ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  dfoprab3s GIF version

Theorem dfoprab3s 6248
Description: A way to define an operation class abstraction without using existential quantifiers. (Contributed by NM, 18-Aug-2006.) (Revised by Mario Carneiro, 31-Aug-2015.)
Assertion
Ref Expression
dfoprab3s {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} = {⟨𝑤, 𝑧⟩ ∣ (𝑤 ∈ (V × V) ∧ [(1st𝑤) / 𝑥][(2nd𝑤) / 𝑦]𝜑)}
Distinct variable groups:   𝜑,𝑤   𝑥,𝑦,𝑧,𝑤
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)

Proof of Theorem dfoprab3s
StepHypRef Expression
1 dfoprab2 5969 . 2 {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} = {⟨𝑤, 𝑧⟩ ∣ ∃𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)}
2 nfsbc1v 3008 . . . . 5 𝑥[(1st𝑤) / 𝑥][(2nd𝑤) / 𝑦]𝜑
3219.41 1700 . . . 4 (∃𝑥(∃𝑦 𝑤 = ⟨𝑥, 𝑦⟩ ∧ [(1st𝑤) / 𝑥][(2nd𝑤) / 𝑦]𝜑) ↔ (∃𝑥𝑦 𝑤 = ⟨𝑥, 𝑦⟩ ∧ [(1st𝑤) / 𝑥][(2nd𝑤) / 𝑦]𝜑))
4 sbcopeq1a 6245 . . . . . . . 8 (𝑤 = ⟨𝑥, 𝑦⟩ → ([(1st𝑤) / 𝑥][(2nd𝑤) / 𝑦]𝜑𝜑))
54pm5.32i 454 . . . . . . 7 ((𝑤 = ⟨𝑥, 𝑦⟩ ∧ [(1st𝑤) / 𝑥][(2nd𝑤) / 𝑦]𝜑) ↔ (𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑))
65exbii 1619 . . . . . 6 (∃𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ [(1st𝑤) / 𝑥][(2nd𝑤) / 𝑦]𝜑) ↔ ∃𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑))
7 nfcv 2339 . . . . . . . 8 𝑦(1st𝑤)
8 nfsbc1v 3008 . . . . . . . 8 𝑦[(2nd𝑤) / 𝑦]𝜑
97, 8nfsbc 3010 . . . . . . 7 𝑦[(1st𝑤) / 𝑥][(2nd𝑤) / 𝑦]𝜑
10919.41 1700 . . . . . 6 (∃𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ [(1st𝑤) / 𝑥][(2nd𝑤) / 𝑦]𝜑) ↔ (∃𝑦 𝑤 = ⟨𝑥, 𝑦⟩ ∧ [(1st𝑤) / 𝑥][(2nd𝑤) / 𝑦]𝜑))
116, 10bitr3i 186 . . . . 5 (∃𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ (∃𝑦 𝑤 = ⟨𝑥, 𝑦⟩ ∧ [(1st𝑤) / 𝑥][(2nd𝑤) / 𝑦]𝜑))
1211exbii 1619 . . . 4 (∃𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ ∃𝑥(∃𝑦 𝑤 = ⟨𝑥, 𝑦⟩ ∧ [(1st𝑤) / 𝑥][(2nd𝑤) / 𝑦]𝜑))
13 elvv 4725 . . . . 5 (𝑤 ∈ (V × V) ↔ ∃𝑥𝑦 𝑤 = ⟨𝑥, 𝑦⟩)
1413anbi1i 458 . . . 4 ((𝑤 ∈ (V × V) ∧ [(1st𝑤) / 𝑥][(2nd𝑤) / 𝑦]𝜑) ↔ (∃𝑥𝑦 𝑤 = ⟨𝑥, 𝑦⟩ ∧ [(1st𝑤) / 𝑥][(2nd𝑤) / 𝑦]𝜑))
153, 12, 143bitr4i 212 . . 3 (∃𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑) ↔ (𝑤 ∈ (V × V) ∧ [(1st𝑤) / 𝑥][(2nd𝑤) / 𝑦]𝜑))
1615opabbii 4100 . 2 {⟨𝑤, 𝑧⟩ ∣ ∃𝑥𝑦(𝑤 = ⟨𝑥, 𝑦⟩ ∧ 𝜑)} = {⟨𝑤, 𝑧⟩ ∣ (𝑤 ∈ (V × V) ∧ [(1st𝑤) / 𝑥][(2nd𝑤) / 𝑦]𝜑)}
171, 16eqtri 2217 1 {⟨⟨𝑥, 𝑦⟩, 𝑧⟩ ∣ 𝜑} = {⟨𝑤, 𝑧⟩ ∣ (𝑤 ∈ (V × V) ∧ [(1st𝑤) / 𝑥][(2nd𝑤) / 𝑦]𝜑)}
Colors of variables: wff set class
Syntax hints:  wa 104   = wceq 1364  wex 1506  wcel 2167  Vcvv 2763  [wsbc 2989  cop 3625  {copab 4093   × cxp 4661  cfv 5258  {coprab 5923  1st c1st 6196  2nd c2nd 6197
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4151  ax-pow 4207  ax-pr 4242  ax-un 4468
This theorem depends on definitions:  df-bi 117  df-3an 982  df-tru 1367  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ral 2480  df-rex 2481  df-v 2765  df-sbc 2990  df-un 3161  df-in 3163  df-ss 3170  df-pw 3607  df-sn 3628  df-pr 3629  df-op 3631  df-uni 3840  df-br 4034  df-opab 4095  df-mpt 4096  df-id 4328  df-xp 4669  df-rel 4670  df-cnv 4671  df-co 4672  df-dm 4673  df-rn 4674  df-iota 5219  df-fun 5260  df-fv 5266  df-oprab 5926  df-1st 6198  df-2nd 6199
This theorem is referenced by:  dfoprab3  6249
  Copyright terms: Public domain W3C validator