ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nn0o1gt2 GIF version

Theorem nn0o1gt2 11613
Description: An odd nonnegative integer is either 1 or greater than 2. (Contributed by AV, 2-Jun-2020.)
Assertion
Ref Expression
nn0o1gt2 ((𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → (𝑁 = 1 ∨ 2 < 𝑁))

Proof of Theorem nn0o1gt2
StepHypRef Expression
1 elnn0 8991 . . 3 (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℕ ∨ 𝑁 = 0))
2 elnnnn0c 9034 . . . . 5 (𝑁 ∈ ℕ ↔ (𝑁 ∈ ℕ0 ∧ 1 ≤ 𝑁))
3 1z 9092 . . . . . . . 8 1 ∈ ℤ
4 nn0z 9086 . . . . . . . 8 (𝑁 ∈ ℕ0𝑁 ∈ ℤ)
5 zleloe 9113 . . . . . . . 8 ((1 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (1 ≤ 𝑁 ↔ (1 < 𝑁 ∨ 1 = 𝑁)))
63, 4, 5sylancr 410 . . . . . . 7 (𝑁 ∈ ℕ0 → (1 ≤ 𝑁 ↔ (1 < 𝑁 ∨ 1 = 𝑁)))
7 1zzd 9093 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ0 → 1 ∈ ℤ)
8 zltp1le 9120 . . . . . . . . . . . . 13 ((1 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (1 < 𝑁 ↔ (1 + 1) ≤ 𝑁))
97, 4, 8syl2anc 408 . . . . . . . . . . . 12 (𝑁 ∈ ℕ0 → (1 < 𝑁 ↔ (1 + 1) ≤ 𝑁))
10 1p1e2 8849 . . . . . . . . . . . . . 14 (1 + 1) = 2
1110breq1i 3936 . . . . . . . . . . . . 13 ((1 + 1) ≤ 𝑁 ↔ 2 ≤ 𝑁)
1211a1i 9 . . . . . . . . . . . 12 (𝑁 ∈ ℕ0 → ((1 + 1) ≤ 𝑁 ↔ 2 ≤ 𝑁))
13 2z 9094 . . . . . . . . . . . . 13 2 ∈ ℤ
14 zleloe 9113 . . . . . . . . . . . . 13 ((2 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (2 ≤ 𝑁 ↔ (2 < 𝑁 ∨ 2 = 𝑁)))
1513, 4, 14sylancr 410 . . . . . . . . . . . 12 (𝑁 ∈ ℕ0 → (2 ≤ 𝑁 ↔ (2 < 𝑁 ∨ 2 = 𝑁)))
169, 12, 153bitrd 213 . . . . . . . . . . 11 (𝑁 ∈ ℕ0 → (1 < 𝑁 ↔ (2 < 𝑁 ∨ 2 = 𝑁)))
17 olc 700 . . . . . . . . . . . . . 14 (2 < 𝑁 → (𝑁 = 1 ∨ 2 < 𝑁))
18172a1d 23 . . . . . . . . . . . . 13 (2 < 𝑁 → (𝑁 ∈ ℕ0 → (((𝑁 + 1) / 2) ∈ ℕ0 → (𝑁 = 1 ∨ 2 < 𝑁))))
19 oveq1 5781 . . . . . . . . . . . . . . . . . . . 20 (𝑁 = 2 → (𝑁 + 1) = (2 + 1))
2019oveq1d 5789 . . . . . . . . . . . . . . . . . . 19 (𝑁 = 2 → ((𝑁 + 1) / 2) = ((2 + 1) / 2))
2120eqcoms 2142 . . . . . . . . . . . . . . . . . 18 (2 = 𝑁 → ((𝑁 + 1) / 2) = ((2 + 1) / 2))
2221adantl 275 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℕ0 ∧ 2 = 𝑁) → ((𝑁 + 1) / 2) = ((2 + 1) / 2))
23 2p1e3 8865 . . . . . . . . . . . . . . . . . 18 (2 + 1) = 3
2423oveq1i 5784 . . . . . . . . . . . . . . . . 17 ((2 + 1) / 2) = (3 / 2)
2522, 24syl6eq 2188 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℕ0 ∧ 2 = 𝑁) → ((𝑁 + 1) / 2) = (3 / 2))
2625eleq1d 2208 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℕ0 ∧ 2 = 𝑁) → (((𝑁 + 1) / 2) ∈ ℕ0 ↔ (3 / 2) ∈ ℕ0))
27 3halfnz 9160 . . . . . . . . . . . . . . . 16 ¬ (3 / 2) ∈ ℤ
28 nn0z 9086 . . . . . . . . . . . . . . . . 17 ((3 / 2) ∈ ℕ0 → (3 / 2) ∈ ℤ)
2928pm2.24d 611 . . . . . . . . . . . . . . . 16 ((3 / 2) ∈ ℕ0 → (¬ (3 / 2) ∈ ℤ → (𝑁 = 1 ∨ 2 < 𝑁)))
3027, 29mpi 15 . . . . . . . . . . . . . . 15 ((3 / 2) ∈ ℕ0 → (𝑁 = 1 ∨ 2 < 𝑁))
3126, 30syl6bi 162 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ0 ∧ 2 = 𝑁) → (((𝑁 + 1) / 2) ∈ ℕ0 → (𝑁 = 1 ∨ 2 < 𝑁)))
3231expcom 115 . . . . . . . . . . . . 13 (2 = 𝑁 → (𝑁 ∈ ℕ0 → (((𝑁 + 1) / 2) ∈ ℕ0 → (𝑁 = 1 ∨ 2 < 𝑁))))
3318, 32jaoi 705 . . . . . . . . . . . 12 ((2 < 𝑁 ∨ 2 = 𝑁) → (𝑁 ∈ ℕ0 → (((𝑁 + 1) / 2) ∈ ℕ0 → (𝑁 = 1 ∨ 2 < 𝑁))))
3433com12 30 . . . . . . . . . . 11 (𝑁 ∈ ℕ0 → ((2 < 𝑁 ∨ 2 = 𝑁) → (((𝑁 + 1) / 2) ∈ ℕ0 → (𝑁 = 1 ∨ 2 < 𝑁))))
3516, 34sylbid 149 . . . . . . . . . 10 (𝑁 ∈ ℕ0 → (1 < 𝑁 → (((𝑁 + 1) / 2) ∈ ℕ0 → (𝑁 = 1 ∨ 2 < 𝑁))))
3635com12 30 . . . . . . . . 9 (1 < 𝑁 → (𝑁 ∈ ℕ0 → (((𝑁 + 1) / 2) ∈ ℕ0 → (𝑁 = 1 ∨ 2 < 𝑁))))
37 orc 701 . . . . . . . . . . 11 (𝑁 = 1 → (𝑁 = 1 ∨ 2 < 𝑁))
3837eqcoms 2142 . . . . . . . . . 10 (1 = 𝑁 → (𝑁 = 1 ∨ 2 < 𝑁))
39382a1d 23 . . . . . . . . 9 (1 = 𝑁 → (𝑁 ∈ ℕ0 → (((𝑁 + 1) / 2) ∈ ℕ0 → (𝑁 = 1 ∨ 2 < 𝑁))))
4036, 39jaoi 705 . . . . . . . 8 ((1 < 𝑁 ∨ 1 = 𝑁) → (𝑁 ∈ ℕ0 → (((𝑁 + 1) / 2) ∈ ℕ0 → (𝑁 = 1 ∨ 2 < 𝑁))))
4140com12 30 . . . . . . 7 (𝑁 ∈ ℕ0 → ((1 < 𝑁 ∨ 1 = 𝑁) → (((𝑁 + 1) / 2) ∈ ℕ0 → (𝑁 = 1 ∨ 2 < 𝑁))))
426, 41sylbid 149 . . . . . 6 (𝑁 ∈ ℕ0 → (1 ≤ 𝑁 → (((𝑁 + 1) / 2) ∈ ℕ0 → (𝑁 = 1 ∨ 2 < 𝑁))))
4342imp 123 . . . . 5 ((𝑁 ∈ ℕ0 ∧ 1 ≤ 𝑁) → (((𝑁 + 1) / 2) ∈ ℕ0 → (𝑁 = 1 ∨ 2 < 𝑁)))
442, 43sylbi 120 . . . 4 (𝑁 ∈ ℕ → (((𝑁 + 1) / 2) ∈ ℕ0 → (𝑁 = 1 ∨ 2 < 𝑁)))
45 oveq1 5781 . . . . . . . 8 (𝑁 = 0 → (𝑁 + 1) = (0 + 1))
46 0p1e1 8846 . . . . . . . 8 (0 + 1) = 1
4745, 46syl6eq 2188 . . . . . . 7 (𝑁 = 0 → (𝑁 + 1) = 1)
4847oveq1d 5789 . . . . . 6 (𝑁 = 0 → ((𝑁 + 1) / 2) = (1 / 2))
4948eleq1d 2208 . . . . 5 (𝑁 = 0 → (((𝑁 + 1) / 2) ∈ ℕ0 ↔ (1 / 2) ∈ ℕ0))
50 halfnz 9159 . . . . . 6 ¬ (1 / 2) ∈ ℤ
51 nn0z 9086 . . . . . . 7 ((1 / 2) ∈ ℕ0 → (1 / 2) ∈ ℤ)
5251pm2.24d 611 . . . . . 6 ((1 / 2) ∈ ℕ0 → (¬ (1 / 2) ∈ ℤ → (𝑁 = 1 ∨ 2 < 𝑁)))
5350, 52mpi 15 . . . . 5 ((1 / 2) ∈ ℕ0 → (𝑁 = 1 ∨ 2 < 𝑁))
5449, 53syl6bi 162 . . . 4 (𝑁 = 0 → (((𝑁 + 1) / 2) ∈ ℕ0 → (𝑁 = 1 ∨ 2 < 𝑁)))
5544, 54jaoi 705 . . 3 ((𝑁 ∈ ℕ ∨ 𝑁 = 0) → (((𝑁 + 1) / 2) ∈ ℕ0 → (𝑁 = 1 ∨ 2 < 𝑁)))
561, 55sylbi 120 . 2 (𝑁 ∈ ℕ0 → (((𝑁 + 1) / 2) ∈ ℕ0 → (𝑁 = 1 ∨ 2 < 𝑁)))
5756imp 123 1 ((𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → (𝑁 = 1 ∨ 2 < 𝑁))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 103  wb 104  wo 697   = wceq 1331  wcel 1480   class class class wbr 3929  (class class class)co 5774  0cc0 7632  1c1 7633   + caddc 7635   < clt 7812  cle 7813   / cdiv 8444  cn 8732  2c2 8783  3c3 8784  0cn0 8989  cz 9066
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-cnex 7723  ax-resscn 7724  ax-1cn 7725  ax-1re 7726  ax-icn 7727  ax-addcl 7728  ax-addrcl 7729  ax-mulcl 7730  ax-mulrcl 7731  ax-addcom 7732  ax-mulcom 7733  ax-addass 7734  ax-mulass 7735  ax-distr 7736  ax-i2m1 7737  ax-0lt1 7738  ax-1rid 7739  ax-0id 7740  ax-rnegex 7741  ax-precex 7742  ax-cnre 7743  ax-pre-ltirr 7744  ax-pre-ltwlin 7745  ax-pre-lttrn 7746  ax-pre-apti 7747  ax-pre-ltadd 7748  ax-pre-mulgt0 7749  ax-pre-mulext 7750
This theorem depends on definitions:  df-bi 116  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-br 3930  df-opab 3990  df-id 4215  df-po 4218  df-iso 4219  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-iota 5088  df-fun 5125  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-pnf 7814  df-mnf 7815  df-xr 7816  df-ltxr 7817  df-le 7818  df-sub 7947  df-neg 7948  df-reap 8349  df-ap 8356  df-div 8445  df-inn 8733  df-2 8791  df-3 8792  df-4 8793  df-n0 8990  df-z 9067
This theorem is referenced by:  nno  11614  nn0o  11615
  Copyright terms: Public domain W3C validator