![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > dfoprab3s | GIF version |
Description: A way to define an operation class abstraction without using existential quantifiers. (Contributed by NM, 18-Aug-2006.) (Revised by Mario Carneiro, 31-Aug-2015.) |
Ref | Expression |
---|---|
dfoprab3s | ⊢ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} = {〈𝑤, 𝑧〉 ∣ (𝑤 ∈ (V × V) ∧ [(1st ‘𝑤) / 𝑥][(2nd ‘𝑤) / 𝑦]𝜑)} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfoprab2 5965 | . 2 ⊢ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} = {〈𝑤, 𝑧〉 ∣ ∃𝑥∃𝑦(𝑤 = 〈𝑥, 𝑦〉 ∧ 𝜑)} | |
2 | nfsbc1v 3004 | . . . . 5 ⊢ Ⅎ𝑥[(1st ‘𝑤) / 𝑥][(2nd ‘𝑤) / 𝑦]𝜑 | |
3 | 2 | 19.41 1697 | . . . 4 ⊢ (∃𝑥(∃𝑦 𝑤 = 〈𝑥, 𝑦〉 ∧ [(1st ‘𝑤) / 𝑥][(2nd ‘𝑤) / 𝑦]𝜑) ↔ (∃𝑥∃𝑦 𝑤 = 〈𝑥, 𝑦〉 ∧ [(1st ‘𝑤) / 𝑥][(2nd ‘𝑤) / 𝑦]𝜑)) |
4 | sbcopeq1a 6240 | . . . . . . . 8 ⊢ (𝑤 = 〈𝑥, 𝑦〉 → ([(1st ‘𝑤) / 𝑥][(2nd ‘𝑤) / 𝑦]𝜑 ↔ 𝜑)) | |
5 | 4 | pm5.32i 454 | . . . . . . 7 ⊢ ((𝑤 = 〈𝑥, 𝑦〉 ∧ [(1st ‘𝑤) / 𝑥][(2nd ‘𝑤) / 𝑦]𝜑) ↔ (𝑤 = 〈𝑥, 𝑦〉 ∧ 𝜑)) |
6 | 5 | exbii 1616 | . . . . . 6 ⊢ (∃𝑦(𝑤 = 〈𝑥, 𝑦〉 ∧ [(1st ‘𝑤) / 𝑥][(2nd ‘𝑤) / 𝑦]𝜑) ↔ ∃𝑦(𝑤 = 〈𝑥, 𝑦〉 ∧ 𝜑)) |
7 | nfcv 2336 | . . . . . . . 8 ⊢ Ⅎ𝑦(1st ‘𝑤) | |
8 | nfsbc1v 3004 | . . . . . . . 8 ⊢ Ⅎ𝑦[(2nd ‘𝑤) / 𝑦]𝜑 | |
9 | 7, 8 | nfsbc 3006 | . . . . . . 7 ⊢ Ⅎ𝑦[(1st ‘𝑤) / 𝑥][(2nd ‘𝑤) / 𝑦]𝜑 |
10 | 9 | 19.41 1697 | . . . . . 6 ⊢ (∃𝑦(𝑤 = 〈𝑥, 𝑦〉 ∧ [(1st ‘𝑤) / 𝑥][(2nd ‘𝑤) / 𝑦]𝜑) ↔ (∃𝑦 𝑤 = 〈𝑥, 𝑦〉 ∧ [(1st ‘𝑤) / 𝑥][(2nd ‘𝑤) / 𝑦]𝜑)) |
11 | 6, 10 | bitr3i 186 | . . . . 5 ⊢ (∃𝑦(𝑤 = 〈𝑥, 𝑦〉 ∧ 𝜑) ↔ (∃𝑦 𝑤 = 〈𝑥, 𝑦〉 ∧ [(1st ‘𝑤) / 𝑥][(2nd ‘𝑤) / 𝑦]𝜑)) |
12 | 11 | exbii 1616 | . . . 4 ⊢ (∃𝑥∃𝑦(𝑤 = 〈𝑥, 𝑦〉 ∧ 𝜑) ↔ ∃𝑥(∃𝑦 𝑤 = 〈𝑥, 𝑦〉 ∧ [(1st ‘𝑤) / 𝑥][(2nd ‘𝑤) / 𝑦]𝜑)) |
13 | elvv 4721 | . . . . 5 ⊢ (𝑤 ∈ (V × V) ↔ ∃𝑥∃𝑦 𝑤 = 〈𝑥, 𝑦〉) | |
14 | 13 | anbi1i 458 | . . . 4 ⊢ ((𝑤 ∈ (V × V) ∧ [(1st ‘𝑤) / 𝑥][(2nd ‘𝑤) / 𝑦]𝜑) ↔ (∃𝑥∃𝑦 𝑤 = 〈𝑥, 𝑦〉 ∧ [(1st ‘𝑤) / 𝑥][(2nd ‘𝑤) / 𝑦]𝜑)) |
15 | 3, 12, 14 | 3bitr4i 212 | . . 3 ⊢ (∃𝑥∃𝑦(𝑤 = 〈𝑥, 𝑦〉 ∧ 𝜑) ↔ (𝑤 ∈ (V × V) ∧ [(1st ‘𝑤) / 𝑥][(2nd ‘𝑤) / 𝑦]𝜑)) |
16 | 15 | opabbii 4096 | . 2 ⊢ {〈𝑤, 𝑧〉 ∣ ∃𝑥∃𝑦(𝑤 = 〈𝑥, 𝑦〉 ∧ 𝜑)} = {〈𝑤, 𝑧〉 ∣ (𝑤 ∈ (V × V) ∧ [(1st ‘𝑤) / 𝑥][(2nd ‘𝑤) / 𝑦]𝜑)} |
17 | 1, 16 | eqtri 2214 | 1 ⊢ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} = {〈𝑤, 𝑧〉 ∣ (𝑤 ∈ (V × V) ∧ [(1st ‘𝑤) / 𝑥][(2nd ‘𝑤) / 𝑦]𝜑)} |
Colors of variables: wff set class |
Syntax hints: ∧ wa 104 = wceq 1364 ∃wex 1503 ∈ wcel 2164 Vcvv 2760 [wsbc 2985 〈cop 3621 {copab 4089 × cxp 4657 ‘cfv 5254 {coprab 5919 1st c1st 6191 2nd c2nd 6192 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 ax-un 4464 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ral 2477 df-rex 2478 df-v 2762 df-sbc 2986 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-br 4030 df-opab 4091 df-mpt 4092 df-id 4324 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-iota 5215 df-fun 5256 df-fv 5262 df-oprab 5922 df-1st 6193 df-2nd 6194 |
This theorem is referenced by: dfoprab3 6244 |
Copyright terms: Public domain | W3C validator |