| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 2moswapdc | GIF version | ||
| Description: A condition allowing swap of "at most one" and existential quantifiers. (Contributed by Jim Kingdon, 6-Jul-2018.) |
| Ref | Expression |
|---|---|
| 2moswapdc | ⊢ (DECID ∃𝑥∃𝑦𝜑 → (∀𝑥∃*𝑦𝜑 → (∃*𝑥∃𝑦𝜑 → ∃*𝑦∃𝑥𝜑))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfe1 1510 | . . . 4 ⊢ Ⅎ𝑦∃𝑦𝜑 | |
| 2 | 1 | moexexdc 2129 | . . 3 ⊢ (DECID ∃𝑥∃𝑦𝜑 → ((∃*𝑥∃𝑦𝜑 ∧ ∀𝑥∃*𝑦𝜑) → ∃*𝑦∃𝑥(∃𝑦𝜑 ∧ 𝜑))) |
| 3 | 2 | expcomd 1452 | . 2 ⊢ (DECID ∃𝑥∃𝑦𝜑 → (∀𝑥∃*𝑦𝜑 → (∃*𝑥∃𝑦𝜑 → ∃*𝑦∃𝑥(∃𝑦𝜑 ∧ 𝜑)))) |
| 4 | 19.8a 1604 | . . . . . 6 ⊢ (𝜑 → ∃𝑦𝜑) | |
| 5 | 4 | pm4.71ri 392 | . . . . 5 ⊢ (𝜑 ↔ (∃𝑦𝜑 ∧ 𝜑)) |
| 6 | 5 | exbii 1619 | . . . 4 ⊢ (∃𝑥𝜑 ↔ ∃𝑥(∃𝑦𝜑 ∧ 𝜑)) |
| 7 | 6 | mobii 2082 | . . 3 ⊢ (∃*𝑦∃𝑥𝜑 ↔ ∃*𝑦∃𝑥(∃𝑦𝜑 ∧ 𝜑)) |
| 8 | 7 | imbi2i 226 | . 2 ⊢ ((∃*𝑥∃𝑦𝜑 → ∃*𝑦∃𝑥𝜑) ↔ (∃*𝑥∃𝑦𝜑 → ∃*𝑦∃𝑥(∃𝑦𝜑 ∧ 𝜑))) |
| 9 | 3, 8 | imbitrrdi 162 | 1 ⊢ (DECID ∃𝑥∃𝑦𝜑 → (∀𝑥∃*𝑦𝜑 → (∃*𝑥∃𝑦𝜑 → ∃*𝑦∃𝑥𝜑))) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ∧ wa 104 DECID wdc 835 ∀wal 1362 ∃wex 1506 ∃*wmo 2046 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 |
| This theorem depends on definitions: df-bi 117 df-dc 836 df-tru 1367 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 |
| This theorem is referenced by: 2euswapdc 2136 |
| Copyright terms: Public domain | W3C validator |