| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > dfoprab3s | GIF version | ||
| Description: A way to define an operation class abstraction without using existential quantifiers. (Contributed by NM, 18-Aug-2006.) (Revised by Mario Carneiro, 31-Aug-2015.) | 
| Ref | Expression | 
|---|---|
| dfoprab3s | ⊢ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} = {〈𝑤, 𝑧〉 ∣ (𝑤 ∈ (V × V) ∧ [(1st ‘𝑤) / 𝑥][(2nd ‘𝑤) / 𝑦]𝜑)} | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | dfoprab2 5969 | . 2 ⊢ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} = {〈𝑤, 𝑧〉 ∣ ∃𝑥∃𝑦(𝑤 = 〈𝑥, 𝑦〉 ∧ 𝜑)} | |
| 2 | nfsbc1v 3008 | . . . . 5 ⊢ Ⅎ𝑥[(1st ‘𝑤) / 𝑥][(2nd ‘𝑤) / 𝑦]𝜑 | |
| 3 | 2 | 19.41 1700 | . . . 4 ⊢ (∃𝑥(∃𝑦 𝑤 = 〈𝑥, 𝑦〉 ∧ [(1st ‘𝑤) / 𝑥][(2nd ‘𝑤) / 𝑦]𝜑) ↔ (∃𝑥∃𝑦 𝑤 = 〈𝑥, 𝑦〉 ∧ [(1st ‘𝑤) / 𝑥][(2nd ‘𝑤) / 𝑦]𝜑)) | 
| 4 | sbcopeq1a 6245 | . . . . . . . 8 ⊢ (𝑤 = 〈𝑥, 𝑦〉 → ([(1st ‘𝑤) / 𝑥][(2nd ‘𝑤) / 𝑦]𝜑 ↔ 𝜑)) | |
| 5 | 4 | pm5.32i 454 | . . . . . . 7 ⊢ ((𝑤 = 〈𝑥, 𝑦〉 ∧ [(1st ‘𝑤) / 𝑥][(2nd ‘𝑤) / 𝑦]𝜑) ↔ (𝑤 = 〈𝑥, 𝑦〉 ∧ 𝜑)) | 
| 6 | 5 | exbii 1619 | . . . . . 6 ⊢ (∃𝑦(𝑤 = 〈𝑥, 𝑦〉 ∧ [(1st ‘𝑤) / 𝑥][(2nd ‘𝑤) / 𝑦]𝜑) ↔ ∃𝑦(𝑤 = 〈𝑥, 𝑦〉 ∧ 𝜑)) | 
| 7 | nfcv 2339 | . . . . . . . 8 ⊢ Ⅎ𝑦(1st ‘𝑤) | |
| 8 | nfsbc1v 3008 | . . . . . . . 8 ⊢ Ⅎ𝑦[(2nd ‘𝑤) / 𝑦]𝜑 | |
| 9 | 7, 8 | nfsbc 3010 | . . . . . . 7 ⊢ Ⅎ𝑦[(1st ‘𝑤) / 𝑥][(2nd ‘𝑤) / 𝑦]𝜑 | 
| 10 | 9 | 19.41 1700 | . . . . . 6 ⊢ (∃𝑦(𝑤 = 〈𝑥, 𝑦〉 ∧ [(1st ‘𝑤) / 𝑥][(2nd ‘𝑤) / 𝑦]𝜑) ↔ (∃𝑦 𝑤 = 〈𝑥, 𝑦〉 ∧ [(1st ‘𝑤) / 𝑥][(2nd ‘𝑤) / 𝑦]𝜑)) | 
| 11 | 6, 10 | bitr3i 186 | . . . . 5 ⊢ (∃𝑦(𝑤 = 〈𝑥, 𝑦〉 ∧ 𝜑) ↔ (∃𝑦 𝑤 = 〈𝑥, 𝑦〉 ∧ [(1st ‘𝑤) / 𝑥][(2nd ‘𝑤) / 𝑦]𝜑)) | 
| 12 | 11 | exbii 1619 | . . . 4 ⊢ (∃𝑥∃𝑦(𝑤 = 〈𝑥, 𝑦〉 ∧ 𝜑) ↔ ∃𝑥(∃𝑦 𝑤 = 〈𝑥, 𝑦〉 ∧ [(1st ‘𝑤) / 𝑥][(2nd ‘𝑤) / 𝑦]𝜑)) | 
| 13 | elvv 4725 | . . . . 5 ⊢ (𝑤 ∈ (V × V) ↔ ∃𝑥∃𝑦 𝑤 = 〈𝑥, 𝑦〉) | |
| 14 | 13 | anbi1i 458 | . . . 4 ⊢ ((𝑤 ∈ (V × V) ∧ [(1st ‘𝑤) / 𝑥][(2nd ‘𝑤) / 𝑦]𝜑) ↔ (∃𝑥∃𝑦 𝑤 = 〈𝑥, 𝑦〉 ∧ [(1st ‘𝑤) / 𝑥][(2nd ‘𝑤) / 𝑦]𝜑)) | 
| 15 | 3, 12, 14 | 3bitr4i 212 | . . 3 ⊢ (∃𝑥∃𝑦(𝑤 = 〈𝑥, 𝑦〉 ∧ 𝜑) ↔ (𝑤 ∈ (V × V) ∧ [(1st ‘𝑤) / 𝑥][(2nd ‘𝑤) / 𝑦]𝜑)) | 
| 16 | 15 | opabbii 4100 | . 2 ⊢ {〈𝑤, 𝑧〉 ∣ ∃𝑥∃𝑦(𝑤 = 〈𝑥, 𝑦〉 ∧ 𝜑)} = {〈𝑤, 𝑧〉 ∣ (𝑤 ∈ (V × V) ∧ [(1st ‘𝑤) / 𝑥][(2nd ‘𝑤) / 𝑦]𝜑)} | 
| 17 | 1, 16 | eqtri 2217 | 1 ⊢ {〈〈𝑥, 𝑦〉, 𝑧〉 ∣ 𝜑} = {〈𝑤, 𝑧〉 ∣ (𝑤 ∈ (V × V) ∧ [(1st ‘𝑤) / 𝑥][(2nd ‘𝑤) / 𝑦]𝜑)} | 
| Colors of variables: wff set class | 
| Syntax hints: ∧ wa 104 = wceq 1364 ∃wex 1506 ∈ wcel 2167 Vcvv 2763 [wsbc 2989 〈cop 3625 {copab 4093 × cxp 4661 ‘cfv 5258 {coprab 5923 1st c1st 6196 2nd c2nd 6197 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 | 
| This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-rex 2481 df-v 2765 df-sbc 2990 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-iota 5219 df-fun 5260 df-fv 5266 df-oprab 5926 df-1st 6198 df-2nd 6199 | 
| This theorem is referenced by: dfoprab3 6249 | 
| Copyright terms: Public domain | W3C validator |