![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > cnm2m1cnm3 | GIF version |
Description: Subtracting 2 and afterwards 1 from a number results in the difference between the number and 3. (Contributed by Alexander van der Vekens, 16-Sep-2018.) |
Ref | Expression |
---|---|
cnm2m1cnm3 | ⊢ (𝐴 ∈ ℂ → ((𝐴 − 2) − 1) = (𝐴 − 3)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 19 | . . 3 ⊢ (𝐴 ∈ ℂ → 𝐴 ∈ ℂ) | |
2 | 2cnd 8556 | . . 3 ⊢ (𝐴 ∈ ℂ → 2 ∈ ℂ) | |
3 | 1cnd 7565 | . . 3 ⊢ (𝐴 ∈ ℂ → 1 ∈ ℂ) | |
4 | 1, 2, 3 | subsub4d 7885 | . 2 ⊢ (𝐴 ∈ ℂ → ((𝐴 − 2) − 1) = (𝐴 − (2 + 1))) |
5 | 2p1e3 8610 | . . . 4 ⊢ (2 + 1) = 3 | |
6 | 5 | a1i 9 | . . 3 ⊢ (𝐴 ∈ ℂ → (2 + 1) = 3) |
7 | 6 | oveq2d 5682 | . 2 ⊢ (𝐴 ∈ ℂ → (𝐴 − (2 + 1)) = (𝐴 − 3)) |
8 | 4, 7 | eqtrd 2121 | 1 ⊢ (𝐴 ∈ ℂ → ((𝐴 − 2) − 1) = (𝐴 − 3)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 = wceq 1290 ∈ wcel 1439 (class class class)co 5666 ℂcc 7409 1c1 7412 + caddc 7414 − cmin 7714 2c2 8534 3c3 8535 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-in1 580 ax-in2 581 ax-io 666 ax-5 1382 ax-7 1383 ax-gen 1384 ax-ie1 1428 ax-ie2 1429 ax-8 1441 ax-10 1442 ax-11 1443 ax-i12 1444 ax-bndl 1445 ax-4 1446 ax-14 1451 ax-17 1465 ax-i9 1469 ax-ial 1473 ax-i5r 1474 ax-ext 2071 ax-sep 3963 ax-pow 4015 ax-pr 4045 ax-setind 4366 ax-resscn 7498 ax-1cn 7499 ax-1re 7500 ax-icn 7501 ax-addcl 7502 ax-addrcl 7503 ax-mulcl 7504 ax-addcom 7506 ax-addass 7508 ax-distr 7510 ax-i2m1 7511 ax-0id 7514 ax-rnegex 7515 ax-cnre 7517 |
This theorem depends on definitions: df-bi 116 df-3an 927 df-tru 1293 df-fal 1296 df-nf 1396 df-sb 1694 df-eu 1952 df-mo 1953 df-clab 2076 df-cleq 2082 df-clel 2085 df-nfc 2218 df-ne 2257 df-ral 2365 df-rex 2366 df-reu 2367 df-rab 2369 df-v 2622 df-sbc 2842 df-dif 3002 df-un 3004 df-in 3006 df-ss 3013 df-pw 3435 df-sn 3456 df-pr 3457 df-op 3459 df-uni 3660 df-br 3852 df-opab 3906 df-id 4129 df-xp 4458 df-rel 4459 df-cnv 4460 df-co 4461 df-dm 4462 df-iota 4993 df-fun 5030 df-fv 5036 df-riota 5622 df-ov 5669 df-oprab 5670 df-mpt2 5671 df-sub 7716 df-2 8542 df-3 8543 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |