| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 2p1e3 | GIF version | ||
| Description: 2 + 1 = 3. (Contributed by Mario Carneiro, 18-Apr-2015.) |
| Ref | Expression |
|---|---|
| 2p1e3 | ⊢ (2 + 1) = 3 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-3 9166 | . 2 ⊢ 3 = (2 + 1) | |
| 2 | 1 | eqcomi 2233 | 1 ⊢ (2 + 1) = 3 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1395 (class class class)co 6000 1c1 7996 + caddc 7998 2c2 9157 3c3 9158 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1493 ax-gen 1495 ax-ext 2211 |
| This theorem depends on definitions: df-bi 117 df-cleq 2222 df-3 9166 |
| This theorem is referenced by: 1p2e3 9241 cnm2m1cnm3 9359 6t5e30 9680 7t5e35 9685 8t4e32 9690 9t4e36 9697 decbin3 9715 halfthird 9716 fz0to3un2pr 10315 m1modge3gt1 10588 fac3 10949 hash3 11030 nn0o1gt2 12411 flodddiv4 12442 3exp3 12956 2lgsoddprmlem3c 15782 |
| Copyright terms: Public domain | W3C validator |