ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fz0to3un2pr GIF version

Theorem fz0to3un2pr 10215
Description: An integer range from 0 to 3 is the union of two unordered pairs. (Contributed by AV, 7-Feb-2021.)
Assertion
Ref Expression
fz0to3un2pr (0...3) = ({0, 1} ∪ {2, 3})

Proof of Theorem fz0to3un2pr
StepHypRef Expression
1 1nn0 9282 . . . 4 1 ∈ ℕ0
2 3nn0 9284 . . . 4 3 ∈ ℕ0
3 1le3 9219 . . . 4 1 ≤ 3
4 elfz2nn0 10204 . . . 4 (1 ∈ (0...3) ↔ (1 ∈ ℕ0 ∧ 3 ∈ ℕ0 ∧ 1 ≤ 3))
51, 2, 3, 4mpbir3an 1181 . . 3 1 ∈ (0...3)
6 fzsplit 10143 . . 3 (1 ∈ (0...3) → (0...3) = ((0...1) ∪ ((1 + 1)...3)))
75, 6ax-mp 5 . 2 (0...3) = ((0...1) ∪ ((1 + 1)...3))
8 1e0p1 9515 . . . . 5 1 = (0 + 1)
98oveq2i 5936 . . . 4 (0...1) = (0...(0 + 1))
10 0z 9354 . . . . 5 0 ∈ ℤ
11 fzpr 10169 . . . . 5 (0 ∈ ℤ → (0...(0 + 1)) = {0, (0 + 1)})
1210, 11ax-mp 5 . . . 4 (0...(0 + 1)) = {0, (0 + 1)}
13 0p1e1 9121 . . . . 5 (0 + 1) = 1
1413preq2i 3704 . . . 4 {0, (0 + 1)} = {0, 1}
159, 12, 143eqtri 2221 . . 3 (0...1) = {0, 1}
16 1p1e2 9124 . . . . 5 (1 + 1) = 2
17 df-3 9067 . . . . 5 3 = (2 + 1)
1816, 17oveq12i 5937 . . . 4 ((1 + 1)...3) = (2...(2 + 1))
19 2z 9371 . . . . 5 2 ∈ ℤ
20 fzpr 10169 . . . . 5 (2 ∈ ℤ → (2...(2 + 1)) = {2, (2 + 1)})
2119, 20ax-mp 5 . . . 4 (2...(2 + 1)) = {2, (2 + 1)}
22 2p1e3 9141 . . . . 5 (2 + 1) = 3
2322preq2i 3704 . . . 4 {2, (2 + 1)} = {2, 3}
2418, 21, 233eqtri 2221 . . 3 ((1 + 1)...3) = {2, 3}
2515, 24uneq12i 3316 . 2 ((0...1) ∪ ((1 + 1)...3)) = ({0, 1} ∪ {2, 3})
267, 25eqtri 2217 1 (0...3) = ({0, 1} ∪ {2, 3})
Colors of variables: wff set class
Syntax hints:   = wceq 1364  wcel 2167  cun 3155  {cpr 3624   class class class wbr 4034  (class class class)co 5925  0cc0 7896  1c1 7897   + caddc 7899  cle 8079  2c2 9058  3c3 9059  0cn0 9266  cz 9343  ...cfz 10100
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1461  ax-7 1462  ax-gen 1463  ax-ie1 1507  ax-ie2 1508  ax-8 1518  ax-10 1519  ax-11 1520  ax-i12 1521  ax-bndl 1523  ax-4 1524  ax-17 1540  ax-i9 1544  ax-ial 1548  ax-i5r 1549  ax-13 2169  ax-14 2170  ax-ext 2178  ax-sep 4152  ax-pow 4208  ax-pr 4243  ax-un 4469  ax-setind 4574  ax-cnex 7987  ax-resscn 7988  ax-1cn 7989  ax-1re 7990  ax-icn 7991  ax-addcl 7992  ax-addrcl 7993  ax-mulcl 7994  ax-addcom 7996  ax-addass 7998  ax-distr 8000  ax-i2m1 8001  ax-0lt1 8002  ax-0id 8004  ax-rnegex 8005  ax-cnre 8007  ax-pre-ltirr 8008  ax-pre-ltwlin 8009  ax-pre-lttrn 8010  ax-pre-apti 8011  ax-pre-ltadd 8012
This theorem depends on definitions:  df-bi 117  df-3or 981  df-3an 982  df-tru 1367  df-fal 1370  df-nf 1475  df-sb 1777  df-eu 2048  df-mo 2049  df-clab 2183  df-cleq 2189  df-clel 2192  df-nfc 2328  df-ne 2368  df-nel 2463  df-ral 2480  df-rex 2481  df-reu 2482  df-rab 2484  df-v 2765  df-sbc 2990  df-dif 3159  df-un 3161  df-in 3163  df-ss 3170  df-pw 3608  df-sn 3629  df-pr 3630  df-op 3632  df-uni 3841  df-int 3876  df-br 4035  df-opab 4096  df-mpt 4097  df-id 4329  df-xp 4670  df-rel 4671  df-cnv 4672  df-co 4673  df-dm 4674  df-rn 4675  df-res 4676  df-ima 4677  df-iota 5220  df-fun 5261  df-fn 5262  df-f 5263  df-fv 5267  df-riota 5880  df-ov 5928  df-oprab 5929  df-mpo 5930  df-pnf 8080  df-mnf 8081  df-xr 8082  df-ltxr 8083  df-le 8084  df-sub 8216  df-neg 8217  df-inn 9008  df-2 9066  df-3 9067  df-n0 9267  df-z 9344  df-uz 9619  df-fz 10101
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator