ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  flodddiv4 GIF version

Theorem flodddiv4 10840
Description: The floor of an odd integer divided by 4. (Contributed by AV, 17-Jun-2021.)
Assertion
Ref Expression
flodddiv4 ((𝑀 ∈ ℤ ∧ 𝑁 = ((2 · 𝑀) + 1)) → (⌊‘(𝑁 / 4)) = if(2 ∥ 𝑀, (𝑀 / 2), ((𝑀 − 1) / 2)))

Proof of Theorem flodddiv4
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 oveq1 5622 . . . 4 (𝑁 = ((2 · 𝑀) + 1) → (𝑁 / 4) = (((2 · 𝑀) + 1) / 4))
2 2cnd 8433 . . . . . . 7 (𝑀 ∈ ℤ → 2 ∈ ℂ)
3 zcn 8691 . . . . . . 7 (𝑀 ∈ ℤ → 𝑀 ∈ ℂ)
42, 3mulcld 7455 . . . . . 6 (𝑀 ∈ ℤ → (2 · 𝑀) ∈ ℂ)
5 1cnd 7451 . . . . . 6 (𝑀 ∈ ℤ → 1 ∈ ℂ)
6 4cn 8438 . . . . . . 7 4 ∈ ℂ
76a1i 9 . . . . . 6 (𝑀 ∈ ℤ → 4 ∈ ℂ)
8 4ap0 8459 . . . . . . 7 4 # 0
98a1i 9 . . . . . 6 (𝑀 ∈ ℤ → 4 # 0)
104, 5, 7, 9divdirapd 8236 . . . . 5 (𝑀 ∈ ℤ → (((2 · 𝑀) + 1) / 4) = (((2 · 𝑀) / 4) + (1 / 4)))
11 2t2e4 8507 . . . . . . . . . 10 (2 · 2) = 4
1211eqcomi 2089 . . . . . . . . 9 4 = (2 · 2)
1312a1i 9 . . . . . . . 8 (𝑀 ∈ ℤ → 4 = (2 · 2))
1413oveq2d 5631 . . . . . . 7 (𝑀 ∈ ℤ → ((2 · 𝑀) / 4) = ((2 · 𝑀) / (2 · 2)))
15 2ap0 8453 . . . . . . . . 9 2 # 0
1615a1i 9 . . . . . . . 8 (𝑀 ∈ ℤ → 2 # 0)
173, 2, 2, 16, 16divcanap5d 8224 . . . . . . 7 (𝑀 ∈ ℤ → ((2 · 𝑀) / (2 · 2)) = (𝑀 / 2))
1814, 17eqtrd 2117 . . . . . 6 (𝑀 ∈ ℤ → ((2 · 𝑀) / 4) = (𝑀 / 2))
1918oveq1d 5630 . . . . 5 (𝑀 ∈ ℤ → (((2 · 𝑀) / 4) + (1 / 4)) = ((𝑀 / 2) + (1 / 4)))
2010, 19eqtrd 2117 . . . 4 (𝑀 ∈ ℤ → (((2 · 𝑀) + 1) / 4) = ((𝑀 / 2) + (1 / 4)))
211, 20sylan9eqr 2139 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 = ((2 · 𝑀) + 1)) → (𝑁 / 4) = ((𝑀 / 2) + (1 / 4)))
2221fveq2d 5274 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 = ((2 · 𝑀) + 1)) → (⌊‘(𝑁 / 4)) = (⌊‘((𝑀 / 2) + (1 / 4))))
23 iftrue 3384 . . . . . . . 8 (2 ∥ 𝑀 → if(2 ∥ 𝑀, (𝑀 / 2), ((𝑀 − 1) / 2)) = (𝑀 / 2))
2423adantr 270 . . . . . . 7 ((2 ∥ 𝑀𝑀 ∈ ℤ) → if(2 ∥ 𝑀, (𝑀 / 2), ((𝑀 − 1) / 2)) = (𝑀 / 2))
25 1re 7434 . . . . . . . . . 10 1 ∈ ℝ
26 0le1 7906 . . . . . . . . . 10 0 ≤ 1
27 4re 8437 . . . . . . . . . 10 4 ∈ ℝ
28 4pos 8457 . . . . . . . . . 10 0 < 4
29 divge0 8272 . . . . . . . . . 10 (((1 ∈ ℝ ∧ 0 ≤ 1) ∧ (4 ∈ ℝ ∧ 0 < 4)) → 0 ≤ (1 / 4))
3025, 26, 27, 28, 29mp4an 418 . . . . . . . . 9 0 ≤ (1 / 4)
31 1lt4 8527 . . . . . . . . . 10 1 < 4
32 recgt1 8296 . . . . . . . . . . 11 ((4 ∈ ℝ ∧ 0 < 4) → (1 < 4 ↔ (1 / 4) < 1))
3327, 28, 32mp2an 417 . . . . . . . . . 10 (1 < 4 ↔ (1 / 4) < 1)
3431, 33mpbi 143 . . . . . . . . 9 (1 / 4) < 1
3530, 34pm3.2i 266 . . . . . . . 8 (0 ≤ (1 / 4) ∧ (1 / 4) < 1)
36 evend2 10795 . . . . . . . . . 10 (𝑀 ∈ ℤ → (2 ∥ 𝑀 ↔ (𝑀 / 2) ∈ ℤ))
3736biimpac 292 . . . . . . . . 9 ((2 ∥ 𝑀𝑀 ∈ ℤ) → (𝑀 / 2) ∈ ℤ)
38 4nn 8516 . . . . . . . . . 10 4 ∈ ℕ
39 nnrecq 9065 . . . . . . . . . 10 (4 ∈ ℕ → (1 / 4) ∈ ℚ)
4038, 39ax-mp 7 . . . . . . . . 9 (1 / 4) ∈ ℚ
41 flqbi2 9629 . . . . . . . . 9 (((𝑀 / 2) ∈ ℤ ∧ (1 / 4) ∈ ℚ) → ((⌊‘((𝑀 / 2) + (1 / 4))) = (𝑀 / 2) ↔ (0 ≤ (1 / 4) ∧ (1 / 4) < 1)))
4237, 40, 41sylancl 404 . . . . . . . 8 ((2 ∥ 𝑀𝑀 ∈ ℤ) → ((⌊‘((𝑀 / 2) + (1 / 4))) = (𝑀 / 2) ↔ (0 ≤ (1 / 4) ∧ (1 / 4) < 1)))
4335, 42mpbiri 166 . . . . . . 7 ((2 ∥ 𝑀𝑀 ∈ ℤ) → (⌊‘((𝑀 / 2) + (1 / 4))) = (𝑀 / 2))
4424, 43eqtr4d 2120 . . . . . 6 ((2 ∥ 𝑀𝑀 ∈ ℤ) → if(2 ∥ 𝑀, (𝑀 / 2), ((𝑀 − 1) / 2)) = (⌊‘((𝑀 / 2) + (1 / 4))))
4544expcom 114 . . . . 5 (𝑀 ∈ ℤ → (2 ∥ 𝑀 → if(2 ∥ 𝑀, (𝑀 / 2), ((𝑀 − 1) / 2)) = (⌊‘((𝑀 / 2) + (1 / 4)))))
46 iffalse 3387 . . . . . . . 8 (¬ 2 ∥ 𝑀 → if(2 ∥ 𝑀, (𝑀 / 2), ((𝑀 − 1) / 2)) = ((𝑀 − 1) / 2))
4746adantr 270 . . . . . . 7 ((¬ 2 ∥ 𝑀𝑀 ∈ ℤ) → if(2 ∥ 𝑀, (𝑀 / 2), ((𝑀 − 1) / 2)) = ((𝑀 − 1) / 2))
48 odd2np1 10779 . . . . . . . . 9 (𝑀 ∈ ℤ → (¬ 2 ∥ 𝑀 ↔ ∃𝑥 ∈ ℤ ((2 · 𝑥) + 1) = 𝑀))
49 ax-1cn 7385 . . . . . . . . . . . . . . . . . . . . . 22 1 ∈ ℂ
50 2cn 8431 . . . . . . . . . . . . . . . . . . . . . . 23 2 ∈ ℂ
5150, 15pm3.2i 266 . . . . . . . . . . . . . . . . . . . . . 22 (2 ∈ ℂ ∧ 2 # 0)
52 divcanap5 8123 . . . . . . . . . . . . . . . . . . . . . 22 ((1 ∈ ℂ ∧ (2 ∈ ℂ ∧ 2 # 0) ∧ (2 ∈ ℂ ∧ 2 # 0)) → ((2 · 1) / (2 · 2)) = (1 / 2))
5349, 51, 51, 52mp3an 1271 . . . . . . . . . . . . . . . . . . . . 21 ((2 · 1) / (2 · 2)) = (1 / 2)
54 2t1e2 8506 . . . . . . . . . . . . . . . . . . . . . 22 (2 · 1) = 2
5554, 11oveq12i 5627 . . . . . . . . . . . . . . . . . . . . 21 ((2 · 1) / (2 · 2)) = (2 / 4)
5653, 55eqtr3i 2107 . . . . . . . . . . . . . . . . . . . 20 (1 / 2) = (2 / 4)
5756oveq1i 5625 . . . . . . . . . . . . . . . . . . 19 ((1 / 2) + (1 / 4)) = ((2 / 4) + (1 / 4))
5850, 49, 6, 8divdirapi 8178 . . . . . . . . . . . . . . . . . . 19 ((2 + 1) / 4) = ((2 / 4) + (1 / 4))
59 2p1e3 8486 . . . . . . . . . . . . . . . . . . . 20 (2 + 1) = 3
6059oveq1i 5625 . . . . . . . . . . . . . . . . . . 19 ((2 + 1) / 4) = (3 / 4)
6157, 58, 603eqtr2i 2111 . . . . . . . . . . . . . . . . . 18 ((1 / 2) + (1 / 4)) = (3 / 4)
6261a1i 9 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ℤ → ((1 / 2) + (1 / 4)) = (3 / 4))
6362oveq2d 5631 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℤ → (𝑥 + ((1 / 2) + (1 / 4))) = (𝑥 + (3 / 4)))
6463fveq2d 5274 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℤ → (⌊‘(𝑥 + ((1 / 2) + (1 / 4)))) = (⌊‘(𝑥 + (3 / 4))))
65 3re 8434 . . . . . . . . . . . . . . . . . 18 3 ∈ ℝ
66 0re 7435 . . . . . . . . . . . . . . . . . . 19 0 ∈ ℝ
67 3pos 8454 . . . . . . . . . . . . . . . . . . 19 0 < 3
6866, 65, 67ltleii 7534 . . . . . . . . . . . . . . . . . 18 0 ≤ 3
69 divge0 8272 . . . . . . . . . . . . . . . . . 18 (((3 ∈ ℝ ∧ 0 ≤ 3) ∧ (4 ∈ ℝ ∧ 0 < 4)) → 0 ≤ (3 / 4))
7065, 68, 27, 28, 69mp4an 418 . . . . . . . . . . . . . . . . 17 0 ≤ (3 / 4)
71 3lt4 8525 . . . . . . . . . . . . . . . . . 18 3 < 4
72 nnrp 9078 . . . . . . . . . . . . . . . . . . . 20 (4 ∈ ℕ → 4 ∈ ℝ+)
7338, 72ax-mp 7 . . . . . . . . . . . . . . . . . . 19 4 ∈ ℝ+
74 divlt1lt 9136 . . . . . . . . . . . . . . . . . . 19 ((3 ∈ ℝ ∧ 4 ∈ ℝ+) → ((3 / 4) < 1 ↔ 3 < 4))
7565, 73, 74mp2an 417 . . . . . . . . . . . . . . . . . 18 ((3 / 4) < 1 ↔ 3 < 4)
7671, 75mpbir 144 . . . . . . . . . . . . . . . . 17 (3 / 4) < 1
7770, 76pm3.2i 266 . . . . . . . . . . . . . . . 16 (0 ≤ (3 / 4) ∧ (3 / 4) < 1)
78 3z 8715 . . . . . . . . . . . . . . . . . 18 3 ∈ ℤ
79 znq 9044 . . . . . . . . . . . . . . . . . 18 ((3 ∈ ℤ ∧ 4 ∈ ℕ) → (3 / 4) ∈ ℚ)
8078, 38, 79mp2an 417 . . . . . . . . . . . . . . . . 17 (3 / 4) ∈ ℚ
81 flqbi2 9629 . . . . . . . . . . . . . . . . 17 ((𝑥 ∈ ℤ ∧ (3 / 4) ∈ ℚ) → ((⌊‘(𝑥 + (3 / 4))) = 𝑥 ↔ (0 ≤ (3 / 4) ∧ (3 / 4) < 1)))
8280, 81mpan2 416 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℤ → ((⌊‘(𝑥 + (3 / 4))) = 𝑥 ↔ (0 ≤ (3 / 4) ∧ (3 / 4) < 1)))
8377, 82mpbiri 166 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℤ → (⌊‘(𝑥 + (3 / 4))) = 𝑥)
8464, 83eqtrd 2117 . . . . . . . . . . . . . 14 (𝑥 ∈ ℤ → (⌊‘(𝑥 + ((1 / 2) + (1 / 4)))) = 𝑥)
8584adantr 270 . . . . . . . . . . . . 13 ((𝑥 ∈ ℤ ∧ ((2 · 𝑥) + 1) = 𝑀) → (⌊‘(𝑥 + ((1 / 2) + (1 / 4)))) = 𝑥)
86 oveq1 5622 . . . . . . . . . . . . . . . . . 18 (𝑀 = ((2 · 𝑥) + 1) → (𝑀 / 2) = (((2 · 𝑥) + 1) / 2))
8786eqcoms 2088 . . . . . . . . . . . . . . . . 17 (((2 · 𝑥) + 1) = 𝑀 → (𝑀 / 2) = (((2 · 𝑥) + 1) / 2))
88 2z 8714 . . . . . . . . . . . . . . . . . . . . . 22 2 ∈ ℤ
8988a1i 9 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ ℤ → 2 ∈ ℤ)
90 id 19 . . . . . . . . . . . . . . . . . . . . 21 (𝑥 ∈ ℤ → 𝑥 ∈ ℤ)
9189, 90zmulcld 8810 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ ℤ → (2 · 𝑥) ∈ ℤ)
9291zcnd 8805 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ ℤ → (2 · 𝑥) ∈ ℂ)
93 1cnd 7451 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ ℤ → 1 ∈ ℂ)
94 2cnd 8433 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ ℤ → 2 ∈ ℂ)
9515a1i 9 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ ℤ → 2 # 0)
9692, 93, 94, 95divdirapd 8236 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ ℤ → (((2 · 𝑥) + 1) / 2) = (((2 · 𝑥) / 2) + (1 / 2)))
97 zcn 8691 . . . . . . . . . . . . . . . . . . . 20 (𝑥 ∈ ℤ → 𝑥 ∈ ℂ)
9897, 94, 95divcanap3d 8203 . . . . . . . . . . . . . . . . . . 19 (𝑥 ∈ ℤ → ((2 · 𝑥) / 2) = 𝑥)
9998oveq1d 5630 . . . . . . . . . . . . . . . . . 18 (𝑥 ∈ ℤ → (((2 · 𝑥) / 2) + (1 / 2)) = (𝑥 + (1 / 2)))
10096, 99eqtrd 2117 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ℤ → (((2 · 𝑥) + 1) / 2) = (𝑥 + (1 / 2)))
10187, 100sylan9eqr 2139 . . . . . . . . . . . . . . . 16 ((𝑥 ∈ ℤ ∧ ((2 · 𝑥) + 1) = 𝑀) → (𝑀 / 2) = (𝑥 + (1 / 2)))
102101oveq1d 5630 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℤ ∧ ((2 · 𝑥) + 1) = 𝑀) → ((𝑀 / 2) + (1 / 4)) = ((𝑥 + (1 / 2)) + (1 / 4)))
103 halfcn 8566 . . . . . . . . . . . . . . . . . 18 (1 / 2) ∈ ℂ
104103a1i 9 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ℤ → (1 / 2) ∈ ℂ)
1056, 8recclapi 8151 . . . . . . . . . . . . . . . . . 18 (1 / 4) ∈ ℂ
106105a1i 9 . . . . . . . . . . . . . . . . 17 (𝑥 ∈ ℤ → (1 / 4) ∈ ℂ)
10797, 104, 106addassd 7457 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℤ → ((𝑥 + (1 / 2)) + (1 / 4)) = (𝑥 + ((1 / 2) + (1 / 4))))
108107adantr 270 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℤ ∧ ((2 · 𝑥) + 1) = 𝑀) → ((𝑥 + (1 / 2)) + (1 / 4)) = (𝑥 + ((1 / 2) + (1 / 4))))
109102, 108eqtrd 2117 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℤ ∧ ((2 · 𝑥) + 1) = 𝑀) → ((𝑀 / 2) + (1 / 4)) = (𝑥 + ((1 / 2) + (1 / 4))))
110109fveq2d 5274 . . . . . . . . . . . . 13 ((𝑥 ∈ ℤ ∧ ((2 · 𝑥) + 1) = 𝑀) → (⌊‘((𝑀 / 2) + (1 / 4))) = (⌊‘(𝑥 + ((1 / 2) + (1 / 4)))))
111 oveq1 5622 . . . . . . . . . . . . . . . . 17 (𝑀 = ((2 · 𝑥) + 1) → (𝑀 − 1) = (((2 · 𝑥) + 1) − 1))
112111eqcoms 2088 . . . . . . . . . . . . . . . 16 (((2 · 𝑥) + 1) = 𝑀 → (𝑀 − 1) = (((2 · 𝑥) + 1) − 1))
113 pncan1 7802 . . . . . . . . . . . . . . . . 17 ((2 · 𝑥) ∈ ℂ → (((2 · 𝑥) + 1) − 1) = (2 · 𝑥))
11492, 113syl 14 . . . . . . . . . . . . . . . 16 (𝑥 ∈ ℤ → (((2 · 𝑥) + 1) − 1) = (2 · 𝑥))
115112, 114sylan9eqr 2139 . . . . . . . . . . . . . . 15 ((𝑥 ∈ ℤ ∧ ((2 · 𝑥) + 1) = 𝑀) → (𝑀 − 1) = (2 · 𝑥))
116115oveq1d 5630 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℤ ∧ ((2 · 𝑥) + 1) = 𝑀) → ((𝑀 − 1) / 2) = ((2 · 𝑥) / 2))
11798adantr 270 . . . . . . . . . . . . . 14 ((𝑥 ∈ ℤ ∧ ((2 · 𝑥) + 1) = 𝑀) → ((2 · 𝑥) / 2) = 𝑥)
118116, 117eqtrd 2117 . . . . . . . . . . . . 13 ((𝑥 ∈ ℤ ∧ ((2 · 𝑥) + 1) = 𝑀) → ((𝑀 − 1) / 2) = 𝑥)
11985, 110, 1183eqtr4rd 2128 . . . . . . . . . . . 12 ((𝑥 ∈ ℤ ∧ ((2 · 𝑥) + 1) = 𝑀) → ((𝑀 − 1) / 2) = (⌊‘((𝑀 / 2) + (1 / 4))))
120119ex 113 . . . . . . . . . . 11 (𝑥 ∈ ℤ → (((2 · 𝑥) + 1) = 𝑀 → ((𝑀 − 1) / 2) = (⌊‘((𝑀 / 2) + (1 / 4)))))
121120adantl 271 . . . . . . . . . 10 ((𝑀 ∈ ℤ ∧ 𝑥 ∈ ℤ) → (((2 · 𝑥) + 1) = 𝑀 → ((𝑀 − 1) / 2) = (⌊‘((𝑀 / 2) + (1 / 4)))))
122121rexlimdva 2485 . . . . . . . . 9 (𝑀 ∈ ℤ → (∃𝑥 ∈ ℤ ((2 · 𝑥) + 1) = 𝑀 → ((𝑀 − 1) / 2) = (⌊‘((𝑀 / 2) + (1 / 4)))))
12348, 122sylbid 148 . . . . . . . 8 (𝑀 ∈ ℤ → (¬ 2 ∥ 𝑀 → ((𝑀 − 1) / 2) = (⌊‘((𝑀 / 2) + (1 / 4)))))
124123impcom 123 . . . . . . 7 ((¬ 2 ∥ 𝑀𝑀 ∈ ℤ) → ((𝑀 − 1) / 2) = (⌊‘((𝑀 / 2) + (1 / 4))))
12547, 124eqtrd 2117 . . . . . 6 ((¬ 2 ∥ 𝑀𝑀 ∈ ℤ) → if(2 ∥ 𝑀, (𝑀 / 2), ((𝑀 − 1) / 2)) = (⌊‘((𝑀 / 2) + (1 / 4))))
126125expcom 114 . . . . 5 (𝑀 ∈ ℤ → (¬ 2 ∥ 𝑀 → if(2 ∥ 𝑀, (𝑀 / 2), ((𝑀 − 1) / 2)) = (⌊‘((𝑀 / 2) + (1 / 4)))))
127 zeo3 10774 . . . . 5 (𝑀 ∈ ℤ → (2 ∥ 𝑀 ∨ ¬ 2 ∥ 𝑀))
12845, 126, 127mpjaod 671 . . . 4 (𝑀 ∈ ℤ → if(2 ∥ 𝑀, (𝑀 / 2), ((𝑀 − 1) / 2)) = (⌊‘((𝑀 / 2) + (1 / 4))))
129128eqcomd 2090 . . 3 (𝑀 ∈ ℤ → (⌊‘((𝑀 / 2) + (1 / 4))) = if(2 ∥ 𝑀, (𝑀 / 2), ((𝑀 − 1) / 2)))
130129adantr 270 . 2 ((𝑀 ∈ ℤ ∧ 𝑁 = ((2 · 𝑀) + 1)) → (⌊‘((𝑀 / 2) + (1 / 4))) = if(2 ∥ 𝑀, (𝑀 / 2), ((𝑀 − 1) / 2)))
13122, 130eqtrd 2117 1 ((𝑀 ∈ ℤ ∧ 𝑁 = ((2 · 𝑀) + 1)) → (⌊‘(𝑁 / 4)) = if(2 ∥ 𝑀, (𝑀 / 2), ((𝑀 − 1) / 2)))
Colors of variables: wff set class
Syntax hints:  ¬ wn 3  wi 4  wa 102  wb 103   = wceq 1287  wcel 1436  wrex 2356  ifcif 3379   class class class wbr 3822  cfv 4983  (class class class)co 5615  cc 7295  cr 7296  0cc0 7297  1c1 7298   + caddc 7300   · cmul 7302   < clt 7469  cle 7470  cmin 7600   # cap 8002   / cdiv 8081  cn 8360  2c2 8410  3c3 8411  4c4 8412  cz 8686  cq 9039  +crp 9069  cfl 9606  cdvds 10702
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1379  ax-7 1380  ax-gen 1381  ax-ie1 1425  ax-ie2 1426  ax-8 1438  ax-10 1439  ax-11 1440  ax-i12 1441  ax-bndl 1442  ax-4 1443  ax-13 1447  ax-14 1448  ax-17 1462  ax-i9 1466  ax-ial 1470  ax-i5r 1471  ax-ext 2067  ax-sep 3934  ax-pow 3986  ax-pr 4012  ax-un 4236  ax-setind 4328  ax-cnex 7383  ax-resscn 7384  ax-1cn 7385  ax-1re 7386  ax-icn 7387  ax-addcl 7388  ax-addrcl 7389  ax-mulcl 7390  ax-mulrcl 7391  ax-addcom 7392  ax-mulcom 7393  ax-addass 7394  ax-mulass 7395  ax-distr 7396  ax-i2m1 7397  ax-0lt1 7398  ax-1rid 7399  ax-0id 7400  ax-rnegex 7401  ax-precex 7402  ax-cnre 7403  ax-pre-ltirr 7404  ax-pre-ltwlin 7405  ax-pre-lttrn 7406  ax-pre-apti 7407  ax-pre-ltadd 7408  ax-pre-mulgt0 7409  ax-pre-mulext 7410  ax-arch 7411
This theorem depends on definitions:  df-bi 115  df-3or 923  df-3an 924  df-tru 1290  df-fal 1293  df-xor 1310  df-nf 1393  df-sb 1690  df-eu 1948  df-mo 1949  df-clab 2072  df-cleq 2078  df-clel 2081  df-nfc 2214  df-ne 2252  df-nel 2347  df-ral 2360  df-rex 2361  df-reu 2362  df-rmo 2363  df-rab 2364  df-v 2617  df-sbc 2830  df-csb 2923  df-dif 2990  df-un 2992  df-in 2994  df-ss 3001  df-if 3380  df-pw 3417  df-sn 3437  df-pr 3438  df-op 3440  df-uni 3639  df-int 3674  df-iun 3717  df-br 3823  df-opab 3877  df-mpt 3878  df-id 4096  df-po 4099  df-iso 4100  df-xp 4419  df-rel 4420  df-cnv 4421  df-co 4422  df-dm 4423  df-rn 4424  df-res 4425  df-ima 4426  df-iota 4948  df-fun 4985  df-fn 4986  df-f 4987  df-fv 4991  df-riota 5571  df-ov 5618  df-oprab 5619  df-mpt2 5620  df-1st 5870  df-2nd 5871  df-pnf 7471  df-mnf 7472  df-xr 7473  df-ltxr 7474  df-le 7475  df-sub 7602  df-neg 7603  df-reap 7996  df-ap 8003  df-div 8082  df-inn 8361  df-2 8419  df-3 8420  df-4 8421  df-n0 8610  df-z 8687  df-q 9040  df-rp 9070  df-fl 9608  df-dvds 10703
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator