ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  7t5e35 GIF version

Theorem 7t5e35 9615
Description: 7 times 5 equals 35. (Contributed by Mario Carneiro, 19-Apr-2015.)
Assertion
Ref Expression
7t5e35 (7 · 5) = 35

Proof of Theorem 7t5e35
StepHypRef Expression
1 7nn0 9317 . 2 7 ∈ ℕ0
2 4nn0 9314 . 2 4 ∈ ℕ0
3 df-5 9098 . 2 5 = (4 + 1)
4 7t4e28 9614 . 2 (7 · 4) = 28
5 2nn0 9312 . . 3 2 ∈ ℕ0
6 8nn0 9318 . . 3 8 ∈ ℕ0
7 eqid 2205 . . 3 28 = 28
8 2p1e3 9170 . . 3 (2 + 1) = 3
9 5nn0 9315 . . 3 5 ∈ ℕ0
10 8p7e15 9588 . . 3 (8 + 7) = 15
115, 6, 1, 7, 8, 9, 10decaddci 9564 . 2 (28 + 7) = 35
121, 2, 3, 4, 114t3lem 9600 1 (7 · 5) = 35
Colors of variables: wff set class
Syntax hints:   = wceq 1373  (class class class)co 5944   · cmul 7930  2c2 9087  3c3 9088  4c4 9089  5c5 9090  7c7 9092  8c8 9093  cdc 9504
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-setind 4585  ax-cnex 8016  ax-resscn 8017  ax-1cn 8018  ax-1re 8019  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-addcom 8025  ax-mulcom 8026  ax-addass 8027  ax-mulass 8028  ax-distr 8029  ax-i2m1 8030  ax-1rid 8032  ax-0id 8033  ax-rnegex 8034  ax-cnre 8036
This theorem depends on definitions:  df-bi 117  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-ral 2489  df-rex 2490  df-reu 2491  df-rab 2493  df-v 2774  df-sbc 2999  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-br 4045  df-opab 4106  df-id 4340  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-iota 5232  df-fun 5273  df-fv 5279  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-sub 8245  df-inn 9037  df-2 9095  df-3 9096  df-4 9097  df-5 9098  df-6 9099  df-7 9100  df-8 9101  df-9 9102  df-n0 9296  df-dec 9505
This theorem is referenced by:  7t6e42  9616
  Copyright terms: Public domain W3C validator