ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  cnm2m1cnm3 GIF version

Theorem cnm2m1cnm3 9363
Description: Subtracting 2 and afterwards 1 from a number results in the difference between the number and 3. (Contributed by Alexander van der Vekens, 16-Sep-2018.)
Assertion
Ref Expression
cnm2m1cnm3 (𝐴 ∈ ℂ → ((𝐴 − 2) − 1) = (𝐴 − 3))

Proof of Theorem cnm2m1cnm3
StepHypRef Expression
1 id 19 . . 3 (𝐴 ∈ ℂ → 𝐴 ∈ ℂ)
2 2cnd 9183 . . 3 (𝐴 ∈ ℂ → 2 ∈ ℂ)
3 1cnd 8162 . . 3 (𝐴 ∈ ℂ → 1 ∈ ℂ)
41, 2, 3subsub4d 8488 . 2 (𝐴 ∈ ℂ → ((𝐴 − 2) − 1) = (𝐴 − (2 + 1)))
5 2p1e3 9244 . . . 4 (2 + 1) = 3
65a1i 9 . . 3 (𝐴 ∈ ℂ → (2 + 1) = 3)
76oveq2d 6017 . 2 (𝐴 ∈ ℂ → (𝐴 − (2 + 1)) = (𝐴 − 3))
84, 7eqtrd 2262 1 (𝐴 ∈ ℂ → ((𝐴 − 2) − 1) = (𝐴 − 3))
Colors of variables: wff set class
Syntax hints:  wi 4   = wceq 1395  wcel 2200  (class class class)co 6001  cc 7997  1c1 8000   + caddc 8002  cmin 8317  2c2 9161  3c3 9162
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-14 2203  ax-ext 2211  ax-sep 4202  ax-pow 4258  ax-pr 4293  ax-setind 4629  ax-resscn 8091  ax-1cn 8092  ax-1re 8093  ax-icn 8094  ax-addcl 8095  ax-addrcl 8096  ax-mulcl 8097  ax-addcom 8099  ax-addass 8101  ax-distr 8103  ax-i2m1 8104  ax-0id 8107  ax-rnegex 8108  ax-cnre 8110
This theorem depends on definitions:  df-bi 117  df-3an 1004  df-tru 1398  df-fal 1401  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-ral 2513  df-rex 2514  df-reu 2515  df-rab 2517  df-v 2801  df-sbc 3029  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3889  df-br 4084  df-opab 4146  df-id 4384  df-xp 4725  df-rel 4726  df-cnv 4727  df-co 4728  df-dm 4729  df-iota 5278  df-fun 5320  df-fv 5326  df-riota 5954  df-ov 6004  df-oprab 6005  df-mpo 6006  df-sub 8319  df-2 9169  df-3 9170
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator