![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > 2lgsoddprmlem3c | GIF version |
Description: Lemma 3 for 2lgsoddprmlem3 14498. (Contributed by AV, 20-Jul-2021.) |
Ref | Expression |
---|---|
2lgsoddprmlem3c | ⊢ (((5↑2) − 1) / 8) = 3 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-5 8983 | . . . . . . 7 ⊢ 5 = (4 + 1) | |
2 | 1 | oveq1i 5887 | . . . . . 6 ⊢ (5↑2) = ((4 + 1)↑2) |
3 | 4cn 8999 | . . . . . . 7 ⊢ 4 ∈ ℂ | |
4 | binom21 10635 | . . . . . . 7 ⊢ (4 ∈ ℂ → ((4 + 1)↑2) = (((4↑2) + (2 · 4)) + 1)) | |
5 | 3, 4 | ax-mp 5 | . . . . . 6 ⊢ ((4 + 1)↑2) = (((4↑2) + (2 · 4)) + 1) |
6 | 2, 5 | eqtri 2198 | . . . . 5 ⊢ (5↑2) = (((4↑2) + (2 · 4)) + 1) |
7 | 6 | oveq1i 5887 | . . . 4 ⊢ ((5↑2) − 1) = ((((4↑2) + (2 · 4)) + 1) − 1) |
8 | 3cn 8996 | . . . . . 6 ⊢ 3 ∈ ℂ | |
9 | 8cn 9007 | . . . . . 6 ⊢ 8 ∈ ℂ | |
10 | 8, 9 | mulcli 7964 | . . . . 5 ⊢ (3 · 8) ∈ ℂ |
11 | ax-1cn 7906 | . . . . 5 ⊢ 1 ∈ ℂ | |
12 | sq4e2t8 10620 | . . . . . . . 8 ⊢ (4↑2) = (2 · 8) | |
13 | 2cn 8992 | . . . . . . . . 9 ⊢ 2 ∈ ℂ | |
14 | 4t2e8 9079 | . . . . . . . . . 10 ⊢ (4 · 2) = 8 | |
15 | 9 | mullidi 7962 | . . . . . . . . . 10 ⊢ (1 · 8) = 8 |
16 | 14, 15 | eqtr4i 2201 | . . . . . . . . 9 ⊢ (4 · 2) = (1 · 8) |
17 | 3, 13, 16 | mulcomli 7966 | . . . . . . . 8 ⊢ (2 · 4) = (1 · 8) |
18 | 12, 17 | oveq12i 5889 | . . . . . . 7 ⊢ ((4↑2) + (2 · 4)) = ((2 · 8) + (1 · 8)) |
19 | 13, 11, 9 | adddiri 7970 | . . . . . . 7 ⊢ ((2 + 1) · 8) = ((2 · 8) + (1 · 8)) |
20 | 2p1e3 9054 | . . . . . . . 8 ⊢ (2 + 1) = 3 | |
21 | 20 | oveq1i 5887 | . . . . . . 7 ⊢ ((2 + 1) · 8) = (3 · 8) |
22 | 18, 19, 21 | 3eqtr2i 2204 | . . . . . 6 ⊢ ((4↑2) + (2 · 4)) = (3 · 8) |
23 | 22 | oveq1i 5887 | . . . . 5 ⊢ (((4↑2) + (2 · 4)) + 1) = ((3 · 8) + 1) |
24 | 10, 11, 23 | mvrraddi 8176 | . . . 4 ⊢ ((((4↑2) + (2 · 4)) + 1) − 1) = (3 · 8) |
25 | 7, 24 | eqtri 2198 | . . 3 ⊢ ((5↑2) − 1) = (3 · 8) |
26 | 25 | oveq1i 5887 | . 2 ⊢ (((5↑2) − 1) / 8) = ((3 · 8) / 8) |
27 | 8re 9006 | . . . 4 ⊢ 8 ∈ ℝ | |
28 | 8pos 9024 | . . . 4 ⊢ 0 < 8 | |
29 | 27, 28 | gt0ap0ii 8587 | . . 3 ⊢ 8 # 0 |
30 | 8, 9, 29 | divcanap4i 8718 | . 2 ⊢ ((3 · 8) / 8) = 3 |
31 | 26, 30 | eqtri 2198 | 1 ⊢ (((5↑2) − 1) / 8) = 3 |
Colors of variables: wff set class |
Syntax hints: = wceq 1353 ∈ wcel 2148 (class class class)co 5877 ℂcc 7811 1c1 7814 + caddc 7816 · cmul 7818 − cmin 8130 / cdiv 8631 2c2 8972 3c3 8973 4c4 8974 5c5 8975 8c8 8978 ↑cexp 10521 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 614 ax-in2 615 ax-io 709 ax-5 1447 ax-7 1448 ax-gen 1449 ax-ie1 1493 ax-ie2 1494 ax-8 1504 ax-10 1505 ax-11 1506 ax-i12 1507 ax-bndl 1509 ax-4 1510 ax-17 1526 ax-i9 1530 ax-ial 1534 ax-i5r 1535 ax-13 2150 ax-14 2151 ax-ext 2159 ax-coll 4120 ax-sep 4123 ax-nul 4131 ax-pow 4176 ax-pr 4211 ax-un 4435 ax-setind 4538 ax-iinf 4589 ax-cnex 7904 ax-resscn 7905 ax-1cn 7906 ax-1re 7907 ax-icn 7908 ax-addcl 7909 ax-addrcl 7910 ax-mulcl 7911 ax-mulrcl 7912 ax-addcom 7913 ax-mulcom 7914 ax-addass 7915 ax-mulass 7916 ax-distr 7917 ax-i2m1 7918 ax-0lt1 7919 ax-1rid 7920 ax-0id 7921 ax-rnegex 7922 ax-precex 7923 ax-cnre 7924 ax-pre-ltirr 7925 ax-pre-ltwlin 7926 ax-pre-lttrn 7927 ax-pre-apti 7928 ax-pre-ltadd 7929 ax-pre-mulgt0 7930 ax-pre-mulext 7931 |
This theorem depends on definitions: df-bi 117 df-dc 835 df-3or 979 df-3an 980 df-tru 1356 df-fal 1359 df-nf 1461 df-sb 1763 df-eu 2029 df-mo 2030 df-clab 2164 df-cleq 2170 df-clel 2173 df-nfc 2308 df-ne 2348 df-nel 2443 df-ral 2460 df-rex 2461 df-reu 2462 df-rmo 2463 df-rab 2464 df-v 2741 df-sbc 2965 df-csb 3060 df-dif 3133 df-un 3135 df-in 3137 df-ss 3144 df-nul 3425 df-if 3537 df-pw 3579 df-sn 3600 df-pr 3601 df-op 3603 df-uni 3812 df-int 3847 df-iun 3890 df-br 4006 df-opab 4067 df-mpt 4068 df-tr 4104 df-id 4295 df-po 4298 df-iso 4299 df-iord 4368 df-on 4370 df-ilim 4371 df-suc 4373 df-iom 4592 df-xp 4634 df-rel 4635 df-cnv 4636 df-co 4637 df-dm 4638 df-rn 4639 df-res 4640 df-ima 4641 df-iota 5180 df-fun 5220 df-fn 5221 df-f 5222 df-f1 5223 df-fo 5224 df-f1o 5225 df-fv 5226 df-riota 5833 df-ov 5880 df-oprab 5881 df-mpo 5882 df-1st 6143 df-2nd 6144 df-recs 6308 df-frec 6394 df-pnf 7996 df-mnf 7997 df-xr 7998 df-ltxr 7999 df-le 8000 df-sub 8132 df-neg 8133 df-reap 8534 df-ap 8541 df-div 8632 df-inn 8922 df-2 8980 df-3 8981 df-4 8982 df-5 8983 df-6 8984 df-7 8985 df-8 8986 df-n0 9179 df-z 9256 df-uz 9531 df-seqfrec 10448 df-exp 10522 |
This theorem is referenced by: 2lgsoddprmlem3 14498 |
Copyright terms: Public domain | W3C validator |