| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fz0to3un2pr | GIF version | ||
| Description: An integer range from 0 to 3 is the union of two unordered pairs. (Contributed by AV, 7-Feb-2021.) |
| Ref | Expression |
|---|---|
| fz0to3un2pr | ⊢ (0...3) = ({0, 1} ∪ {2, 3}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1nn0 9381 | . . . 4 ⊢ 1 ∈ ℕ0 | |
| 2 | 3nn0 9383 | . . . 4 ⊢ 3 ∈ ℕ0 | |
| 3 | 1le3 9318 | . . . 4 ⊢ 1 ≤ 3 | |
| 4 | elfz2nn0 10304 | . . . 4 ⊢ (1 ∈ (0...3) ↔ (1 ∈ ℕ0 ∧ 3 ∈ ℕ0 ∧ 1 ≤ 3)) | |
| 5 | 1, 2, 3, 4 | mpbir3an 1203 | . . 3 ⊢ 1 ∈ (0...3) |
| 6 | fzsplit 10243 | . . 3 ⊢ (1 ∈ (0...3) → (0...3) = ((0...1) ∪ ((1 + 1)...3))) | |
| 7 | 5, 6 | ax-mp 5 | . 2 ⊢ (0...3) = ((0...1) ∪ ((1 + 1)...3)) |
| 8 | 1e0p1 9615 | . . . . 5 ⊢ 1 = (0 + 1) | |
| 9 | 8 | oveq2i 6011 | . . . 4 ⊢ (0...1) = (0...(0 + 1)) |
| 10 | 0z 9453 | . . . . 5 ⊢ 0 ∈ ℤ | |
| 11 | fzpr 10269 | . . . . 5 ⊢ (0 ∈ ℤ → (0...(0 + 1)) = {0, (0 + 1)}) | |
| 12 | 10, 11 | ax-mp 5 | . . . 4 ⊢ (0...(0 + 1)) = {0, (0 + 1)} |
| 13 | 0p1e1 9220 | . . . . 5 ⊢ (0 + 1) = 1 | |
| 14 | 13 | preq2i 3747 | . . . 4 ⊢ {0, (0 + 1)} = {0, 1} |
| 15 | 9, 12, 14 | 3eqtri 2254 | . . 3 ⊢ (0...1) = {0, 1} |
| 16 | 1p1e2 9223 | . . . . 5 ⊢ (1 + 1) = 2 | |
| 17 | df-3 9166 | . . . . 5 ⊢ 3 = (2 + 1) | |
| 18 | 16, 17 | oveq12i 6012 | . . . 4 ⊢ ((1 + 1)...3) = (2...(2 + 1)) |
| 19 | 2z 9470 | . . . . 5 ⊢ 2 ∈ ℤ | |
| 20 | fzpr 10269 | . . . . 5 ⊢ (2 ∈ ℤ → (2...(2 + 1)) = {2, (2 + 1)}) | |
| 21 | 19, 20 | ax-mp 5 | . . . 4 ⊢ (2...(2 + 1)) = {2, (2 + 1)} |
| 22 | 2p1e3 9240 | . . . . 5 ⊢ (2 + 1) = 3 | |
| 23 | 22 | preq2i 3747 | . . . 4 ⊢ {2, (2 + 1)} = {2, 3} |
| 24 | 18, 21, 23 | 3eqtri 2254 | . . 3 ⊢ ((1 + 1)...3) = {2, 3} |
| 25 | 15, 24 | uneq12i 3356 | . 2 ⊢ ((0...1) ∪ ((1 + 1)...3)) = ({0, 1} ∪ {2, 3}) |
| 26 | 7, 25 | eqtri 2250 | 1 ⊢ (0...3) = ({0, 1} ∪ {2, 3}) |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1395 ∈ wcel 2200 ∪ cun 3195 {cpr 3667 class class class wbr 4082 (class class class)co 6000 0cc0 7995 1c1 7996 + caddc 7998 ≤ cle 8178 2c2 9157 3c3 9158 ℕ0cn0 9365 ℤcz 9442 ...cfz 10200 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-sep 4201 ax-pow 4257 ax-pr 4292 ax-un 4523 ax-setind 4628 ax-cnex 8086 ax-resscn 8087 ax-1cn 8088 ax-1re 8089 ax-icn 8090 ax-addcl 8091 ax-addrcl 8092 ax-mulcl 8093 ax-addcom 8095 ax-addass 8097 ax-distr 8099 ax-i2m1 8100 ax-0lt1 8101 ax-0id 8103 ax-rnegex 8104 ax-cnre 8106 ax-pre-ltirr 8107 ax-pre-ltwlin 8108 ax-pre-lttrn 8109 ax-pre-apti 8110 ax-pre-ltadd 8111 |
| This theorem depends on definitions: df-bi 117 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-br 4083 df-opab 4145 df-mpt 4146 df-id 4383 df-xp 4724 df-rel 4725 df-cnv 4726 df-co 4727 df-dm 4728 df-rn 4729 df-res 4730 df-ima 4731 df-iota 5277 df-fun 5319 df-fn 5320 df-f 5321 df-fv 5325 df-riota 5953 df-ov 6003 df-oprab 6004 df-mpo 6005 df-pnf 8179 df-mnf 8180 df-xr 8181 df-ltxr 8182 df-le 8183 df-sub 8315 df-neg 8316 df-inn 9107 df-2 9165 df-3 9166 df-n0 9366 df-z 9443 df-uz 9719 df-fz 10201 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |