ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fz0to3un2pr GIF version

Theorem fz0to3un2pr 10280
Description: An integer range from 0 to 3 is the union of two unordered pairs. (Contributed by AV, 7-Feb-2021.)
Assertion
Ref Expression
fz0to3un2pr (0...3) = ({0, 1} ∪ {2, 3})

Proof of Theorem fz0to3un2pr
StepHypRef Expression
1 1nn0 9346 . . . 4 1 ∈ ℕ0
2 3nn0 9348 . . . 4 3 ∈ ℕ0
3 1le3 9283 . . . 4 1 ≤ 3
4 elfz2nn0 10269 . . . 4 (1 ∈ (0...3) ↔ (1 ∈ ℕ0 ∧ 3 ∈ ℕ0 ∧ 1 ≤ 3))
51, 2, 3, 4mpbir3an 1182 . . 3 1 ∈ (0...3)
6 fzsplit 10208 . . 3 (1 ∈ (0...3) → (0...3) = ((0...1) ∪ ((1 + 1)...3)))
75, 6ax-mp 5 . 2 (0...3) = ((0...1) ∪ ((1 + 1)...3))
8 1e0p1 9580 . . . . 5 1 = (0 + 1)
98oveq2i 5978 . . . 4 (0...1) = (0...(0 + 1))
10 0z 9418 . . . . 5 0 ∈ ℤ
11 fzpr 10234 . . . . 5 (0 ∈ ℤ → (0...(0 + 1)) = {0, (0 + 1)})
1210, 11ax-mp 5 . . . 4 (0...(0 + 1)) = {0, (0 + 1)}
13 0p1e1 9185 . . . . 5 (0 + 1) = 1
1413preq2i 3724 . . . 4 {0, (0 + 1)} = {0, 1}
159, 12, 143eqtri 2232 . . 3 (0...1) = {0, 1}
16 1p1e2 9188 . . . . 5 (1 + 1) = 2
17 df-3 9131 . . . . 5 3 = (2 + 1)
1816, 17oveq12i 5979 . . . 4 ((1 + 1)...3) = (2...(2 + 1))
19 2z 9435 . . . . 5 2 ∈ ℤ
20 fzpr 10234 . . . . 5 (2 ∈ ℤ → (2...(2 + 1)) = {2, (2 + 1)})
2119, 20ax-mp 5 . . . 4 (2...(2 + 1)) = {2, (2 + 1)}
22 2p1e3 9205 . . . . 5 (2 + 1) = 3
2322preq2i 3724 . . . 4 {2, (2 + 1)} = {2, 3}
2418, 21, 233eqtri 2232 . . 3 ((1 + 1)...3) = {2, 3}
2515, 24uneq12i 3333 . 2 ((0...1) ∪ ((1 + 1)...3)) = ({0, 1} ∪ {2, 3})
267, 25eqtri 2228 1 (0...3) = ({0, 1} ∪ {2, 3})
Colors of variables: wff set class
Syntax hints:   = wceq 1373  wcel 2178  cun 3172  {cpr 3644   class class class wbr 4059  (class class class)co 5967  0cc0 7960  1c1 7961   + caddc 7963  cle 8143  2c2 9122  3c3 9123  0cn0 9330  cz 9407  ...cfz 10165
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1471  ax-7 1472  ax-gen 1473  ax-ie1 1517  ax-ie2 1518  ax-8 1528  ax-10 1529  ax-11 1530  ax-i12 1531  ax-bndl 1533  ax-4 1534  ax-17 1550  ax-i9 1554  ax-ial 1558  ax-i5r 1559  ax-13 2180  ax-14 2181  ax-ext 2189  ax-sep 4178  ax-pow 4234  ax-pr 4269  ax-un 4498  ax-setind 4603  ax-cnex 8051  ax-resscn 8052  ax-1cn 8053  ax-1re 8054  ax-icn 8055  ax-addcl 8056  ax-addrcl 8057  ax-mulcl 8058  ax-addcom 8060  ax-addass 8062  ax-distr 8064  ax-i2m1 8065  ax-0lt1 8066  ax-0id 8068  ax-rnegex 8069  ax-cnre 8071  ax-pre-ltirr 8072  ax-pre-ltwlin 8073  ax-pre-lttrn 8074  ax-pre-apti 8075  ax-pre-ltadd 8076
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1485  df-sb 1787  df-eu 2058  df-mo 2059  df-clab 2194  df-cleq 2200  df-clel 2203  df-nfc 2339  df-ne 2379  df-nel 2474  df-ral 2491  df-rex 2492  df-reu 2493  df-rab 2495  df-v 2778  df-sbc 3006  df-dif 3176  df-un 3178  df-in 3180  df-ss 3187  df-pw 3628  df-sn 3649  df-pr 3650  df-op 3652  df-uni 3865  df-int 3900  df-br 4060  df-opab 4122  df-mpt 4123  df-id 4358  df-xp 4699  df-rel 4700  df-cnv 4701  df-co 4702  df-dm 4703  df-rn 4704  df-res 4705  df-ima 4706  df-iota 5251  df-fun 5292  df-fn 5293  df-f 5294  df-fv 5298  df-riota 5922  df-ov 5970  df-oprab 5971  df-mpo 5972  df-pnf 8144  df-mnf 8145  df-xr 8146  df-ltxr 8147  df-le 8148  df-sub 8280  df-neg 8281  df-inn 9072  df-2 9130  df-3 9131  df-n0 9331  df-z 9408  df-uz 9684  df-fz 10166
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator