ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2p1e3 GIF version

Theorem 2p1e3 9169
Description: 2 + 1 = 3. (Contributed by Mario Carneiro, 18-Apr-2015.)
Assertion
Ref Expression
2p1e3 (2 + 1) = 3

Proof of Theorem 2p1e3
StepHypRef Expression
1 df-3 9095 . 2 3 = (2 + 1)
21eqcomi 2208 1 (2 + 1) = 3
Colors of variables: wff set class
Syntax hints:   = wceq 1372  (class class class)co 5943  1c1 7925   + caddc 7927  2c2 9086  3c3 9087
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-5 1469  ax-gen 1471  ax-ext 2186
This theorem depends on definitions:  df-bi 117  df-cleq 2197  df-3 9095
This theorem is referenced by:  1p2e3  9170  cnm2m1cnm3  9288  6t5e30  9609  7t5e35  9614  8t4e32  9619  9t4e36  9626  decbin3  9644  halfthird  9645  fz0to3un2pr  10244  m1modge3gt1  10514  fac3  10875  hash3  10956  nn0o1gt2  12158  flodddiv4  12189  3exp3  12703  2lgsoddprmlem3c  15528
  Copyright terms: Public domain W3C validator