐵))
42, 3mpbir 145 . . . 4 Rel 𝑥𝐴 ({𝑥} × 𝐵)
5 elrel 4569 . . . 4 ((Rel 𝑥𝐴 ({𝑥} × 𝐵) ∧ 𝐶 𝑥𝐴 ({𝑥} × 𝐵)) → ∃𝑥𝑦 𝐶 = ⟨𝑥, 𝑦⟩)
64, 5mpan 416 . . 3 (𝐶 𝑥𝐴 ({𝑥} × 𝐵) → ∃𝑥𝑦 𝐶 = ⟨𝑥, 𝑦⟩)
76pm4.71ri 385 . 2 (𝐶 𝑥𝐴 ({𝑥} × 𝐵) ↔ (∃𝑥𝑦 𝐶 = ⟨𝑥, 𝑦⟩ ∧ 𝐶 𝑥𝐴 ({𝑥} × 𝐵)))
8 nfiu1 3782 . . . 4 𝑥 𝑥𝐴 ({𝑥} × 𝐵)
98nfel2 2248 . . 3 𝑥 𝐶 𝑥𝐴 ({𝑥} × 𝐵)
10919.41 1628 . 2 (∃𝑥(∃𝑦 𝐶 = ⟨𝑥, 𝑦⟩ ∧ 𝐶 𝑥𝐴 ({𝑥} × 𝐵)) ↔ (∃𝑥𝑦 𝐶 = ⟨𝑥, 𝑦⟩ ∧ 𝐶 𝑥𝐴 ({𝑥} × 𝐵)))
11 19.41v 1837 . . . 4 (∃𝑦(𝐶 = ⟨𝑥, 𝑦⟩ ∧ 𝐶 𝑥𝐴 ({𝑥} × 𝐵)) ↔ (∃𝑦 𝐶 = ⟨𝑥, 𝑦⟩ ∧ 𝐶 𝑥𝐴 ({𝑥} × 𝐵)))
12 eleq1 2157 . . . . . . 7 (𝐶 = ⟨𝑥, 𝑦⟩ → (𝐶 𝑥𝐴 ({𝑥} × 𝐵) ↔ ⟨𝑥, 𝑦⟩ ∈ 𝑥𝐴 ({𝑥} × 𝐵)))
13 opeliunxp 4522 . . . . . . 7 (⟨𝑥, 𝑦⟩ ∈ 𝑥𝐴 ({𝑥} × 𝐵) ↔ (𝑥𝐴𝑦𝐵))
1412, 13syl6bb 195 . . . . . 6 (𝐶 = ⟨𝑥, 𝑦⟩ → (𝐶 𝑥𝐴 ({𝑥} × 𝐵) ↔ (𝑥𝐴𝑦𝐵)))
1514pm5.32i 443 . . . . 5 ((𝐶 = ⟨𝑥, 𝑦⟩ ∧ 𝐶 𝑥𝐴 ({𝑥} × 𝐵)) ↔ (𝐶 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐴𝑦𝐵)))
1615exbii 1548 . . . 4 (∃𝑦(𝐶 = ⟨𝑥, 𝑦⟩ ∧ 𝐶 𝑥𝐴 ({𝑥} × 𝐵)) ↔ ∃𝑦(𝐶 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐴𝑦𝐵)))
1711, 16bitr3i 185 . . 3 ((∃𝑦 𝐶 = ⟨𝑥, 𝑦⟩ ∧ 𝐶 𝑥𝐴 ({𝑥} × 𝐵)) ↔ ∃𝑦(𝐶 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐴𝑦𝐵)))
1817exbii 1548 . 2 (∃𝑥(∃𝑦 𝐶 = ⟨𝑥, 𝑦⟩ ∧ 𝐶 𝑥𝐴 ({𝑥} × 𝐵)) ↔ ∃𝑥𝑦(𝐶 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐴𝑦𝐵)))
197, 10, 183bitr2i 207 1 (𝐶 𝑥𝐴 ({𝑥} × 𝐵) ↔ ∃𝑥𝑦(𝐶 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐴𝑦𝐵)))
Colors of variables: wff set class
Syntax hints:  wa 103  wb 104   = wceq 1296  wex 1433  wcel 1445  wral 2370  {csn 3466  cop 3469   ciun 3752   × cxp 4465  Rel wrel 4472
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 668  ax-5 1388  ax-7 1389  ax-gen 1390  ax-ie1 1434  ax-ie2 1435  ax-8 1447  ax-10 1448  ax-11 1449  ax-i12 1450  ax-bndl 1451  ax-4 1452  ax-14 1457  ax-17 1471  ax-i9 1475  ax-ial 1479  ax-i5r 1480  ax-ext 2077  ax-sep 3978  ax-pow 4030  ax-pr 4060
This theorem depends on definitions:  df-bi 116  df-3an 929  df-tru 1299  df-nf 1402  df-sb 1700  df-clab 2082  df-cleq 2088  df-clel 2091  df-nfc 2224  df-ral 2375  df-rex 2376  df-v 2635  df-sbc 2855  df-csb 2948  df-un 3017  df-in 3019  df-ss 3026  df-pw 3451  df-sn 3472  df-pr 3473  df-op 3475  df-iun 3754  df-opab 3922  df-xp 4473  df-rel 4474
This theorem is referenced by:  raliunxp  4608  rexiunxp  4609  dfmpt3  5170  mpt2mptx  5777  fisumcom2  10981
  Copyright terms: Public domain W3C validator