ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnm2m1cnm3 GIF version

Theorem cnm2m1cnm3 8728
Description: Subtracting 2 and afterwards 1 from a number results in the difference between the number and 3. (Contributed by Alexander van der Vekens, 16-Sep-2018.)
Assertion
Ref Expression
cnm2m1cnm3 (𝐴 ∈ ℂ → ((𝐴 − 2) − 1) = (𝐴 − 3))

Proof of Theorem cnm2m1cnm3
StepHypRef Expression
1 id 19 . . 3 (𝐴 ∈ ℂ → 𝐴 ∈ ℂ)
2 2cnd 8556 . . 3 (𝐴 ∈ ℂ → 2 ∈ ℂ)
3 1cnd 7565 . . 3 (𝐴 ∈ ℂ → 1 ∈ ℂ)
41, 2, 3subsub4d 7885 . 2 (𝐴 ∈ ℂ → ((𝐴 − 2) − 1) = (𝐴 − (2 + 1)))
5 2p1e3 8610 . . . 4 (2 + 1) = 3
65a1i 9 . . 3 (𝐴 ∈ ℂ → (2 + 1) = 3)
76oveq2d 5682 . 2 (𝐴 ∈ ℂ → (𝐴 − (2 + 1)) = (𝐴 − 3))
84, 7eqtrd 2121 1 (𝐴 ∈ ℂ → ((𝐴 − 2) − 1) = (𝐴 − 3))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1290  wcel 1439  (class class class)co 5666  cc 7409  1c1 7412   + caddc 7414  cmin 7714  2c2 8534  3c3 8535
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 580  ax-in2 581  ax-io 666  ax-5 1382  ax-7 1383  ax-gen 1384  ax-ie1 1428  ax-ie2 1429  ax-8 1441  ax-10 1442  ax-11 1443  ax-i12 1444  ax-bndl 1445  ax-4 1446  ax-14 1451  ax-17 1465  ax-i9 1469  ax-ial 1473  ax-i5r 1474  ax-ext 2071  ax-sep 3963  ax-pow 4015  ax-pr 4045  ax-setind 4366  ax-resscn 7498  ax-1cn 7499  ax-1re 7500  ax-icn 7501  ax-addcl 7502  ax-addrcl 7503  ax-mulcl 7504  ax-addcom 7506  ax-addass 7508  ax-distr 7510  ax-i2m1 7511  ax-0id 7514  ax-rnegex 7515  ax-cnre 7517
This theorem depends on definitions:  df-bi 116  df-3an 927  df-tru 1293  df-fal 1296  df-nf 1396  df-sb 1694  df-eu 1952  df-mo 1953  df-clab 2076  df-cleq 2082  df-clel 2085  df-nfc 2218  df-ne 2257  df-ral 2365  df-rex 2366  df-reu 2367  df-rab 2369  df-v 2622  df-sbc 2842  df-dif 3002  df-un 3004  df-in 3006  df-ss 3013  df-pw 3435  df-sn 3456  df-pr 3457  df-op 3459  df-uni 3660  df-br 3852  df-opab 3906  df-id 4129  df-xp 4458  df-rel 4459  df-cnv 4460  df-co 4461  df-dm 4462  df-iota 4993  df-fun 5030  df-fv 5036  df-riota 5622  df-ov 5669  df-oprab 5670  df-mpt2 5671  df-sub 7716  df-2 8542  df-3 8543
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator