ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2moswapdc GIF version

Theorem 2moswapdc 2109
Description: A condition allowing swap of "at most one" and existential quantifiers. (Contributed by Jim Kingdon, 6-Jul-2018.)
Assertion
Ref Expression
2moswapdc (DECID𝑥𝑦𝜑 → (∀𝑥∃*𝑦𝜑 → (∃*𝑥𝑦𝜑 → ∃*𝑦𝑥𝜑)))

Proof of Theorem 2moswapdc
StepHypRef Expression
1 nfe1 1489 . . . 4 𝑦𝑦𝜑
21moexexdc 2103 . . 3 (DECID𝑥𝑦𝜑 → ((∃*𝑥𝑦𝜑 ∧ ∀𝑥∃*𝑦𝜑) → ∃*𝑦𝑥(∃𝑦𝜑𝜑)))
32expcomd 1434 . 2 (DECID𝑥𝑦𝜑 → (∀𝑥∃*𝑦𝜑 → (∃*𝑥𝑦𝜑 → ∃*𝑦𝑥(∃𝑦𝜑𝜑))))
4 19.8a 1583 . . . . . 6 (𝜑 → ∃𝑦𝜑)
54pm4.71ri 390 . . . . 5 (𝜑 ↔ (∃𝑦𝜑𝜑))
65exbii 1598 . . . 4 (∃𝑥𝜑 ↔ ∃𝑥(∃𝑦𝜑𝜑))
76mobii 2056 . . 3 (∃*𝑦𝑥𝜑 ↔ ∃*𝑦𝑥(∃𝑦𝜑𝜑))
87imbi2i 225 . 2 ((∃*𝑥𝑦𝜑 → ∃*𝑦𝑥𝜑) ↔ (∃*𝑥𝑦𝜑 → ∃*𝑦𝑥(∃𝑦𝜑𝜑)))
93, 8syl6ibr 161 1 (DECID𝑥𝑦𝜑 → (∀𝑥∃*𝑦𝜑 → (∃*𝑥𝑦𝜑 → ∃*𝑦𝑥𝜑)))
Colors of variables: wff set class
Syntax hints:  wi 4  wa 103  DECID wdc 829  wal 1346  wex 1485  ∃*wmo 2020
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 609  ax-in2 610  ax-io 704  ax-5 1440  ax-7 1441  ax-gen 1442  ax-ie1 1486  ax-ie2 1487  ax-8 1497  ax-10 1498  ax-11 1499  ax-i12 1500  ax-bndl 1502  ax-4 1503  ax-17 1519  ax-i9 1523  ax-ial 1527  ax-i5r 1528
This theorem depends on definitions:  df-bi 116  df-dc 830  df-tru 1351  df-nf 1454  df-sb 1756  df-eu 2022  df-mo 2023
This theorem is referenced by:  2euswapdc  2110
  Copyright terms: Public domain W3C validator