![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 2moswapdc | GIF version |
Description: A condition allowing swap of "at most one" and existential quantifiers. (Contributed by Jim Kingdon, 6-Jul-2018.) |
Ref | Expression |
---|---|
2moswapdc | ⊢ (DECID ∃𝑥∃𝑦𝜑 → (∀𝑥∃*𝑦𝜑 → (∃*𝑥∃𝑦𝜑 → ∃*𝑦∃𝑥𝜑))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfe1 1430 | . . . 4 ⊢ Ⅎ𝑦∃𝑦𝜑 | |
2 | 1 | moexexdc 2032 | . . 3 ⊢ (DECID ∃𝑥∃𝑦𝜑 → ((∃*𝑥∃𝑦𝜑 ∧ ∀𝑥∃*𝑦𝜑) → ∃*𝑦∃𝑥(∃𝑦𝜑 ∧ 𝜑))) |
3 | 2 | expcomd 1375 | . 2 ⊢ (DECID ∃𝑥∃𝑦𝜑 → (∀𝑥∃*𝑦𝜑 → (∃*𝑥∃𝑦𝜑 → ∃*𝑦∃𝑥(∃𝑦𝜑 ∧ 𝜑)))) |
4 | 19.8a 1527 | . . . . . 6 ⊢ (𝜑 → ∃𝑦𝜑) | |
5 | 4 | pm4.71ri 384 | . . . . 5 ⊢ (𝜑 ↔ (∃𝑦𝜑 ∧ 𝜑)) |
6 | 5 | exbii 1541 | . . . 4 ⊢ (∃𝑥𝜑 ↔ ∃𝑥(∃𝑦𝜑 ∧ 𝜑)) |
7 | 6 | mobii 1985 | . . 3 ⊢ (∃*𝑦∃𝑥𝜑 ↔ ∃*𝑦∃𝑥(∃𝑦𝜑 ∧ 𝜑)) |
8 | 7 | imbi2i 224 | . 2 ⊢ ((∃*𝑥∃𝑦𝜑 → ∃*𝑦∃𝑥𝜑) ↔ (∃*𝑥∃𝑦𝜑 → ∃*𝑦∃𝑥(∃𝑦𝜑 ∧ 𝜑))) |
9 | 3, 8 | syl6ibr 160 | 1 ⊢ (DECID ∃𝑥∃𝑦𝜑 → (∀𝑥∃*𝑦𝜑 → (∃*𝑥∃𝑦𝜑 → ∃*𝑦∃𝑥𝜑))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 102 DECID wdc 780 ∀wal 1287 ∃wex 1426 ∃*wmo 1949 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-in1 579 ax-in2 580 ax-io 665 ax-5 1381 ax-7 1382 ax-gen 1383 ax-ie1 1427 ax-ie2 1428 ax-8 1440 ax-10 1441 ax-11 1442 ax-i12 1443 ax-bndl 1444 ax-4 1445 ax-17 1464 ax-i9 1468 ax-ial 1472 ax-i5r 1473 |
This theorem depends on definitions: df-bi 115 df-dc 781 df-tru 1292 df-nf 1395 df-sb 1693 df-eu 1951 df-mo 1952 |
This theorem is referenced by: 2euswapdc 2039 |
Copyright terms: Public domain | W3C validator |