| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > fz0to3un2pr | GIF version | ||
| Description: An integer range from 0 to 3 is the union of two unordered pairs. (Contributed by AV, 7-Feb-2021.) |
| Ref | Expression |
|---|---|
| fz0to3un2pr | ⊢ (0...3) = ({0, 1} ∪ {2, 3}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1nn0 9310 | . . . 4 ⊢ 1 ∈ ℕ0 | |
| 2 | 3nn0 9312 | . . . 4 ⊢ 3 ∈ ℕ0 | |
| 3 | 1le3 9247 | . . . 4 ⊢ 1 ≤ 3 | |
| 4 | elfz2nn0 10233 | . . . 4 ⊢ (1 ∈ (0...3) ↔ (1 ∈ ℕ0 ∧ 3 ∈ ℕ0 ∧ 1 ≤ 3)) | |
| 5 | 1, 2, 3, 4 | mpbir3an 1181 | . . 3 ⊢ 1 ∈ (0...3) |
| 6 | fzsplit 10172 | . . 3 ⊢ (1 ∈ (0...3) → (0...3) = ((0...1) ∪ ((1 + 1)...3))) | |
| 7 | 5, 6 | ax-mp 5 | . 2 ⊢ (0...3) = ((0...1) ∪ ((1 + 1)...3)) |
| 8 | 1e0p1 9544 | . . . . 5 ⊢ 1 = (0 + 1) | |
| 9 | 8 | oveq2i 5954 | . . . 4 ⊢ (0...1) = (0...(0 + 1)) |
| 10 | 0z 9382 | . . . . 5 ⊢ 0 ∈ ℤ | |
| 11 | fzpr 10198 | . . . . 5 ⊢ (0 ∈ ℤ → (0...(0 + 1)) = {0, (0 + 1)}) | |
| 12 | 10, 11 | ax-mp 5 | . . . 4 ⊢ (0...(0 + 1)) = {0, (0 + 1)} |
| 13 | 0p1e1 9149 | . . . . 5 ⊢ (0 + 1) = 1 | |
| 14 | 13 | preq2i 3713 | . . . 4 ⊢ {0, (0 + 1)} = {0, 1} |
| 15 | 9, 12, 14 | 3eqtri 2229 | . . 3 ⊢ (0...1) = {0, 1} |
| 16 | 1p1e2 9152 | . . . . 5 ⊢ (1 + 1) = 2 | |
| 17 | df-3 9095 | . . . . 5 ⊢ 3 = (2 + 1) | |
| 18 | 16, 17 | oveq12i 5955 | . . . 4 ⊢ ((1 + 1)...3) = (2...(2 + 1)) |
| 19 | 2z 9399 | . . . . 5 ⊢ 2 ∈ ℤ | |
| 20 | fzpr 10198 | . . . . 5 ⊢ (2 ∈ ℤ → (2...(2 + 1)) = {2, (2 + 1)}) | |
| 21 | 19, 20 | ax-mp 5 | . . . 4 ⊢ (2...(2 + 1)) = {2, (2 + 1)} |
| 22 | 2p1e3 9169 | . . . . 5 ⊢ (2 + 1) = 3 | |
| 23 | 22 | preq2i 3713 | . . . 4 ⊢ {2, (2 + 1)} = {2, 3} |
| 24 | 18, 21, 23 | 3eqtri 2229 | . . 3 ⊢ ((1 + 1)...3) = {2, 3} |
| 25 | 15, 24 | uneq12i 3324 | . 2 ⊢ ((0...1) ∪ ((1 + 1)...3)) = ({0, 1} ∪ {2, 3}) |
| 26 | 7, 25 | eqtri 2225 | 1 ⊢ (0...3) = ({0, 1} ∪ {2, 3}) |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1372 ∈ wcel 2175 ∪ cun 3163 {cpr 3633 class class class wbr 4043 (class class class)co 5943 0cc0 7924 1c1 7925 + caddc 7927 ≤ cle 8107 2c2 9086 3c3 9087 ℕ0cn0 9294 ℤcz 9371 ...cfz 10129 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-13 2177 ax-14 2178 ax-ext 2186 ax-sep 4161 ax-pow 4217 ax-pr 4252 ax-un 4479 ax-setind 4584 ax-cnex 8015 ax-resscn 8016 ax-1cn 8017 ax-1re 8018 ax-icn 8019 ax-addcl 8020 ax-addrcl 8021 ax-mulcl 8022 ax-addcom 8024 ax-addass 8026 ax-distr 8028 ax-i2m1 8029 ax-0lt1 8030 ax-0id 8032 ax-rnegex 8033 ax-cnre 8035 ax-pre-ltirr 8036 ax-pre-ltwlin 8037 ax-pre-lttrn 8038 ax-pre-apti 8039 ax-pre-ltadd 8040 |
| This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1375 df-fal 1378 df-nf 1483 df-sb 1785 df-eu 2056 df-mo 2057 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ne 2376 df-nel 2471 df-ral 2488 df-rex 2489 df-reu 2490 df-rab 2492 df-v 2773 df-sbc 2998 df-dif 3167 df-un 3169 df-in 3171 df-ss 3178 df-pw 3617 df-sn 3638 df-pr 3639 df-op 3641 df-uni 3850 df-int 3885 df-br 4044 df-opab 4105 df-mpt 4106 df-id 4339 df-xp 4680 df-rel 4681 df-cnv 4682 df-co 4683 df-dm 4684 df-rn 4685 df-res 4686 df-ima 4687 df-iota 5231 df-fun 5272 df-fn 5273 df-f 5274 df-fv 5278 df-riota 5898 df-ov 5946 df-oprab 5947 df-mpo 5948 df-pnf 8108 df-mnf 8109 df-xr 8110 df-ltxr 8111 df-le 8112 df-sub 8244 df-neg 8245 df-inn 9036 df-2 9094 df-3 9095 df-n0 9295 df-z 9372 df-uz 9648 df-fz 10130 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |