| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 2p1e3 | GIF version | ||
| Description: 2 + 1 = 3. (Contributed by Mario Carneiro, 18-Apr-2015.) |
| Ref | Expression |
|---|---|
| 2p1e3 | ⊢ (2 + 1) = 3 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-3 9116 | . 2 ⊢ 3 = (2 + 1) | |
| 2 | 1 | eqcomi 2210 | 1 ⊢ (2 + 1) = 3 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1373 (class class class)co 5957 1c1 7946 + caddc 7948 2c2 9107 3c3 9108 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1471 ax-gen 1473 ax-ext 2188 |
| This theorem depends on definitions: df-bi 117 df-cleq 2199 df-3 9116 |
| This theorem is referenced by: 1p2e3 9191 cnm2m1cnm3 9309 6t5e30 9630 7t5e35 9635 8t4e32 9640 9t4e36 9647 decbin3 9665 halfthird 9666 fz0to3un2pr 10265 m1modge3gt1 10538 fac3 10899 hash3 10980 nn0o1gt2 12291 flodddiv4 12322 3exp3 12836 2lgsoddprmlem3c 15661 |
| Copyright terms: Public domain | W3C validator |