![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 2p1e3 | GIF version |
Description: 2 + 1 = 3. (Contributed by Mario Carneiro, 18-Apr-2015.) |
Ref | Expression |
---|---|
2p1e3 | ⊢ (2 + 1) = 3 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-3 8482 | . 2 ⊢ 3 = (2 + 1) | |
2 | 1 | eqcomi 2092 | 1 ⊢ (2 + 1) = 3 |
Colors of variables: wff set class |
Syntax hints: = wceq 1289 (class class class)co 5652 1c1 7351 + caddc 7353 2c2 8473 3c3 8474 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-5 1381 ax-gen 1383 ax-ext 2070 |
This theorem depends on definitions: df-bi 115 df-cleq 2081 df-3 8482 |
This theorem is referenced by: 1p2e3 8550 cnm2m1cnm3 8667 6t5e30 8983 7t5e35 8988 8t4e32 8993 9t4e36 9000 decbin3 9018 m1modge3gt1 9778 fac3 10140 hash3 10221 nn0o1gt2 11183 flodddiv4 11212 |
Copyright terms: Public domain | W3C validator |