![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 2p1e3 | GIF version |
Description: 2 + 1 = 3. (Contributed by Mario Carneiro, 18-Apr-2015.) |
Ref | Expression |
---|---|
2p1e3 | ⊢ (2 + 1) = 3 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-3 9042 | . 2 ⊢ 3 = (2 + 1) | |
2 | 1 | eqcomi 2197 | 1 ⊢ (2 + 1) = 3 |
Colors of variables: wff set class |
Syntax hints: = wceq 1364 (class class class)co 5918 1c1 7873 + caddc 7875 2c2 9033 3c3 9034 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-gen 1460 ax-ext 2175 |
This theorem depends on definitions: df-bi 117 df-cleq 2186 df-3 9042 |
This theorem is referenced by: 1p2e3 9116 cnm2m1cnm3 9234 6t5e30 9554 7t5e35 9559 8t4e32 9564 9t4e36 9571 decbin3 9589 halfthird 9590 fz0to3un2pr 10189 m1modge3gt1 10442 fac3 10803 hash3 10884 nn0o1gt2 12046 flodddiv4 12075 2lgsoddprmlem3c 15197 |
Copyright terms: Public domain | W3C validator |