| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 2lgsoddprmlem3c | GIF version | ||
| Description: Lemma 3 for 2lgsoddprmlem3 15638. (Contributed by AV, 20-Jul-2021.) |
| Ref | Expression |
|---|---|
| 2lgsoddprmlem3c | ⊢ (((5↑2) − 1) / 8) = 3 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-5 9111 | . . . . . . 7 ⊢ 5 = (4 + 1) | |
| 2 | 1 | oveq1i 5964 | . . . . . 6 ⊢ (5↑2) = ((4 + 1)↑2) |
| 3 | 4cn 9127 | . . . . . . 7 ⊢ 4 ∈ ℂ | |
| 4 | binom21 10810 | . . . . . . 7 ⊢ (4 ∈ ℂ → ((4 + 1)↑2) = (((4↑2) + (2 · 4)) + 1)) | |
| 5 | 3, 4 | ax-mp 5 | . . . . . 6 ⊢ ((4 + 1)↑2) = (((4↑2) + (2 · 4)) + 1) |
| 6 | 2, 5 | eqtri 2227 | . . . . 5 ⊢ (5↑2) = (((4↑2) + (2 · 4)) + 1) |
| 7 | 6 | oveq1i 5964 | . . . 4 ⊢ ((5↑2) − 1) = ((((4↑2) + (2 · 4)) + 1) − 1) |
| 8 | 3cn 9124 | . . . . . 6 ⊢ 3 ∈ ℂ | |
| 9 | 8cn 9135 | . . . . . 6 ⊢ 8 ∈ ℂ | |
| 10 | 8, 9 | mulcli 8090 | . . . . 5 ⊢ (3 · 8) ∈ ℂ |
| 11 | ax-1cn 8031 | . . . . 5 ⊢ 1 ∈ ℂ | |
| 12 | sq4e2t8 10795 | . . . . . . . 8 ⊢ (4↑2) = (2 · 8) | |
| 13 | 2cn 9120 | . . . . . . . . 9 ⊢ 2 ∈ ℂ | |
| 14 | 4t2e8 9208 | . . . . . . . . . 10 ⊢ (4 · 2) = 8 | |
| 15 | 9 | mullidi 8088 | . . . . . . . . . 10 ⊢ (1 · 8) = 8 |
| 16 | 14, 15 | eqtr4i 2230 | . . . . . . . . 9 ⊢ (4 · 2) = (1 · 8) |
| 17 | 3, 13, 16 | mulcomli 8092 | . . . . . . . 8 ⊢ (2 · 4) = (1 · 8) |
| 18 | 12, 17 | oveq12i 5966 | . . . . . . 7 ⊢ ((4↑2) + (2 · 4)) = ((2 · 8) + (1 · 8)) |
| 19 | 13, 11, 9 | adddiri 8096 | . . . . . . 7 ⊢ ((2 + 1) · 8) = ((2 · 8) + (1 · 8)) |
| 20 | 2p1e3 9183 | . . . . . . . 8 ⊢ (2 + 1) = 3 | |
| 21 | 20 | oveq1i 5964 | . . . . . . 7 ⊢ ((2 + 1) · 8) = (3 · 8) |
| 22 | 18, 19, 21 | 3eqtr2i 2233 | . . . . . 6 ⊢ ((4↑2) + (2 · 4)) = (3 · 8) |
| 23 | 22 | oveq1i 5964 | . . . . 5 ⊢ (((4↑2) + (2 · 4)) + 1) = ((3 · 8) + 1) |
| 24 | 10, 11, 23 | mvrraddi 8302 | . . . 4 ⊢ ((((4↑2) + (2 · 4)) + 1) − 1) = (3 · 8) |
| 25 | 7, 24 | eqtri 2227 | . . 3 ⊢ ((5↑2) − 1) = (3 · 8) |
| 26 | 25 | oveq1i 5964 | . 2 ⊢ (((5↑2) − 1) / 8) = ((3 · 8) / 8) |
| 27 | 8re 9134 | . . . 4 ⊢ 8 ∈ ℝ | |
| 28 | 8pos 9152 | . . . 4 ⊢ 0 < 8 | |
| 29 | 27, 28 | gt0ap0ii 8714 | . . 3 ⊢ 8 # 0 |
| 30 | 8, 9, 29 | divcanap4i 8845 | . 2 ⊢ ((3 · 8) / 8) = 3 |
| 31 | 26, 30 | eqtri 2227 | 1 ⊢ (((5↑2) − 1) / 8) = 3 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1373 ∈ wcel 2177 (class class class)co 5954 ℂcc 7936 1c1 7939 + caddc 7941 · cmul 7943 − cmin 8256 / cdiv 8758 2c2 9100 3c3 9101 4c4 9102 5c5 9103 8c8 9106 ↑cexp 10696 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2179 ax-14 2180 ax-ext 2188 ax-coll 4164 ax-sep 4167 ax-nul 4175 ax-pow 4223 ax-pr 4258 ax-un 4485 ax-setind 4590 ax-iinf 4641 ax-cnex 8029 ax-resscn 8030 ax-1cn 8031 ax-1re 8032 ax-icn 8033 ax-addcl 8034 ax-addrcl 8035 ax-mulcl 8036 ax-mulrcl 8037 ax-addcom 8038 ax-mulcom 8039 ax-addass 8040 ax-mulass 8041 ax-distr 8042 ax-i2m1 8043 ax-0lt1 8044 ax-1rid 8045 ax-0id 8046 ax-rnegex 8047 ax-precex 8048 ax-cnre 8049 ax-pre-ltirr 8050 ax-pre-ltwlin 8051 ax-pre-lttrn 8052 ax-pre-apti 8053 ax-pre-ltadd 8054 ax-pre-mulgt0 8055 ax-pre-mulext 8056 |
| This theorem depends on definitions: df-bi 117 df-dc 837 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2193 df-cleq 2199 df-clel 2202 df-nfc 2338 df-ne 2378 df-nel 2473 df-ral 2490 df-rex 2491 df-reu 2492 df-rmo 2493 df-rab 2494 df-v 2775 df-sbc 3001 df-csb 3096 df-dif 3170 df-un 3172 df-in 3174 df-ss 3181 df-nul 3463 df-if 3574 df-pw 3620 df-sn 3641 df-pr 3642 df-op 3644 df-uni 3854 df-int 3889 df-iun 3932 df-br 4049 df-opab 4111 df-mpt 4112 df-tr 4148 df-id 4345 df-po 4348 df-iso 4349 df-iord 4418 df-on 4420 df-ilim 4421 df-suc 4423 df-iom 4644 df-xp 4686 df-rel 4687 df-cnv 4688 df-co 4689 df-dm 4690 df-rn 4691 df-res 4692 df-ima 4693 df-iota 5238 df-fun 5279 df-fn 5280 df-f 5281 df-f1 5282 df-fo 5283 df-f1o 5284 df-fv 5285 df-riota 5909 df-ov 5957 df-oprab 5958 df-mpo 5959 df-1st 6236 df-2nd 6237 df-recs 6401 df-frec 6487 df-pnf 8122 df-mnf 8123 df-xr 8124 df-ltxr 8125 df-le 8126 df-sub 8258 df-neg 8259 df-reap 8661 df-ap 8668 df-div 8759 df-inn 9050 df-2 9108 df-3 9109 df-4 9110 df-5 9111 df-6 9112 df-7 9113 df-8 9114 df-n0 9309 df-z 9386 df-uz 9662 df-seqfrec 10606 df-exp 10697 |
| This theorem is referenced by: 2lgsoddprmlem3 15638 |
| Copyright terms: Public domain | W3C validator |