Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > ILE Home > Th. List > 2p1e3 | GIF version |
Description: 2 + 1 = 3. (Contributed by Mario Carneiro, 18-Apr-2015.) |
Ref | Expression |
---|---|
2p1e3 | ⊢ (2 + 1) = 3 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-3 8938 | . 2 ⊢ 3 = (2 + 1) | |
2 | 1 | eqcomi 2174 | 1 ⊢ (2 + 1) = 3 |
Colors of variables: wff set class |
Syntax hints: = wceq 1348 (class class class)co 5853 1c1 7775 + caddc 7777 2c2 8929 3c3 8930 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-5 1440 ax-gen 1442 ax-ext 2152 |
This theorem depends on definitions: df-bi 116 df-cleq 2163 df-3 8938 |
This theorem is referenced by: 1p2e3 9012 cnm2m1cnm3 9129 6t5e30 9449 7t5e35 9454 8t4e32 9459 9t4e36 9466 decbin3 9484 halfthird 9485 fz0to3un2pr 10079 m1modge3gt1 10327 fac3 10666 hash3 10748 nn0o1gt2 11864 flodddiv4 11893 |
Copyright terms: Public domain | W3C validator |