![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 2p1e3 | GIF version |
Description: 2 + 1 = 3. (Contributed by Mario Carneiro, 18-Apr-2015.) |
Ref | Expression |
---|---|
2p1e3 | ⊢ (2 + 1) = 3 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-3 9009 | . 2 ⊢ 3 = (2 + 1) | |
2 | 1 | eqcomi 2193 | 1 ⊢ (2 + 1) = 3 |
Colors of variables: wff set class |
Syntax hints: = wceq 1364 (class class class)co 5896 1c1 7842 + caddc 7844 2c2 9000 3c3 9001 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1458 ax-gen 1460 ax-ext 2171 |
This theorem depends on definitions: df-bi 117 df-cleq 2182 df-3 9009 |
This theorem is referenced by: 1p2e3 9083 cnm2m1cnm3 9200 6t5e30 9520 7t5e35 9525 8t4e32 9530 9t4e36 9537 decbin3 9555 halfthird 9556 fz0to3un2pr 10153 m1modge3gt1 10402 fac3 10744 hash3 10825 nn0o1gt2 11942 flodddiv4 11971 2lgsoddprmlem3c 14915 |
Copyright terms: Public domain | W3C validator |