![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > fac3 | GIF version |
Description: The factorial of 3. (Contributed by NM, 17-Mar-2005.) |
Ref | Expression |
---|---|
fac3 | ⊢ (!‘3) = 6 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-3 8993 | . . 3 ⊢ 3 = (2 + 1) | |
2 | 1 | fveq2i 5530 | . 2 ⊢ (!‘3) = (!‘(2 + 1)) |
3 | 2nn0 9207 | . . 3 ⊢ 2 ∈ ℕ0 | |
4 | facp1 10724 | . . 3 ⊢ (2 ∈ ℕ0 → (!‘(2 + 1)) = ((!‘2) · (2 + 1))) | |
5 | 3, 4 | ax-mp 5 | . 2 ⊢ (!‘(2 + 1)) = ((!‘2) · (2 + 1)) |
6 | fac2 10725 | . . . 4 ⊢ (!‘2) = 2 | |
7 | 2p1e3 9066 | . . . 4 ⊢ (2 + 1) = 3 | |
8 | 6, 7 | oveq12i 5900 | . . 3 ⊢ ((!‘2) · (2 + 1)) = (2 · 3) |
9 | 2cn 9004 | . . . 4 ⊢ 2 ∈ ℂ | |
10 | 3cn 9008 | . . . 4 ⊢ 3 ∈ ℂ | |
11 | 9, 10 | mulcomi 7977 | . . 3 ⊢ (2 · 3) = (3 · 2) |
12 | 3t2e6 9089 | . . 3 ⊢ (3 · 2) = 6 | |
13 | 8, 11, 12 | 3eqtri 2212 | . 2 ⊢ ((!‘2) · (2 + 1)) = 6 |
14 | 2, 5, 13 | 3eqtri 2212 | 1 ⊢ (!‘3) = 6 |
Colors of variables: wff set class |
Syntax hints: = wceq 1363 ∈ wcel 2158 ‘cfv 5228 (class class class)co 5888 1c1 7826 + caddc 7828 · cmul 7830 2c2 8984 3c3 8985 6c6 8988 ℕ0cn0 9190 !cfa 10719 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1457 ax-7 1458 ax-gen 1459 ax-ie1 1503 ax-ie2 1504 ax-8 1514 ax-10 1515 ax-11 1516 ax-i12 1517 ax-bndl 1519 ax-4 1520 ax-17 1536 ax-i9 1540 ax-ial 1544 ax-i5r 1545 ax-13 2160 ax-14 2161 ax-ext 2169 ax-coll 4130 ax-sep 4133 ax-nul 4141 ax-pow 4186 ax-pr 4221 ax-un 4445 ax-setind 4548 ax-iinf 4599 ax-cnex 7916 ax-resscn 7917 ax-1cn 7918 ax-1re 7919 ax-icn 7920 ax-addcl 7921 ax-addrcl 7922 ax-mulcl 7923 ax-addcom 7925 ax-mulcom 7926 ax-addass 7927 ax-mulass 7928 ax-distr 7929 ax-i2m1 7930 ax-0lt1 7931 ax-1rid 7932 ax-0id 7933 ax-rnegex 7934 ax-cnre 7936 ax-pre-ltirr 7937 ax-pre-ltwlin 7938 ax-pre-lttrn 7939 ax-pre-ltadd 7941 |
This theorem depends on definitions: df-bi 117 df-3or 980 df-3an 981 df-tru 1366 df-fal 1369 df-nf 1471 df-sb 1773 df-eu 2039 df-mo 2040 df-clab 2174 df-cleq 2180 df-clel 2183 df-nfc 2318 df-ne 2358 df-nel 2453 df-ral 2470 df-rex 2471 df-reu 2472 df-rab 2474 df-v 2751 df-sbc 2975 df-csb 3070 df-dif 3143 df-un 3145 df-in 3147 df-ss 3154 df-nul 3435 df-pw 3589 df-sn 3610 df-pr 3611 df-op 3613 df-uni 3822 df-int 3857 df-iun 3900 df-br 4016 df-opab 4077 df-mpt 4078 df-tr 4114 df-id 4305 df-iord 4378 df-on 4380 df-ilim 4381 df-suc 4383 df-iom 4602 df-xp 4644 df-rel 4645 df-cnv 4646 df-co 4647 df-dm 4648 df-rn 4649 df-res 4650 df-ima 4651 df-iota 5190 df-fun 5230 df-fn 5231 df-f 5232 df-f1 5233 df-fo 5234 df-f1o 5235 df-fv 5236 df-riota 5844 df-ov 5891 df-oprab 5892 df-mpo 5893 df-1st 6155 df-2nd 6156 df-recs 6320 df-frec 6406 df-pnf 8008 df-mnf 8009 df-xr 8010 df-ltxr 8011 df-le 8012 df-sub 8144 df-neg 8145 df-inn 8934 df-2 8992 df-3 8993 df-4 8994 df-5 8995 df-6 8996 df-n0 9191 df-z 9268 df-uz 9543 df-seqfrec 10460 df-fac 10720 |
This theorem is referenced by: fac4 10727 4bc2eq6 10768 ef4p 11716 ef01bndlem 11778 |
Copyright terms: Public domain | W3C validator |