ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  2p1e3 GIF version

Theorem 2p1e3 8986
Description: 2 + 1 = 3. (Contributed by Mario Carneiro, 18-Apr-2015.)
Assertion
Ref Expression
2p1e3 (2 + 1) = 3

Proof of Theorem 2p1e3
StepHypRef Expression
1 df-3 8913 . 2 3 = (2 + 1)
21eqcomi 2169 1 (2 + 1) = 3
Colors of variables: wff set class
Syntax hints:   = wceq 1343  (class class class)co 5841  1c1 7750   + caddc 7752  2c2 8904  3c3 8905
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-5 1435  ax-gen 1437  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-cleq 2158  df-3 8913
This theorem is referenced by:  1p2e3  8987  cnm2m1cnm3  9104  6t5e30  9424  7t5e35  9429  8t4e32  9434  9t4e36  9441  decbin3  9459  halfthird  9460  fz0to3un2pr  10054  m1modge3gt1  10302  fac3  10641  hash3  10722  nn0o1gt2  11838  flodddiv4  11867
  Copyright terms: Public domain W3C validator