ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  flodddiv4 GIF version

Theorem flodddiv4 12442
Description: The floor of an odd integer divided by 4. (Contributed by AV, 17-Jun-2021.)
Assertion
Ref Expression
flodddiv4 ((𝑀 ∈ ℤ ∧ 𝑁 = ((2 · 𝑀) + 1)) → (⌊‘(𝑁 / 4)) = if(2 ∥ 𝑀, (𝑀 / 2), ((𝑀 − 1) / 2)))

Proof of Theorem flodddiv4
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 oveq1 6007 . . . 4 (𝑁 = ((2 · 𝑀) + 1) → (𝑁 / 4) = (((2 · 𝑀) + 1) / 4))
2 2cnd 9179 . . . . . . 7 (𝑀 ∈ ℤ → 2 ∈ ℂ)
3 zcn 9447 . . . . . . 7 (𝑀 ∈ ℤ → 𝑀 ∈ ℂ)
42, 3mulcld 8163 . . . . . 6 (𝑀 ∈ ℤ → (2 · 𝑀) ∈ ℂ)
5 1cnd 8158 . . . . . 6 (𝑀 ∈ ℤ → 1 ∈ ℂ)
6 4cn 9184 . . . . . . 7 4 ∈ ℂ
76a1i 9 . . . . . 6 (𝑀 ∈ ℤ → 4 ∈ ℂ)
8 4ap0 9205 . . . . . . 7 4 # 0
98a1i 9 . . . . . 6 (𝑀 ∈ ℤ → 4 # 0)
104, 5, 7, 9divdirapd 8972 . . . . 5 (𝑀 ∈ ℤ → (((2 · 𝑀) + 1) / 4) = (((2 · 𝑀) / 4) + (1 / 4)))
11 2t2e4 9261 . . . . . . . . . 10 (2 · 2) = 4
1211eqcomi 2233 . . . . . . . . 9 4 = (2 · 2)
1312a1i 9 . . . . . . . 8 (𝑀 ∈ ℤ → 4 = (2 · 2))
1413oveq2d 6016 . . . . . . 7 (𝑀 ∈ ℤ → ((2 · 𝑀) / 4) = ((2 · 𝑀) / (2 · 2)))
15 2ap0 9199 . . . . . . . . 9 2 # 0
1615a1i 9 . . . . . . . 8 (𝑀 ∈ ℤ → 2 # 0)
173, 2, 2, 16, 16divcanap5d 8960 . . . . . . 7 (𝑀 ∈ ℤ → ((2 · 𝑀) / (2 · 2)) = (𝑀 / 2))
1814, 17eqtrd 2262 . . . . . 6 (𝑀 ∈ ℤ → ((2 · 𝑀) / 4) = (𝑀 / 2))
1918oveq1d 6015 . . . . 5 (𝑀 ∈ ℤ → (((2 · 𝑀) / 4) + (1 / 4)) = ((𝑀 / 2) + (1 / 4)))
2010, 19eqtrd 2262 . . . 4 (𝑀 ∈ ℤ → (((2 · 𝑀) + 1) / 4) = ((𝑀 / 2) + (1 / 4)))
211, 20sylan9eqr 2284 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 = ((2 · 𝑀) + 1)) → (𝑁 / 4) = ((𝑀 / 2) + (1 / 4)))
2221fveq2d 5630 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 = ((2 · 𝑀) + 1)) → (⌊‘(𝑁 / 4)) = (⌊‘((𝑀 / 2) + (1 / 4))))
23 iftrue 3607 . . . . . . . 8 (2 ∥ 𝑀 → if(2 ∥ 𝑀, (𝑀 / 2), ((𝑀 − 1) / 2)) = (𝑀 / 2))
2423adantr 276 . . . . . . 7 ((2 ∥ 𝑀𝑀 ∈ ℤ) → if(2 ∥ 𝑀, (𝑀 / 2), ((𝑀 − 1) / 2)) = (𝑀 / 2))
25 1re 8141 . . . . . . . . . 10 1 ∈ ℝ
26 0le1 8624 . . . . . . . . . 10 0 ≤ 1
27 4re 9183 . . . . . . . . . 10 4 ∈ ℝ
28 4pos 9203 . . . . . . . . . 10 0 < 4
29 divge0 9016 . . . . . . . . . 10 (((1 ∈ ℝ ∧ 0 ≤ 1) ∧ (4 ∈ ℝ ∧ 0 < 4)) → 0 ≤ (1 / 4))
3025, 26, 27, 28, 29mp4an 427 . . . . . . . . 9 0 ≤ (1 / 4)
31 1lt4 9281 . . . . . . . . . 10 1 < 4
32 recgt1 9040 . . . . . . . . . . 11 ((4 ∈ ℝ ∧ 0 < 4) → (1 < 4 ↔ (1 / 4) < 1))
3327, 28, 32mp2an 426 . . . . . . . . . 10 (1 < 4 ↔ (1 / 4) < 1)
3431, 33mpbi 145 . . . . . . . . 9 (1 / 4) < 1
3530, 34pm3.2i 272 . . . . . . . 8 (0 ≤ (1 / 4) ∧ (1 / 4) < 1)
36 evend2 12395 . . . . . . . . . 10 (𝑀 ∈ ℤ → (2 ∥ 𝑀 ↔ (𝑀 / 2) ∈ ℤ))
3736biimpac 298 . . . . . . . . 9 ((2 ∥ 𝑀𝑀 ∈ ℤ) → (𝑀 / 2) ∈ ℤ)
38 4nn 9270 . . . . . . . . . 10 4 ∈ ℕ
39 nnrecq 9836 . . . . . . . . . 10 (4 ∈ ℕ → (1 / 4) ∈ ℚ)
4038, 39ax-mp 5 . . . . . . . . 9 (1 / 4) ∈ ℚ
41 flqbi2 10506 . . . . . . . . 9 (((𝑀 / 2) ∈ ℤ ∧ (1 / 4) ∈ ℚ) → ((⌊‘((𝑀 / 2) + (1 / 4))) = (𝑀 / 2) ↔ (0 ≤ (1 / 4) ∧ (1 / 4) < 1)))
4237, 40, 41sylancl 413 . . . . . . . 8 ((2 ∥ 𝑀𝑀 ∈ ℤ) → ((⌊‘((𝑀 / 2) + (1 / 4))) = (𝑀 / 2) ↔ (0 ≤ (1 / 4) ∧ (1 / 4) < 1)))
4335, 42mpbiri 168 . . . . . . 7 ((2 ∥ 𝑀𝑀 ∈ ℤ) → (⌊‘((𝑀 / 2) + (1 / 4))) = (𝑀 / 2))
4424, 43eqtr4d 2265 . . . . . 6 ((2 ∥ 𝑀𝑀 ∈ ℤ) → if(2 ∥ 𝑀, (𝑀 / 2), ((𝑀 − 1) / 2)) = (⌊‘((𝑀 / 2) + (1 / 4))))
4544expcom 116 . . . . 5 (𝑀 ∈ ℤ → (2 ∥ 𝑀 → if(2 ∥ 𝑀, (𝑀 / 2), ((𝑀 − 1) / 2)) = (⌊‘((𝑀 / 2) + (1 / 4)))))
46 iffalse 3610 . . . . . . . 8 (¬ 2 ∥ 𝑀 → if(2 ∥ 𝑀, (𝑀 / 2), ((𝑀 − 1) / 2)) = ((𝑀 − 1) / 2))
4746adantr 276 . . . . . . 7 ((¬ 2 ∥ 𝑀𝑀 ∈ ℤ) → if(2 ∥ 𝑀, (𝑀 / 2), ((𝑀 − 1) / 2)) = ((𝑀 − 1) / 2))
48 odd2np1 12379 . . . . . . . . 9 (𝑀 ∈ ℤ → (¬ 2 ∥ 𝑀 ↔ ∃𝑥 ∈ ℤ ((2 · 𝑥) + 1) = 𝑀))
49 ax-1cn 8088 . . . . . . . . . . . . . . . . . . . . . 22 1 ∈ ℂ
50 2cn 9177 . . . . . . . . . . . . . . . . . . . . . . 23 2 ∈ ℂ
5150, 15pm3.2i 272 . . . . . . . . . . . . . . . . . . . . . 22 (2 ∈ ℂ ∧ 2 # 0)
52 divcanap5 8857 . . . . . . . . . . . . . . . . . . . . . 22 ((1 ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 # 0) ∧ (2 ∈ ℂ ∧ 2 # 0)) → ((2 · 1) / (2 · 2)) = (1 / 2))
5349, 51, 51, 52mp3an 1371 . . . . . . . . . . . . . . . . . . . . 21 ((2 · 1) / (2 · 2)) = (1 / 2)
54 2t1e2 9260 . . . . . . . . . . . . . . . . . . . . . 22 (2 · 1) = 2
5554, 11oveq12i 6012 . . . . . . . . . . . . . . . . . . . . 21 ((2 · 1) / (2 · 2)) = (2 / 4)
5653, 55eqtr3i 2252 . . . . . . . . . . . . . . . . . . . 20 (1 / 2) = (2 / 4)
5756oveq1i 6010 . . . . . . . . . . . . . . . . . . 19 ((1 / 2) + (1 / 4)) = ((2 / 4) + (1 / 4))
5850, 49, 6, 8divdirapi 8912 . . . . . . . . . . . . . . . . . . 19 ((2 + 1) / 4) = ((2 / 4) + (1 / 4))
59 2p1e3 9240 . . . . . . . . . . . . . . . . . . . 20 (2 + 1) = 3
6059oveq1i 6010 . . . . . . . . . . . . . . . . . . 19 ((2 + 1) / 4) = (3 / 4)
6157, 58, 603eqtr2i 2256 . . . . . . . . . . . . . . . . . 18 ((1 / 2) + (1 / 4)) = (3 / 4)
6261a1i 9 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ℤ → ((1 / 2) + (1 / 4)) = (3 / 4))
6362oveq2d 6016 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℤ → (𝑥 + ((1 / 2) + (1 / 4))) = (𝑥 + (3 / 4)))
6463fveq2d 5630 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℤ → (⌊‘(𝑥 + ((1 / 2) + (1 / 4)))) = (⌊‘(𝑥 + (3 / 4))))
65 3re 9180 . . . . . . . . . . . . . . . . . 18 3 ∈ ℝ
66 0re 8142 . . . . . . . . . . . . . . . . . . 19 0 ∈ ℝ
67 3pos 9200 . . . . . . . . . . . . . . . . . . 19 0 < 3
6866, 65, 67ltleii 8245 . . . . . . . . . . . . . . . . . 18 0 ≤ 3
69 divge0 9016 . . . . . . . . . . . . . . . . . 18 (((3 ∈ ℝ ∧ 0 ≤ 3) ∧ (4 ∈ ℝ ∧ 0 < 4)) → 0 ≤ (3 / 4))
7065, 68, 27, 28, 69mp4an 427 . . . . . . . . . . . . . . . . 17 0 ≤ (3 / 4)
71 3lt4 9279 . . . . . . . . . . . . . . . . . 18 3 < 4
72 nnrp 9855 . . . . . . . . . . . . . . . . . . . 20 (4 ∈ ℕ → 4 ∈ ℝ+)
7338, 72ax-mp 5 . . . . . . . . . . . . . . . . . . 19 4 ∈ ℝ+
74 divlt1lt 9916 . . . . . . . . . . . . . . . . . . 19 ((3 ∈ ℝ ∧ 4 ∈ ℝ+) → ((3 / 4) < 1 ↔ 3 < 4))
7565, 73, 74mp2an 426 . . . . . . . . . . . . . . . . . 18 ((3 / 4) < 1 ↔ 3 < 4)
7671, 75mpbir 146 . . . . . . . . . . . . . . . . 17 (3 / 4) < 1
7770, 76pm3.2i 272 . . . . . . . . . . . . . . . 16 (0 ≤ (3 / 4) ∧ (3 / 4) < 1)
78 3z 9471 . . . . . . . . . . . . . . . . . 18 3 ∈ ℤ
79 znq 9815 . . . . . . . . . . . . . . . . . 18 ((3 ∈ ℤ ∧ 4 ∈ ℕ) → (3 / 4) ∈ ℚ)
8078, 38, 79mp2an 426 . . . . . . . . . . . . . . . . 17 (3 / 4) ∈ ℚ
81 flqbi2 10506 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℤ ∧ (3 / 4) ∈ ℚ) → ((⌊‘(𝑥 + (3 / 4))) = 𝑥 ↔ (0 ≤ (3 / 4) ∧ (3 / 4) < 1)))
8280, 81mpan2 425 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℤ → ((⌊‘(𝑥 + (3 / 4))) = 𝑥 ↔ (0 ≤ (3 / 4) ∧ (3 / 4) < 1)))
8377, 82mpbiri 168 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℤ → (⌊‘(𝑥 + (3 / 4))) = 𝑥)
8464, 83eqtrd 2262 . . . . . . . . . . . . . 14 (𝑥 ∈ ℤ → (⌊‘(𝑥 + ((1 / 2) + (1 / 4)))) = 𝑥)
8584adantr 276 . . . . . . . . . . . . 13 ((𝑥 ∈ ℤ ∧ ((2 · 𝑥) + 1) = 𝑀) → (⌊‘(𝑥 + ((1 / 2) + (1 / 4)))) = 𝑥)
86 oveq1 6007 . . . . . . . . . . . . . . . . . 18 (𝑀 = ((2 · 𝑥) + 1) → (𝑀 / 2) = (((2 · 𝑥) + 1) / 2))
8786eqcoms 2232 . . . . . . . . . . . . . . . . 17 (((2 · 𝑥) + 1) = 𝑀 → (𝑀 / 2) = (((2 · 𝑥) + 1) / 2))
88 2z 9470 . . . . . . . . . . . . . . . . . . . . . 22 2 ∈ ℤ
8988a1i 9 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ ℤ → 2 ∈ ℤ)
90 id 19 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ ℤ → 𝑥 ∈ ℤ)
9189, 90zmulcld 9571 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ ℤ → (2 · 𝑥) ∈ ℤ)
9291zcnd 9566 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ ℤ → (2 · 𝑥) ∈ ℂ)
93 1cnd 8158 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ ℤ → 1 ∈ ℂ)
94 2cnd 9179 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ ℤ → 2 ∈ ℂ)
9515a1i 9 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ ℤ → 2 # 0)
9692, 93, 94, 95divdirapd 8972 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ ℤ → (((2 · 𝑥) + 1) / 2) = (((2 · 𝑥) / 2) + (1 / 2)))
97 zcn 9447 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ ℤ → 𝑥 ∈ ℂ)
9897, 94, 95divcanap3d 8938 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ ℤ → ((2 · 𝑥) / 2) = 𝑥)
9998oveq1d 6015 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ ℤ → (((2 · 𝑥) / 2) + (1 / 2)) = (𝑥 + (1 / 2)))
10096, 99eqtrd 2262 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ℤ → (((2 · 𝑥) + 1) / 2) = (𝑥 + (1 / 2)))
10187, 100sylan9eqr 2284 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℤ ∧ ((2 · 𝑥) + 1) = 𝑀) → (𝑀 / 2) = (𝑥 + (1 / 2)))
102101oveq1d 6015 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℤ ∧ ((2 · 𝑥) + 1) = 𝑀) → ((𝑀 / 2) + (1 / 4)) = ((𝑥 + (1 / 2)) + (1 / 4)))
103 halfcn 9321 . . . . . . . . . . . . . . . . . 18 (1 / 2) ∈ ℂ
104103a1i 9 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ℤ → (1 / 2) ∈ ℂ)
1056, 8recclapi 8885 . . . . . . . . . . . . . . . . . 18 (1 / 4) ∈ ℂ
106105a1i 9 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ℤ → (1 / 4) ∈ ℂ)
10797, 104, 106addassd 8165 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℤ → ((𝑥 + (1 / 2)) + (1 / 4)) = (𝑥 + ((1 / 2) + (1 / 4))))
108107adantr 276 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℤ ∧ ((2 · 𝑥) + 1) = 𝑀) → ((𝑥 + (1 / 2)) + (1 / 4)) = (𝑥 + ((1 / 2) + (1 / 4))))
109102, 108eqtrd 2262 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℤ ∧ ((2 · 𝑥) + 1) = 𝑀) → ((𝑀 / 2) + (1 / 4)) = (𝑥 + ((1 / 2) + (1 / 4))))
110109fveq2d 5630 . . . . . . . . . . . . 13 ((𝑥 ∈ ℤ ∧ ((2 · 𝑥) + 1) = 𝑀) → (⌊‘((𝑀 / 2) + (1 / 4))) = (⌊‘(𝑥 + ((1 / 2) + (1 / 4)))))
111 oveq1 6007 . . . . . . . . . . . . . . . . 17 (𝑀 = ((2 · 𝑥) + 1) → (𝑀 − 1) = (((2 · 𝑥) + 1) − 1))
112111eqcoms 2232 . . . . . . . . . . . . . . . 16 (((2 · 𝑥) + 1) = 𝑀 → (𝑀 − 1) = (((2 · 𝑥) + 1) − 1))
113 pncan1 8519 . . . . . . . . . . . . . . . . 17 ((2 · 𝑥) ∈ ℂ → (((2 · 𝑥) + 1) − 1) = (2 · 𝑥))
11492, 113syl 14 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℤ → (((2 · 𝑥) + 1) − 1) = (2 · 𝑥))
115112, 114sylan9eqr 2284 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℤ ∧ ((2 · 𝑥) + 1) = 𝑀) → (𝑀 − 1) = (2 · 𝑥))
116115oveq1d 6015 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℤ ∧ ((2 · 𝑥) + 1) = 𝑀) → ((𝑀 − 1) / 2) = ((2 · 𝑥) / 2))
11798adantr 276 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℤ ∧ ((2 · 𝑥) + 1) = 𝑀) → ((2 · 𝑥) / 2) = 𝑥)
118116, 117eqtrd 2262 . . . . . . . . . . . . 13 ((𝑥 ∈ ℤ ∧ ((2 · 𝑥) + 1) = 𝑀) → ((𝑀 − 1) / 2) = 𝑥)
11985, 110, 1183eqtr4rd 2273 . . . . . . . . . . . 12 ((𝑥 ∈ ℤ ∧ ((2 · 𝑥) + 1) = 𝑀) → ((𝑀 − 1) / 2) = (⌊‘((𝑀 / 2) + (1 / 4))))
120119ex 115 . . . . . . . . . . 11 (𝑥 ∈ ℤ → (((2 · 𝑥) + 1) = 𝑀 → ((𝑀 − 1) / 2) = (⌊‘((𝑀 / 2) + (1 / 4)))))
121120adantl 277 . . . . . . . . . 10 ((𝑀 ∈ ℤ ∧ 𝑥 ∈ ℤ) → (((2 · 𝑥) + 1) = 𝑀 → ((𝑀 − 1) / 2) = (⌊‘((𝑀 / 2) + (1 / 4)))))
122121rexlimdva 2648 . . . . . . . . 9 (𝑀 ∈ ℤ → (∃𝑥 ∈ ℤ ((2 · 𝑥) + 1) = 𝑀 → ((𝑀 − 1) / 2) = (⌊‘((𝑀 / 2) + (1 / 4)))))
12348, 122sylbid 150 . . . . . . . 8 (𝑀 ∈ ℤ → (¬ 2 ∥ 𝑀 → ((𝑀 − 1) / 2) = (⌊‘((𝑀 / 2) + (1 / 4)))))
124123impcom 125 . . . . . . 7 ((¬ 2 ∥ 𝑀𝑀 ∈ ℤ) → ((𝑀 − 1) / 2) = (⌊‘((𝑀 / 2) + (1 / 4))))
12547, 124eqtrd 2262 . . . . . 6 ((¬ 2 ∥ 𝑀𝑀 ∈ ℤ) → if(2 ∥ 𝑀, (𝑀 / 2), ((𝑀 − 1) / 2)) = (⌊‘((𝑀 / 2) + (1 / 4))))
126125expcom 116 . . . . 5 (𝑀 ∈ ℤ → (¬ 2 ∥ 𝑀 → if(2 ∥ 𝑀, (𝑀 / 2), ((𝑀 − 1) / 2)) = (⌊‘((𝑀 / 2) + (1 / 4)))))
127 zeo3 12374 . . . . 5 (𝑀 ∈ ℤ → (2 ∥ 𝑀 ∨ ¬ 2 ∥ 𝑀))
12845, 126, 127mpjaod 723 . . . 4 (𝑀 ∈ ℤ → if(2 ∥ 𝑀, (𝑀 / 2), ((𝑀 − 1) / 2)) = (⌊‘((𝑀 / 2) + (1 / 4))))
129128eqcomd 2235 . . 3 (𝑀 ∈ ℤ → (⌊‘((𝑀 / 2) + (1 / 4))) = if(2 ∥ 𝑀, (𝑀 / 2), ((𝑀 − 1) / 2)))
130129adantr 276 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 = ((2 · 𝑀) + 1)) → (⌊‘((𝑀 / 2) + (1 / 4))) = if(2 ∥ 𝑀, (𝑀 / 2), ((𝑀 − 1) / 2)))
13122, 130eqtrd 2262 1 ((𝑀 ∈ ℤ ∧ 𝑁 = ((2 · 𝑀) + 1)) → (⌊‘(𝑁 / 4)) = if(2 ∥ 𝑀, (𝑀 / 2), ((𝑀 − 1) / 2)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 104  wb 105   = wceq 1395  wcel 2200  wrex 2509  ifcif 3602   class class class wbr 4082  cfv 5317  (class class class)co 6000  cc 7993  cr 7994  0cc0 7995  1c1 7996   + caddc 7998   · cmul 8000   < clt 8177  cle 8178  cmin 8313   # cap 8724   / cdiv 8815  cn 9106  2c2 9157  3c3 9158  4c4 9159  cz 9442  cq 9810  +crp 9845  cfl 10483  cdvds 12293
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-13 2202  ax-14 2203  ax-ext 2211  ax-sep 4201  ax-pow 4257  ax-pr 4292  ax-un 4523  ax-setind 4628  ax-cnex 8086  ax-resscn 8087  ax-1cn 8088  ax-1re 8089  ax-icn 8090  ax-addcl 8091  ax-addrcl 8092  ax-mulcl 8093  ax-mulrcl 8094  ax-addcom 8095  ax-mulcom 8096  ax-addass 8097  ax-mulass 8098  ax-distr 8099  ax-i2m1 8100  ax-0lt1 8101  ax-1rid 8102  ax-0id 8103  ax-rnegex 8104  ax-precex 8105  ax-cnre 8106  ax-pre-ltirr 8107  ax-pre-ltwlin 8108  ax-pre-lttrn 8109  ax-pre-apti 8110  ax-pre-ltadd 8111  ax-pre-mulgt0 8112  ax-pre-mulext 8113  ax-arch 8114
This theorem depends on definitions:  df-bi 117  df-3or 1003  df-3an 1004  df-tru 1398  df-fal 1401  df-xor 1418  df-nf 1507  df-sb 1809  df-eu 2080  df-mo 2081  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ne 2401  df-nel 2496  df-ral 2513  df-rex 2514  df-reu 2515  df-rmo 2516  df-rab 2517  df-v 2801  df-sbc 3029  df-csb 3125  df-dif 3199  df-un 3201  df-in 3203  df-ss 3210  df-if 3603  df-pw 3651  df-sn 3672  df-pr 3673  df-op 3675  df-uni 3888  df-int 3923  df-iun 3966  df-br 4083  df-opab 4145  df-mpt 4146  df-id 4383  df-po 4386  df-iso 4387  df-xp 4724  df-rel 4725  df-cnv 4726  df-co 4727  df-dm 4728  df-rn 4729  df-res 4730  df-ima 4731  df-iota 5277  df-fun 5319  df-fn 5320  df-f 5321  df-fv 5325  df-riota 5953  df-ov 6003  df-oprab 6004  df-mpo 6005  df-1st 6284  df-2nd 6285  df-pnf 8179  df-mnf 8180  df-xr 8181  df-ltxr 8182  df-le 8183  df-sub 8315  df-neg 8316  df-reap 8718  df-ap 8725  df-div 8816  df-inn 9107  df-2 9165  df-3 9166  df-4 9167  df-n0 9366  df-z 9443  df-q 9811  df-rp 9846  df-fl 10485  df-dvds 12294
This theorem is referenced by:  2lgslem1c  15763
  Copyright terms: Public domain W3C validator