ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  9t4e36 GIF version

Theorem 9t4e36 9397
Description: 9 times 4 equals 36. (Contributed by Mario Carneiro, 19-Apr-2015.)
Assertion
Ref Expression
9t4e36 (9 · 4) = 36

Proof of Theorem 9t4e36
StepHypRef Expression
1 9nn0 9093 . 2 9 ∈ ℕ0
2 3nn0 9087 . 2 3 ∈ ℕ0
3 df-4 8873 . 2 4 = (3 + 1)
4 9t3e27 9396 . 2 (9 · 3) = 27
5 2nn0 9086 . . 3 2 ∈ ℕ0
6 7nn0 9091 . . 3 7 ∈ ℕ0
7 eqid 2154 . . 3 27 = 27
8 2p1e3 8945 . . 3 (2 + 1) = 3
9 6nn0 9090 . . 3 6 ∈ ℕ0
101nn0cni 9081 . . . 4 9 ∈ ℂ
116nn0cni 9081 . . . 4 7 ∈ ℂ
12 9p7e16 9365 . . . 4 (9 + 7) = 16
1310, 11, 12addcomli 7999 . . 3 (7 + 9) = 16
145, 6, 1, 7, 8, 9, 13decaddci 9334 . 2 (27 + 9) = 36
151, 2, 3, 4, 144t3lem 9370 1 (9 · 4) = 36
Colors of variables: wff set class
Syntax hints:   = wceq 1332  (class class class)co 5814  1c1 7712   · cmul 7716  2c2 8863  3c3 8864  4c4 8865  6c6 8867  7c7 8868  9c9 8870  cdc 9274
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 604  ax-in2 605  ax-io 699  ax-5 1424  ax-7 1425  ax-gen 1426  ax-ie1 1470  ax-ie2 1471  ax-8 1481  ax-10 1482  ax-11 1483  ax-i12 1484  ax-bndl 1486  ax-4 1487  ax-17 1503  ax-i9 1507  ax-ial 1511  ax-i5r 1512  ax-14 2128  ax-ext 2136  ax-sep 4078  ax-pow 4130  ax-pr 4164  ax-setind 4490  ax-cnex 7802  ax-resscn 7803  ax-1cn 7804  ax-1re 7805  ax-icn 7806  ax-addcl 7807  ax-addrcl 7808  ax-mulcl 7809  ax-addcom 7811  ax-mulcom 7812  ax-addass 7813  ax-mulass 7814  ax-distr 7815  ax-i2m1 7816  ax-1rid 7818  ax-0id 7819  ax-rnegex 7820  ax-cnre 7822
This theorem depends on definitions:  df-bi 116  df-3an 965  df-tru 1335  df-fal 1338  df-nf 1438  df-sb 1740  df-eu 2006  df-mo 2007  df-clab 2141  df-cleq 2147  df-clel 2150  df-nfc 2285  df-ne 2325  df-ral 2437  df-rex 2438  df-reu 2439  df-rab 2441  df-v 2711  df-sbc 2934  df-dif 3100  df-un 3102  df-in 3104  df-ss 3111  df-pw 3541  df-sn 3562  df-pr 3563  df-op 3565  df-uni 3769  df-int 3804  df-br 3962  df-opab 4022  df-id 4248  df-xp 4585  df-rel 4586  df-cnv 4587  df-co 4588  df-dm 4589  df-iota 5128  df-fun 5165  df-fv 5171  df-riota 5770  df-ov 5817  df-oprab 5818  df-mpo 5819  df-sub 8027  df-inn 8813  df-2 8871  df-3 8872  df-4 8873  df-5 8874  df-6 8875  df-7 8876  df-8 8877  df-9 8878  df-n0 9070  df-dec 9275
This theorem is referenced by:  9t5e45  9398
  Copyright terms: Public domain W3C validator