![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 6t5e30 | GIF version |
Description: 6 times 5 equals 30. (Contributed by Mario Carneiro, 19-Apr-2015.) (Revised by AV, 6-Sep-2021.) |
Ref | Expression |
---|---|
6t5e30 | ⊢ (6 · 5) = ;30 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 6nn0 9222 | . 2 ⊢ 6 ∈ ℕ0 | |
2 | 4nn0 9220 | . 2 ⊢ 4 ∈ ℕ0 | |
3 | df-5 9006 | . 2 ⊢ 5 = (4 + 1) | |
4 | 6t4e24 9514 | . 2 ⊢ (6 · 4) = ;24 | |
5 | 2nn0 9218 | . . 3 ⊢ 2 ∈ ℕ0 | |
6 | eqid 2189 | . . 3 ⊢ ;24 = ;24 | |
7 | 2p1e3 9077 | . . 3 ⊢ (2 + 1) = 3 | |
8 | 6cn 9026 | . . . 4 ⊢ 6 ∈ ℂ | |
9 | 4cn 9022 | . . . 4 ⊢ 4 ∈ ℂ | |
10 | 6p4e10 9480 | . . . 4 ⊢ (6 + 4) = ;10 | |
11 | 8, 9, 10 | addcomli 8127 | . . 3 ⊢ (4 + 6) = ;10 |
12 | 5, 2, 1, 6, 7, 11 | decaddci2 9470 | . 2 ⊢ (;24 + 6) = ;30 |
13 | 1, 2, 3, 4, 12 | 4t3lem 9505 | 1 ⊢ (6 · 5) = ;30 |
Colors of variables: wff set class |
Syntax hints: = wceq 1364 (class class class)co 5892 0cc0 7836 1c1 7837 · cmul 7841 2c2 8995 3c3 8996 4c4 8997 5c5 8998 6c6 8999 ;cdc 9409 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-14 2163 ax-ext 2171 ax-sep 4136 ax-pow 4189 ax-pr 4224 ax-setind 4551 ax-cnex 7927 ax-resscn 7928 ax-1cn 7929 ax-1re 7930 ax-icn 7931 ax-addcl 7932 ax-addrcl 7933 ax-mulcl 7934 ax-addcom 7936 ax-mulcom 7937 ax-addass 7938 ax-mulass 7939 ax-distr 7940 ax-i2m1 7941 ax-1rid 7943 ax-0id 7944 ax-rnegex 7945 ax-cnre 7947 |
This theorem depends on definitions: df-bi 117 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2041 df-mo 2042 df-clab 2176 df-cleq 2182 df-clel 2185 df-nfc 2321 df-ne 2361 df-ral 2473 df-rex 2474 df-reu 2475 df-rab 2477 df-v 2754 df-sbc 2978 df-dif 3146 df-un 3148 df-in 3150 df-ss 3157 df-pw 3592 df-sn 3613 df-pr 3614 df-op 3616 df-uni 3825 df-int 3860 df-br 4019 df-opab 4080 df-id 4308 df-xp 4647 df-rel 4648 df-cnv 4649 df-co 4650 df-dm 4651 df-iota 5193 df-fun 5234 df-fv 5240 df-riota 5848 df-ov 5895 df-oprab 5896 df-mpo 5897 df-sub 8155 df-inn 8945 df-2 9003 df-3 9004 df-4 9005 df-5 9006 df-6 9007 df-7 9008 df-8 9009 df-9 9010 df-n0 9202 df-dec 9410 |
This theorem is referenced by: 6t6e36 9516 5recm6rec 9552 |
Copyright terms: Public domain | W3C validator |