| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fz0to3un2pr | GIF version | ||
| Description: An integer range from 0 to 3 is the union of two unordered pairs. (Contributed by AV, 7-Feb-2021.) |
| Ref | Expression |
|---|---|
| fz0to3un2pr | ⊢ (0...3) = ({0, 1} ∪ {2, 3}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1nn0 9346 | . . . 4 ⊢ 1 ∈ ℕ0 | |
| 2 | 3nn0 9348 | . . . 4 ⊢ 3 ∈ ℕ0 | |
| 3 | 1le3 9283 | . . . 4 ⊢ 1 ≤ 3 | |
| 4 | elfz2nn0 10269 | . . . 4 ⊢ (1 ∈ (0...3) ↔ (1 ∈ ℕ0 ∧ 3 ∈ ℕ0 ∧ 1 ≤ 3)) | |
| 5 | 1, 2, 3, 4 | mpbir3an 1182 | . . 3 ⊢ 1 ∈ (0...3) |
| 6 | fzsplit 10208 | . . 3 ⊢ (1 ∈ (0...3) → (0...3) = ((0...1) ∪ ((1 + 1)...3))) | |
| 7 | 5, 6 | ax-mp 5 | . 2 ⊢ (0...3) = ((0...1) ∪ ((1 + 1)...3)) |
| 8 | 1e0p1 9580 | . . . . 5 ⊢ 1 = (0 + 1) | |
| 9 | 8 | oveq2i 5978 | . . . 4 ⊢ (0...1) = (0...(0 + 1)) |
| 10 | 0z 9418 | . . . . 5 ⊢ 0 ∈ ℤ | |
| 11 | fzpr 10234 | . . . . 5 ⊢ (0 ∈ ℤ → (0...(0 + 1)) = {0, (0 + 1)}) | |
| 12 | 10, 11 | ax-mp 5 | . . . 4 ⊢ (0...(0 + 1)) = {0, (0 + 1)} |
| 13 | 0p1e1 9185 | . . . . 5 ⊢ (0 + 1) = 1 | |
| 14 | 13 | preq2i 3724 | . . . 4 ⊢ {0, (0 + 1)} = {0, 1} |
| 15 | 9, 12, 14 | 3eqtri 2232 | . . 3 ⊢ (0...1) = {0, 1} |
| 16 | 1p1e2 9188 | . . . . 5 ⊢ (1 + 1) = 2 | |
| 17 | df-3 9131 | . . . . 5 ⊢ 3 = (2 + 1) | |
| 18 | 16, 17 | oveq12i 5979 | . . . 4 ⊢ ((1 + 1)...3) = (2...(2 + 1)) |
| 19 | 2z 9435 | . . . . 5 ⊢ 2 ∈ ℤ | |
| 20 | fzpr 10234 | . . . . 5 ⊢ (2 ∈ ℤ → (2...(2 + 1)) = {2, (2 + 1)}) | |
| 21 | 19, 20 | ax-mp 5 | . . . 4 ⊢ (2...(2 + 1)) = {2, (2 + 1)} |
| 22 | 2p1e3 9205 | . . . . 5 ⊢ (2 + 1) = 3 | |
| 23 | 22 | preq2i 3724 | . . . 4 ⊢ {2, (2 + 1)} = {2, 3} |
| 24 | 18, 21, 23 | 3eqtri 2232 | . . 3 ⊢ ((1 + 1)...3) = {2, 3} |
| 25 | 15, 24 | uneq12i 3333 | . 2 ⊢ ((0...1) ∪ ((1 + 1)...3)) = ({0, 1} ∪ {2, 3}) |
| 26 | 7, 25 | eqtri 2228 | 1 ⊢ (0...3) = ({0, 1} ∪ {2, 3}) |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1373 ∈ wcel 2178 ∪ cun 3172 {cpr 3644 class class class wbr 4059 (class class class)co 5967 0cc0 7960 1c1 7961 + caddc 7963 ≤ cle 8143 2c2 9122 3c3 9123 ℕ0cn0 9330 ℤcz 9407 ...cfz 10165 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-cnex 8051 ax-resscn 8052 ax-1cn 8053 ax-1re 8054 ax-icn 8055 ax-addcl 8056 ax-addrcl 8057 ax-mulcl 8058 ax-addcom 8060 ax-addass 8062 ax-distr 8064 ax-i2m1 8065 ax-0lt1 8066 ax-0id 8068 ax-rnegex 8069 ax-cnre 8071 ax-pre-ltirr 8072 ax-pre-ltwlin 8073 ax-pre-lttrn 8074 ax-pre-apti 8075 ax-pre-ltadd 8076 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-nel 2474 df-ral 2491 df-rex 2492 df-reu 2493 df-rab 2495 df-v 2778 df-sbc 3006 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-br 4060 df-opab 4122 df-mpt 4123 df-id 4358 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-fv 5298 df-riota 5922 df-ov 5970 df-oprab 5971 df-mpo 5972 df-pnf 8144 df-mnf 8145 df-xr 8146 df-ltxr 8147 df-le 8148 df-sub 8280 df-neg 8281 df-inn 9072 df-2 9130 df-3 9131 df-n0 9331 df-z 9408 df-uz 9684 df-fz 10166 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |