| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 2p1e3 | GIF version | ||
| Description: 2 + 1 = 3. (Contributed by Mario Carneiro, 18-Apr-2015.) |
| Ref | Expression |
|---|---|
| 2p1e3 | ⊢ (2 + 1) = 3 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-3 9069 | . 2 ⊢ 3 = (2 + 1) | |
| 2 | 1 | eqcomi 2200 | 1 ⊢ (2 + 1) = 3 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1364 (class class class)co 5925 1c1 7899 + caddc 7901 2c2 9060 3c3 9061 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-5 1461 ax-gen 1463 ax-ext 2178 |
| This theorem depends on definitions: df-bi 117 df-cleq 2189 df-3 9069 |
| This theorem is referenced by: 1p2e3 9144 cnm2m1cnm3 9262 6t5e30 9582 7t5e35 9587 8t4e32 9592 9t4e36 9599 decbin3 9617 halfthird 9618 fz0to3un2pr 10217 m1modge3gt1 10482 fac3 10843 hash3 10924 nn0o1gt2 12089 flodddiv4 12120 3exp3 12634 2lgsoddprmlem3c 15458 |
| Copyright terms: Public domain | W3C validator |