![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > fz0to3un2pr | GIF version |
Description: An integer range from 0 to 3 is the union of two unordered pairs. (Contributed by AV, 7-Feb-2021.) |
Ref | Expression |
---|---|
fz0to3un2pr | ⊢ (0...3) = ({0, 1} ∪ {2, 3}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1nn0 9194 | . . . 4 ⊢ 1 ∈ ℕ0 | |
2 | 3nn0 9196 | . . . 4 ⊢ 3 ∈ ℕ0 | |
3 | 1le3 9132 | . . . 4 ⊢ 1 ≤ 3 | |
4 | elfz2nn0 10114 | . . . 4 ⊢ (1 ∈ (0...3) ↔ (1 ∈ ℕ0 ∧ 3 ∈ ℕ0 ∧ 1 ≤ 3)) | |
5 | 1, 2, 3, 4 | mpbir3an 1179 | . . 3 ⊢ 1 ∈ (0...3) |
6 | fzsplit 10053 | . . 3 ⊢ (1 ∈ (0...3) → (0...3) = ((0...1) ∪ ((1 + 1)...3))) | |
7 | 5, 6 | ax-mp 5 | . 2 ⊢ (0...3) = ((0...1) ∪ ((1 + 1)...3)) |
8 | 1e0p1 9427 | . . . . 5 ⊢ 1 = (0 + 1) | |
9 | 8 | oveq2i 5888 | . . . 4 ⊢ (0...1) = (0...(0 + 1)) |
10 | 0z 9266 | . . . . 5 ⊢ 0 ∈ ℤ | |
11 | fzpr 10079 | . . . . 5 ⊢ (0 ∈ ℤ → (0...(0 + 1)) = {0, (0 + 1)}) | |
12 | 10, 11 | ax-mp 5 | . . . 4 ⊢ (0...(0 + 1)) = {0, (0 + 1)} |
13 | 0p1e1 9035 | . . . . 5 ⊢ (0 + 1) = 1 | |
14 | 13 | preq2i 3675 | . . . 4 ⊢ {0, (0 + 1)} = {0, 1} |
15 | 9, 12, 14 | 3eqtri 2202 | . . 3 ⊢ (0...1) = {0, 1} |
16 | 1p1e2 9038 | . . . . 5 ⊢ (1 + 1) = 2 | |
17 | df-3 8981 | . . . . 5 ⊢ 3 = (2 + 1) | |
18 | 16, 17 | oveq12i 5889 | . . . 4 ⊢ ((1 + 1)...3) = (2...(2 + 1)) |
19 | 2z 9283 | . . . . 5 ⊢ 2 ∈ ℤ | |
20 | fzpr 10079 | . . . . 5 ⊢ (2 ∈ ℤ → (2...(2 + 1)) = {2, (2 + 1)}) | |
21 | 19, 20 | ax-mp 5 | . . . 4 ⊢ (2...(2 + 1)) = {2, (2 + 1)} |
22 | 2p1e3 9054 | . . . . 5 ⊢ (2 + 1) = 3 | |
23 | 22 | preq2i 3675 | . . . 4 ⊢ {2, (2 + 1)} = {2, 3} |
24 | 18, 21, 23 | 3eqtri 2202 | . . 3 ⊢ ((1 + 1)...3) = {2, 3} |
25 | 15, 24 | uneq12i 3289 | . 2 ⊢ ((0...1) ∪ ((1 + 1)...3)) = ({0, 1} ∪ {2, 3}) |
26 | 7, 25 | eqtri 2198 | 1 ⊢ (0...3) = ({0, 1} ∪ {2, 3}) |
Colors of variables: wff set class |
Syntax hints: = wceq 1353 ∈ wcel 2148 ∪ cun 3129 {cpr 3595 class class class wbr 4005 (class class class)co 5877 0cc0 7813 1c1 7814 + caddc 7816 ≤ cle 7995 2c2 8972 3c3 8973 ℕ0cn0 9178 ℤcz 9255 ...cfz 10010 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-sep 4123 ax-pow 4176 ax-pr 4211 ax-un 4435 ax-setind 4538 ax-cnex 7904 ax-resscn 7905 ax-1cn 7906 ax-1re 7907 ax-icn 7908 ax-addcl 7909 ax-addrcl 7910 ax-mulcl 7911 ax-addcom 7913 ax-addass 7915 ax-distr 7917 ax-i2m1 7918 ax-0lt1 7919 ax-0id 7921 ax-rnegex 7922 ax-cnre 7924 ax-pre-ltirr 7925 ax-pre-ltwlin 7926 ax-pre-lttrn 7927 ax-pre-apti 7928 ax-pre-ltadd 7929 |
This theorem depends on definitions: df-bi 117 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-nel 2443 df-ral 2460 df-rex 2461 df-reu 2462 df-rab 2464 df-v 2741 df-sbc 2965 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-int 3847 df-br 4006 df-opab 4067 df-mpt 4068 df-id 4295 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-rn 4639 df-res 4640 df-ima 4641 df-iota 5180 df-fun 5220 df-fn 5221 df-f 5222 df-fv 5226 df-riota 5833 df-ov 5880 df-oprab 5881 df-mpo 5882 df-pnf 7996 df-mnf 7997 df-xr 7998 df-ltxr 7999 df-le 8000 df-sub 8132 df-neg 8133 df-inn 8922 df-2 8980 df-3 8981 df-n0 9179 df-z 9256 df-uz 9531 df-fz 10011 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |