ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  nn0o1gt2 GIF version

Theorem nn0o1gt2 11893
Description: An odd nonnegative integer is either 1 or greater than 2. (Contributed by AV, 2-Jun-2020.)
Assertion
Ref Expression
nn0o1gt2 ((𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → (𝑁 = 1 ∨ 2 < 𝑁))

Proof of Theorem nn0o1gt2
StepHypRef Expression
1 elnn0 9167 . . 3 (𝑁 ∈ ℕ0 ↔ (𝑁 ∈ ℕ ∨ 𝑁 = 0))
2 elnnnn0c 9210 . . . . 5 (𝑁 ∈ ℕ ↔ (𝑁 ∈ ℕ0 ∧ 1 ≤ 𝑁))
3 1z 9268 . . . . . . . 8 1 ∈ ℤ
4 nn0z 9262 . . . . . . . 8 (𝑁 ∈ ℕ0𝑁 ∈ ℤ)
5 zleloe 9289 . . . . . . . 8 ((1 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (1 ≤ 𝑁 ↔ (1 < 𝑁 ∨ 1 = 𝑁)))
63, 4, 5sylancr 414 . . . . . . 7 (𝑁 ∈ ℕ0 → (1 ≤ 𝑁 ↔ (1 < 𝑁 ∨ 1 = 𝑁)))
7 1zzd 9269 . . . . . . . . . . . . 13 (𝑁 ∈ ℕ0 → 1 ∈ ℤ)
8 zltp1le 9296 . . . . . . . . . . . . 13 ((1 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (1 < 𝑁 ↔ (1 + 1) ≤ 𝑁))
97, 4, 8syl2anc 411 . . . . . . . . . . . 12 (𝑁 ∈ ℕ0 → (1 < 𝑁 ↔ (1 + 1) ≤ 𝑁))
10 1p1e2 9025 . . . . . . . . . . . . . 14 (1 + 1) = 2
1110breq1i 4007 . . . . . . . . . . . . 13 ((1 + 1) ≤ 𝑁 ↔ 2 ≤ 𝑁)
1211a1i 9 . . . . . . . . . . . 12 (𝑁 ∈ ℕ0 → ((1 + 1) ≤ 𝑁 ↔ 2 ≤ 𝑁))
13 2z 9270 . . . . . . . . . . . . 13 2 ∈ ℤ
14 zleloe 9289 . . . . . . . . . . . . 13 ((2 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (2 ≤ 𝑁 ↔ (2 < 𝑁 ∨ 2 = 𝑁)))
1513, 4, 14sylancr 414 . . . . . . . . . . . 12 (𝑁 ∈ ℕ0 → (2 ≤ 𝑁 ↔ (2 < 𝑁 ∨ 2 = 𝑁)))
169, 12, 153bitrd 214 . . . . . . . . . . 11 (𝑁 ∈ ℕ0 → (1 < 𝑁 ↔ (2 < 𝑁 ∨ 2 = 𝑁)))
17 olc 711 . . . . . . . . . . . . . 14 (2 < 𝑁 → (𝑁 = 1 ∨ 2 < 𝑁))
18172a1d 23 . . . . . . . . . . . . 13 (2 < 𝑁 → (𝑁 ∈ ℕ0 → (((𝑁 + 1) / 2) ∈ ℕ0 → (𝑁 = 1 ∨ 2 < 𝑁))))
19 oveq1 5876 . . . . . . . . . . . . . . . . . . . 20 (𝑁 = 2 → (𝑁 + 1) = (2 + 1))
2019oveq1d 5884 . . . . . . . . . . . . . . . . . . 19 (𝑁 = 2 → ((𝑁 + 1) / 2) = ((2 + 1) / 2))
2120eqcoms 2180 . . . . . . . . . . . . . . . . . 18 (2 = 𝑁 → ((𝑁 + 1) / 2) = ((2 + 1) / 2))
2221adantl 277 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ ℕ0 ∧ 2 = 𝑁) → ((𝑁 + 1) / 2) = ((2 + 1) / 2))
23 2p1e3 9041 . . . . . . . . . . . . . . . . . 18 (2 + 1) = 3
2423oveq1i 5879 . . . . . . . . . . . . . . . . 17 ((2 + 1) / 2) = (3 / 2)
2522, 24eqtrdi 2226 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ ℕ0 ∧ 2 = 𝑁) → ((𝑁 + 1) / 2) = (3 / 2))
2625eleq1d 2246 . . . . . . . . . . . . . . 15 ((𝑁 ∈ ℕ0 ∧ 2 = 𝑁) → (((𝑁 + 1) / 2) ∈ ℕ0 ↔ (3 / 2) ∈ ℕ0))
27 3halfnz 9339 . . . . . . . . . . . . . . . 16 ¬ (3 / 2) ∈ ℤ
28 nn0z 9262 . . . . . . . . . . . . . . . . 17 ((3 / 2) ∈ ℕ0 → (3 / 2) ∈ ℤ)
2928pm2.24d 622 . . . . . . . . . . . . . . . 16 ((3 / 2) ∈ ℕ0 → (¬ (3 / 2) ∈ ℤ → (𝑁 = 1 ∨ 2 < 𝑁)))
3027, 29mpi 15 . . . . . . . . . . . . . . 15 ((3 / 2) ∈ ℕ0 → (𝑁 = 1 ∨ 2 < 𝑁))
3126, 30syl6bi 163 . . . . . . . . . . . . . 14 ((𝑁 ∈ ℕ0 ∧ 2 = 𝑁) → (((𝑁 + 1) / 2) ∈ ℕ0 → (𝑁 = 1 ∨ 2 < 𝑁)))
3231expcom 116 . . . . . . . . . . . . 13 (2 = 𝑁 → (𝑁 ∈ ℕ0 → (((𝑁 + 1) / 2) ∈ ℕ0 → (𝑁 = 1 ∨ 2 < 𝑁))))
3318, 32jaoi 716 . . . . . . . . . . . 12 ((2 < 𝑁 ∨ 2 = 𝑁) → (𝑁 ∈ ℕ0 → (((𝑁 + 1) / 2) ∈ ℕ0 → (𝑁 = 1 ∨ 2 < 𝑁))))
3433com12 30 . . . . . . . . . . 11 (𝑁 ∈ ℕ0 → ((2 < 𝑁 ∨ 2 = 𝑁) → (((𝑁 + 1) / 2) ∈ ℕ0 → (𝑁 = 1 ∨ 2 < 𝑁))))
3516, 34sylbid 150 . . . . . . . . . 10 (𝑁 ∈ ℕ0 → (1 < 𝑁 → (((𝑁 + 1) / 2) ∈ ℕ0 → (𝑁 = 1 ∨ 2 < 𝑁))))
3635com12 30 . . . . . . . . 9 (1 < 𝑁 → (𝑁 ∈ ℕ0 → (((𝑁 + 1) / 2) ∈ ℕ0 → (𝑁 = 1 ∨ 2 < 𝑁))))
37 orc 712 . . . . . . . . . . 11 (𝑁 = 1 → (𝑁 = 1 ∨ 2 < 𝑁))
3837eqcoms 2180 . . . . . . . . . 10 (1 = 𝑁 → (𝑁 = 1 ∨ 2 < 𝑁))
39382a1d 23 . . . . . . . . 9 (1 = 𝑁 → (𝑁 ∈ ℕ0 → (((𝑁 + 1) / 2) ∈ ℕ0 → (𝑁 = 1 ∨ 2 < 𝑁))))
4036, 39jaoi 716 . . . . . . . 8 ((1 < 𝑁 ∨ 1 = 𝑁) → (𝑁 ∈ ℕ0 → (((𝑁 + 1) / 2) ∈ ℕ0 → (𝑁 = 1 ∨ 2 < 𝑁))))
4140com12 30 . . . . . . 7 (𝑁 ∈ ℕ0 → ((1 < 𝑁 ∨ 1 = 𝑁) → (((𝑁 + 1) / 2) ∈ ℕ0 → (𝑁 = 1 ∨ 2 < 𝑁))))
426, 41sylbid 150 . . . . . 6 (𝑁 ∈ ℕ0 → (1 ≤ 𝑁 → (((𝑁 + 1) / 2) ∈ ℕ0 → (𝑁 = 1 ∨ 2 < 𝑁))))
4342imp 124 . . . . 5 ((𝑁 ∈ ℕ0 ∧ 1 ≤ 𝑁) → (((𝑁 + 1) / 2) ∈ ℕ0 → (𝑁 = 1 ∨ 2 < 𝑁)))
442, 43sylbi 121 . . . 4 (𝑁 ∈ ℕ → (((𝑁 + 1) / 2) ∈ ℕ0 → (𝑁 = 1 ∨ 2 < 𝑁)))
45 oveq1 5876 . . . . . . . 8 (𝑁 = 0 → (𝑁 + 1) = (0 + 1))
46 0p1e1 9022 . . . . . . . 8 (0 + 1) = 1
4745, 46eqtrdi 2226 . . . . . . 7 (𝑁 = 0 → (𝑁 + 1) = 1)
4847oveq1d 5884 . . . . . 6 (𝑁 = 0 → ((𝑁 + 1) / 2) = (1 / 2))
4948eleq1d 2246 . . . . 5 (𝑁 = 0 → (((𝑁 + 1) / 2) ∈ ℕ0 ↔ (1 / 2) ∈ ℕ0))
50 halfnz 9338 . . . . . 6 ¬ (1 / 2) ∈ ℤ
51 nn0z 9262 . . . . . . 7 ((1 / 2) ∈ ℕ0 → (1 / 2) ∈ ℤ)
5251pm2.24d 622 . . . . . 6 ((1 / 2) ∈ ℕ0 → (¬ (1 / 2) ∈ ℤ → (𝑁 = 1 ∨ 2 < 𝑁)))
5350, 52mpi 15 . . . . 5 ((1 / 2) ∈ ℕ0 → (𝑁 = 1 ∨ 2 < 𝑁))
5449, 53syl6bi 163 . . . 4 (𝑁 = 0 → (((𝑁 + 1) / 2) ∈ ℕ0 → (𝑁 = 1 ∨ 2 < 𝑁)))
5544, 54jaoi 716 . . 3 ((𝑁 ∈ ℕ ∨ 𝑁 = 0) → (((𝑁 + 1) / 2) ∈ ℕ0 → (𝑁 = 1 ∨ 2 < 𝑁)))
561, 55sylbi 121 . 2 (𝑁 ∈ ℕ0 → (((𝑁 + 1) / 2) ∈ ℕ0 → (𝑁 = 1 ∨ 2 < 𝑁)))
5756imp 124 1 ((𝑁 ∈ ℕ0 ∧ ((𝑁 + 1) / 2) ∈ ℕ0) → (𝑁 = 1 ∨ 2 < 𝑁))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105  wo 708   = wceq 1353  wcel 2148   class class class wbr 4000  (class class class)co 5869  0cc0 7802  1c1 7803   + caddc 7805   < clt 7982  cle 7983   / cdiv 8618  cn 8908  2c2 8959  3c3 8960  0cn0 9165  cz 9242
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 614  ax-in2 615  ax-io 709  ax-5 1447  ax-7 1448  ax-gen 1449  ax-ie1 1493  ax-ie2 1494  ax-8 1504  ax-10 1505  ax-11 1506  ax-i12 1507  ax-bndl 1509  ax-4 1510  ax-17 1526  ax-i9 1530  ax-ial 1534  ax-i5r 1535  ax-13 2150  ax-14 2151  ax-ext 2159  ax-sep 4118  ax-pow 4171  ax-pr 4206  ax-un 4430  ax-setind 4533  ax-cnex 7893  ax-resscn 7894  ax-1cn 7895  ax-1re 7896  ax-icn 7897  ax-addcl 7898  ax-addrcl 7899  ax-mulcl 7900  ax-mulrcl 7901  ax-addcom 7902  ax-mulcom 7903  ax-addass 7904  ax-mulass 7905  ax-distr 7906  ax-i2m1 7907  ax-0lt1 7908  ax-1rid 7909  ax-0id 7910  ax-rnegex 7911  ax-precex 7912  ax-cnre 7913  ax-pre-ltirr 7914  ax-pre-ltwlin 7915  ax-pre-lttrn 7916  ax-pre-apti 7917  ax-pre-ltadd 7918  ax-pre-mulgt0 7919  ax-pre-mulext 7920
This theorem depends on definitions:  df-bi 117  df-3or 979  df-3an 980  df-tru 1356  df-fal 1359  df-nf 1461  df-sb 1763  df-eu 2029  df-mo 2030  df-clab 2164  df-cleq 2170  df-clel 2173  df-nfc 2308  df-ne 2348  df-nel 2443  df-ral 2460  df-rex 2461  df-reu 2462  df-rmo 2463  df-rab 2464  df-v 2739  df-sbc 2963  df-dif 3131  df-un 3133  df-in 3135  df-ss 3142  df-pw 3576  df-sn 3597  df-pr 3598  df-op 3600  df-uni 3808  df-int 3843  df-br 4001  df-opab 4062  df-id 4290  df-po 4293  df-iso 4294  df-xp 4629  df-rel 4630  df-cnv 4631  df-co 4632  df-dm 4633  df-iota 5174  df-fun 5214  df-fv 5220  df-riota 5825  df-ov 5872  df-oprab 5873  df-mpo 5874  df-pnf 7984  df-mnf 7985  df-xr 7986  df-ltxr 7987  df-le 7988  df-sub 8120  df-neg 8121  df-reap 8522  df-ap 8529  df-div 8619  df-inn 8909  df-2 8967  df-3 8968  df-4 8969  df-n0 9166  df-z 9243
This theorem is referenced by:  nno  11894  nn0o  11895
  Copyright terms: Public domain W3C validator