Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 2p1e3 | GIF version |
Description: 2 + 1 = 3. (Contributed by Mario Carneiro, 18-Apr-2015.) |
Ref | Expression |
---|---|
2p1e3 | ⊢ (2 + 1) = 3 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-3 8888 | . 2 ⊢ 3 = (2 + 1) | |
2 | 1 | eqcomi 2161 | 1 ⊢ (2 + 1) = 3 |
Colors of variables: wff set class |
Syntax hints: = wceq 1335 (class class class)co 5821 1c1 7728 + caddc 7730 2c2 8879 3c3 8880 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1427 ax-gen 1429 ax-ext 2139 |
This theorem depends on definitions: df-bi 116 df-cleq 2150 df-3 8888 |
This theorem is referenced by: 1p2e3 8962 cnm2m1cnm3 9079 6t5e30 9396 7t5e35 9401 8t4e32 9406 9t4e36 9413 decbin3 9431 halfthird 9432 m1modge3gt1 10265 fac3 10601 hash3 10682 nn0o1gt2 11790 flodddiv4 11819 |
Copyright terms: Public domain | W3C validator |