Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 2moswapdc | GIF version |
Description: A condition allowing swap of "at most one" and existential quantifiers. (Contributed by Jim Kingdon, 6-Jul-2018.) |
Ref | Expression |
---|---|
2moswapdc | ⊢ (DECID ∃𝑥∃𝑦𝜑 → (∀𝑥∃*𝑦𝜑 → (∃*𝑥∃𝑦𝜑 → ∃*𝑦∃𝑥𝜑))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfe1 1476 | . . . 4 ⊢ Ⅎ𝑦∃𝑦𝜑 | |
2 | 1 | moexexdc 2090 | . . 3 ⊢ (DECID ∃𝑥∃𝑦𝜑 → ((∃*𝑥∃𝑦𝜑 ∧ ∀𝑥∃*𝑦𝜑) → ∃*𝑦∃𝑥(∃𝑦𝜑 ∧ 𝜑))) |
3 | 2 | expcomd 1421 | . 2 ⊢ (DECID ∃𝑥∃𝑦𝜑 → (∀𝑥∃*𝑦𝜑 → (∃*𝑥∃𝑦𝜑 → ∃*𝑦∃𝑥(∃𝑦𝜑 ∧ 𝜑)))) |
4 | 19.8a 1570 | . . . . . 6 ⊢ (𝜑 → ∃𝑦𝜑) | |
5 | 4 | pm4.71ri 390 | . . . . 5 ⊢ (𝜑 ↔ (∃𝑦𝜑 ∧ 𝜑)) |
6 | 5 | exbii 1585 | . . . 4 ⊢ (∃𝑥𝜑 ↔ ∃𝑥(∃𝑦𝜑 ∧ 𝜑)) |
7 | 6 | mobii 2043 | . . 3 ⊢ (∃*𝑦∃𝑥𝜑 ↔ ∃*𝑦∃𝑥(∃𝑦𝜑 ∧ 𝜑)) |
8 | 7 | imbi2i 225 | . 2 ⊢ ((∃*𝑥∃𝑦𝜑 → ∃*𝑦∃𝑥𝜑) ↔ (∃*𝑥∃𝑦𝜑 → ∃*𝑦∃𝑥(∃𝑦𝜑 ∧ 𝜑))) |
9 | 3, 8 | syl6ibr 161 | 1 ⊢ (DECID ∃𝑥∃𝑦𝜑 → (∀𝑥∃*𝑦𝜑 → (∃*𝑥∃𝑦𝜑 → ∃*𝑦∃𝑥𝜑))) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ∧ wa 103 DECID wdc 820 ∀wal 1333 ∃wex 1472 ∃*wmo 2007 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 604 ax-in2 605 ax-io 699 ax-5 1427 ax-7 1428 ax-gen 1429 ax-ie1 1473 ax-ie2 1474 ax-8 1484 ax-10 1485 ax-11 1486 ax-i12 1487 ax-bndl 1489 ax-4 1490 ax-17 1506 ax-i9 1510 ax-ial 1514 ax-i5r 1515 |
This theorem depends on definitions: df-bi 116 df-dc 821 df-tru 1338 df-nf 1441 df-sb 1743 df-eu 2009 df-mo 2010 |
This theorem is referenced by: 2euswapdc 2097 |
Copyright terms: Public domain | W3C validator |