| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 2lgsoddprmlem3c | GIF version | ||
| Description: Lemma 3 for 2lgsoddprmlem3 15775. (Contributed by AV, 20-Jul-2021.) |
| Ref | Expression |
|---|---|
| 2lgsoddprmlem3c | ⊢ (((5↑2) − 1) / 8) = 3 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-5 9160 | . . . . . . 7 ⊢ 5 = (4 + 1) | |
| 2 | 1 | oveq1i 6004 | . . . . . 6 ⊢ (5↑2) = ((4 + 1)↑2) |
| 3 | 4cn 9176 | . . . . . . 7 ⊢ 4 ∈ ℂ | |
| 4 | binom21 10861 | . . . . . . 7 ⊢ (4 ∈ ℂ → ((4 + 1)↑2) = (((4↑2) + (2 · 4)) + 1)) | |
| 5 | 3, 4 | ax-mp 5 | . . . . . 6 ⊢ ((4 + 1)↑2) = (((4↑2) + (2 · 4)) + 1) |
| 6 | 2, 5 | eqtri 2250 | . . . . 5 ⊢ (5↑2) = (((4↑2) + (2 · 4)) + 1) |
| 7 | 6 | oveq1i 6004 | . . . 4 ⊢ ((5↑2) − 1) = ((((4↑2) + (2 · 4)) + 1) − 1) |
| 8 | 3cn 9173 | . . . . . 6 ⊢ 3 ∈ ℂ | |
| 9 | 8cn 9184 | . . . . . 6 ⊢ 8 ∈ ℂ | |
| 10 | 8, 9 | mulcli 8139 | . . . . 5 ⊢ (3 · 8) ∈ ℂ |
| 11 | ax-1cn 8080 | . . . . 5 ⊢ 1 ∈ ℂ | |
| 12 | sq4e2t8 10846 | . . . . . . . 8 ⊢ (4↑2) = (2 · 8) | |
| 13 | 2cn 9169 | . . . . . . . . 9 ⊢ 2 ∈ ℂ | |
| 14 | 4t2e8 9257 | . . . . . . . . . 10 ⊢ (4 · 2) = 8 | |
| 15 | 9 | mullidi 8137 | . . . . . . . . . 10 ⊢ (1 · 8) = 8 |
| 16 | 14, 15 | eqtr4i 2253 | . . . . . . . . 9 ⊢ (4 · 2) = (1 · 8) |
| 17 | 3, 13, 16 | mulcomli 8141 | . . . . . . . 8 ⊢ (2 · 4) = (1 · 8) |
| 18 | 12, 17 | oveq12i 6006 | . . . . . . 7 ⊢ ((4↑2) + (2 · 4)) = ((2 · 8) + (1 · 8)) |
| 19 | 13, 11, 9 | adddiri 8145 | . . . . . . 7 ⊢ ((2 + 1) · 8) = ((2 · 8) + (1 · 8)) |
| 20 | 2p1e3 9232 | . . . . . . . 8 ⊢ (2 + 1) = 3 | |
| 21 | 20 | oveq1i 6004 | . . . . . . 7 ⊢ ((2 + 1) · 8) = (3 · 8) |
| 22 | 18, 19, 21 | 3eqtr2i 2256 | . . . . . 6 ⊢ ((4↑2) + (2 · 4)) = (3 · 8) |
| 23 | 22 | oveq1i 6004 | . . . . 5 ⊢ (((4↑2) + (2 · 4)) + 1) = ((3 · 8) + 1) |
| 24 | 10, 11, 23 | mvrraddi 8351 | . . . 4 ⊢ ((((4↑2) + (2 · 4)) + 1) − 1) = (3 · 8) |
| 25 | 7, 24 | eqtri 2250 | . . 3 ⊢ ((5↑2) − 1) = (3 · 8) |
| 26 | 25 | oveq1i 6004 | . 2 ⊢ (((5↑2) − 1) / 8) = ((3 · 8) / 8) |
| 27 | 8re 9183 | . . . 4 ⊢ 8 ∈ ℝ | |
| 28 | 8pos 9201 | . . . 4 ⊢ 0 < 8 | |
| 29 | 27, 28 | gt0ap0ii 8763 | . . 3 ⊢ 8 # 0 |
| 30 | 8, 9, 29 | divcanap4i 8894 | . 2 ⊢ ((3 · 8) / 8) = 3 |
| 31 | 26, 30 | eqtri 2250 | 1 ⊢ (((5↑2) − 1) / 8) = 3 |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1395 ∈ wcel 2200 (class class class)co 5994 ℂcc 7985 1c1 7988 + caddc 7990 · cmul 7992 − cmin 8305 / cdiv 8807 2c2 9149 3c3 9150 4c4 9151 5c5 9152 8c8 9155 ↑cexp 10747 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-13 2202 ax-14 2203 ax-ext 2211 ax-coll 4198 ax-sep 4201 ax-nul 4209 ax-pow 4257 ax-pr 4292 ax-un 4521 ax-setind 4626 ax-iinf 4677 ax-cnex 8078 ax-resscn 8079 ax-1cn 8080 ax-1re 8081 ax-icn 8082 ax-addcl 8083 ax-addrcl 8084 ax-mulcl 8085 ax-mulrcl 8086 ax-addcom 8087 ax-mulcom 8088 ax-addass 8089 ax-mulass 8090 ax-distr 8091 ax-i2m1 8092 ax-0lt1 8093 ax-1rid 8094 ax-0id 8095 ax-rnegex 8096 ax-precex 8097 ax-cnre 8098 ax-pre-ltirr 8099 ax-pre-ltwlin 8100 ax-pre-lttrn 8101 ax-pre-apti 8102 ax-pre-ltadd 8103 ax-pre-mulgt0 8104 ax-pre-mulext 8105 |
| This theorem depends on definitions: df-bi 117 df-dc 840 df-3or 1003 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-nel 2496 df-ral 2513 df-rex 2514 df-reu 2515 df-rmo 2516 df-rab 2517 df-v 2801 df-sbc 3029 df-csb 3125 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-nul 3492 df-if 3603 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3888 df-int 3923 df-iun 3966 df-br 4083 df-opab 4145 df-mpt 4146 df-tr 4182 df-id 4381 df-po 4384 df-iso 4385 df-iord 4454 df-on 4456 df-ilim 4457 df-suc 4459 df-iom 4680 df-xp 4722 df-rel 4723 df-cnv 4724 df-co 4725 df-dm 4726 df-rn 4727 df-res 4728 df-ima 4729 df-iota 5274 df-fun 5316 df-fn 5317 df-f 5318 df-f1 5319 df-fo 5320 df-f1o 5321 df-fv 5322 df-riota 5947 df-ov 5997 df-oprab 5998 df-mpo 5999 df-1st 6276 df-2nd 6277 df-recs 6441 df-frec 6527 df-pnf 8171 df-mnf 8172 df-xr 8173 df-ltxr 8174 df-le 8175 df-sub 8307 df-neg 8308 df-reap 8710 df-ap 8717 df-div 8808 df-inn 9099 df-2 9157 df-3 9158 df-4 9159 df-5 9160 df-6 9161 df-7 9162 df-8 9163 df-n0 9358 df-z 9435 df-uz 9711 df-seqfrec 10657 df-exp 10748 |
| This theorem is referenced by: 2lgsoddprmlem3 15775 |
| Copyright terms: Public domain | W3C validator |