| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 2p1e3 | GIF version | ||
| Description: 2 + 1 = 3. (Contributed by Mario Carneiro, 18-Apr-2015.) |
| Ref | Expression |
|---|---|
| 2p1e3 | ⊢ (2 + 1) = 3 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-3 9095 | . 2 ⊢ 3 = (2 + 1) | |
| 2 | 1 | eqcomi 2208 | 1 ⊢ (2 + 1) = 3 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1372 (class class class)co 5943 1c1 7925 + caddc 7927 2c2 9086 3c3 9087 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1469 ax-gen 1471 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-cleq 2197 df-3 9095 |
| This theorem is referenced by: 1p2e3 9170 cnm2m1cnm3 9288 6t5e30 9609 7t5e35 9614 8t4e32 9619 9t4e36 9626 decbin3 9644 halfthird 9645 fz0to3un2pr 10244 m1modge3gt1 10514 fac3 10875 hash3 10956 nn0o1gt2 12158 flodddiv4 12189 3exp3 12703 2lgsoddprmlem3c 15528 |
| Copyright terms: Public domain | W3C validator |