| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > fz0to3un2pr | GIF version | ||
| Description: An integer range from 0 to 3 is the union of two unordered pairs. (Contributed by AV, 7-Feb-2021.) | 
| Ref | Expression | 
|---|---|
| fz0to3un2pr | ⊢ (0...3) = ({0, 1} ∪ {2, 3}) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | 1nn0 9265 | . . . 4 ⊢ 1 ∈ ℕ0 | |
| 2 | 3nn0 9267 | . . . 4 ⊢ 3 ∈ ℕ0 | |
| 3 | 1le3 9202 | . . . 4 ⊢ 1 ≤ 3 | |
| 4 | elfz2nn0 10187 | . . . 4 ⊢ (1 ∈ (0...3) ↔ (1 ∈ ℕ0 ∧ 3 ∈ ℕ0 ∧ 1 ≤ 3)) | |
| 5 | 1, 2, 3, 4 | mpbir3an 1181 | . . 3 ⊢ 1 ∈ (0...3) | 
| 6 | fzsplit 10126 | . . 3 ⊢ (1 ∈ (0...3) → (0...3) = ((0...1) ∪ ((1 + 1)...3))) | |
| 7 | 5, 6 | ax-mp 5 | . 2 ⊢ (0...3) = ((0...1) ∪ ((1 + 1)...3)) | 
| 8 | 1e0p1 9498 | . . . . 5 ⊢ 1 = (0 + 1) | |
| 9 | 8 | oveq2i 5933 | . . . 4 ⊢ (0...1) = (0...(0 + 1)) | 
| 10 | 0z 9337 | . . . . 5 ⊢ 0 ∈ ℤ | |
| 11 | fzpr 10152 | . . . . 5 ⊢ (0 ∈ ℤ → (0...(0 + 1)) = {0, (0 + 1)}) | |
| 12 | 10, 11 | ax-mp 5 | . . . 4 ⊢ (0...(0 + 1)) = {0, (0 + 1)} | 
| 13 | 0p1e1 9104 | . . . . 5 ⊢ (0 + 1) = 1 | |
| 14 | 13 | preq2i 3703 | . . . 4 ⊢ {0, (0 + 1)} = {0, 1} | 
| 15 | 9, 12, 14 | 3eqtri 2221 | . . 3 ⊢ (0...1) = {0, 1} | 
| 16 | 1p1e2 9107 | . . . . 5 ⊢ (1 + 1) = 2 | |
| 17 | df-3 9050 | . . . . 5 ⊢ 3 = (2 + 1) | |
| 18 | 16, 17 | oveq12i 5934 | . . . 4 ⊢ ((1 + 1)...3) = (2...(2 + 1)) | 
| 19 | 2z 9354 | . . . . 5 ⊢ 2 ∈ ℤ | |
| 20 | fzpr 10152 | . . . . 5 ⊢ (2 ∈ ℤ → (2...(2 + 1)) = {2, (2 + 1)}) | |
| 21 | 19, 20 | ax-mp 5 | . . . 4 ⊢ (2...(2 + 1)) = {2, (2 + 1)} | 
| 22 | 2p1e3 9124 | . . . . 5 ⊢ (2 + 1) = 3 | |
| 23 | 22 | preq2i 3703 | . . . 4 ⊢ {2, (2 + 1)} = {2, 3} | 
| 24 | 18, 21, 23 | 3eqtri 2221 | . . 3 ⊢ ((1 + 1)...3) = {2, 3} | 
| 25 | 15, 24 | uneq12i 3315 | . 2 ⊢ ((0...1) ∪ ((1 + 1)...3)) = ({0, 1} ∪ {2, 3}) | 
| 26 | 7, 25 | eqtri 2217 | 1 ⊢ (0...3) = ({0, 1} ∪ {2, 3}) | 
| Colors of variables: wff set class | 
| Syntax hints: = wceq 1364 ∈ wcel 2167 ∪ cun 3155 {cpr 3623 class class class wbr 4033 (class class class)co 5922 0cc0 7879 1c1 7880 + caddc 7882 ≤ cle 8062 2c2 9041 3c3 9042 ℕ0cn0 9249 ℤcz 9326 ...cfz 10083 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-13 2169 ax-14 2170 ax-ext 2178 ax-sep 4151 ax-pow 4207 ax-pr 4242 ax-un 4468 ax-setind 4573 ax-cnex 7970 ax-resscn 7971 ax-1cn 7972 ax-1re 7973 ax-icn 7974 ax-addcl 7975 ax-addrcl 7976 ax-mulcl 7977 ax-addcom 7979 ax-addass 7981 ax-distr 7983 ax-i2m1 7984 ax-0lt1 7985 ax-0id 7987 ax-rnegex 7988 ax-cnre 7990 ax-pre-ltirr 7991 ax-pre-ltwlin 7992 ax-pre-lttrn 7993 ax-pre-apti 7994 ax-pre-ltadd 7995 | 
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1475 df-sb 1777 df-eu 2048 df-mo 2049 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ne 2368 df-nel 2463 df-ral 2480 df-rex 2481 df-reu 2482 df-rab 2484 df-v 2765 df-sbc 2990 df-dif 3159 df-un 3161 df-in 3163 df-ss 3170 df-pw 3607 df-sn 3628 df-pr 3629 df-op 3631 df-uni 3840 df-int 3875 df-br 4034 df-opab 4095 df-mpt 4096 df-id 4328 df-xp 4669 df-rel 4670 df-cnv 4671 df-co 4672 df-dm 4673 df-rn 4674 df-res 4675 df-ima 4676 df-iota 5219 df-fun 5260 df-fn 5261 df-f 5262 df-fv 5266 df-riota 5877 df-ov 5925 df-oprab 5926 df-mpo 5927 df-pnf 8063 df-mnf 8064 df-xr 8065 df-ltxr 8066 df-le 8067 df-sub 8199 df-neg 8200 df-inn 8991 df-2 9049 df-3 9050 df-n0 9250 df-z 9327 df-uz 9602 df-fz 10084 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |