ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2moswapdc GIF version

Theorem 2moswapdc 2144
Description: A condition allowing swap of "at most one" and existential quantifiers. (Contributed by Jim Kingdon, 6-Jul-2018.)
Assertion
Ref Expression
2moswapdc (DECID𝑥𝑦𝜑 → (∀𝑥∃*𝑦𝜑 → (∃*𝑥𝑦𝜑 → ∃*𝑦𝑥𝜑)))

Proof of Theorem 2moswapdc
StepHypRef Expression
1 nfe1 1519 . . . 4 𝑦𝑦𝜑
21moexexdc 2138 . . 3 (DECID𝑥𝑦𝜑 → ((∃*𝑥𝑦𝜑 ∧ ∀𝑥∃*𝑦𝜑) → ∃*𝑦𝑥(∃𝑦𝜑𝜑)))
32expcomd 1461 . 2 (DECID𝑥𝑦𝜑 → (∀𝑥∃*𝑦𝜑 → (∃*𝑥𝑦𝜑 → ∃*𝑦𝑥(∃𝑦𝜑𝜑))))
4 19.8a 1613 . . . . . 6 (𝜑 → ∃𝑦𝜑)
54pm4.71ri 392 . . . . 5 (𝜑 ↔ (∃𝑦𝜑𝜑))
65exbii 1628 . . . 4 (∃𝑥𝜑 ↔ ∃𝑥(∃𝑦𝜑𝜑))
76mobii 2091 . . 3 (∃*𝑦𝑥𝜑 ↔ ∃*𝑦𝑥(∃𝑦𝜑𝜑))
87imbi2i 226 . 2 ((∃*𝑥𝑦𝜑 → ∃*𝑦𝑥𝜑) ↔ (∃*𝑥𝑦𝜑 → ∃*𝑦𝑥(∃𝑦𝜑𝜑)))
93, 8imbitrrdi 162 1 (DECID𝑥𝑦𝜑 → (∀𝑥∃*𝑦𝜑 → (∃*𝑥𝑦𝜑 → ∃*𝑦𝑥𝜑)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 104  DECID wdc 836  wal 1371  wex 1515  ∃*wmo 2055
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558
This theorem depends on definitions:  df-bi 117  df-dc 837  df-tru 1376  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058
This theorem is referenced by:  2euswapdc  2145
  Copyright terms: Public domain W3C validator