| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 2p1e3 | GIF version | ||
| Description: 2 + 1 = 3. (Contributed by Mario Carneiro, 18-Apr-2015.) |
| Ref | Expression |
|---|---|
| 2p1e3 | ⊢ (2 + 1) = 3 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-3 9078 | . 2 ⊢ 3 = (2 + 1) | |
| 2 | 1 | eqcomi 2208 | 1 ⊢ (2 + 1) = 3 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1372 (class class class)co 5934 1c1 7908 + caddc 7910 2c2 9069 3c3 9070 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1469 ax-gen 1471 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-cleq 2197 df-3 9078 |
| This theorem is referenced by: 1p2e3 9153 cnm2m1cnm3 9271 6t5e30 9592 7t5e35 9597 8t4e32 9602 9t4e36 9609 decbin3 9627 halfthird 9628 fz0to3un2pr 10227 m1modge3gt1 10497 fac3 10858 hash3 10939 nn0o1gt2 12135 flodddiv4 12166 3exp3 12680 2lgsoddprmlem3c 15504 |
| Copyright terms: Public domain | W3C validator |