| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > m1modge3gt1 | GIF version | ||
| Description: Minus one modulo an integer greater than two is greater than one. (Contributed by AV, 14-Jul-2021.) |
| Ref | Expression |
|---|---|
| m1modge3gt1 | ⊢ (𝑀 ∈ (ℤ≥‘3) → 1 < (-1 mod 𝑀)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1p1e2 9188 | . . . 4 ⊢ (1 + 1) = 2 | |
| 2 | 2p1e3 9205 | . . . . . 6 ⊢ (2 + 1) = 3 | |
| 3 | eluzle 9695 | . . . . . 6 ⊢ (𝑀 ∈ (ℤ≥‘3) → 3 ≤ 𝑀) | |
| 4 | 2, 3 | eqbrtrid 4094 | . . . . 5 ⊢ (𝑀 ∈ (ℤ≥‘3) → (2 + 1) ≤ 𝑀) |
| 5 | 2z 9435 | . . . . . 6 ⊢ 2 ∈ ℤ | |
| 6 | eluzelz 9692 | . . . . . 6 ⊢ (𝑀 ∈ (ℤ≥‘3) → 𝑀 ∈ ℤ) | |
| 7 | zltp1le 9462 | . . . . . 6 ⊢ ((2 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (2 < 𝑀 ↔ (2 + 1) ≤ 𝑀)) | |
| 8 | 5, 6, 7 | sylancr 414 | . . . . 5 ⊢ (𝑀 ∈ (ℤ≥‘3) → (2 < 𝑀 ↔ (2 + 1) ≤ 𝑀)) |
| 9 | 4, 8 | mpbird 167 | . . . 4 ⊢ (𝑀 ∈ (ℤ≥‘3) → 2 < 𝑀) |
| 10 | 1, 9 | eqbrtrid 4094 | . . 3 ⊢ (𝑀 ∈ (ℤ≥‘3) → (1 + 1) < 𝑀) |
| 11 | 1red 8122 | . . . 4 ⊢ (𝑀 ∈ (ℤ≥‘3) → 1 ∈ ℝ) | |
| 12 | eluzelre 9693 | . . . 4 ⊢ (𝑀 ∈ (ℤ≥‘3) → 𝑀 ∈ ℝ) | |
| 13 | 11, 11, 12 | ltaddsub2d 8654 | . . 3 ⊢ (𝑀 ∈ (ℤ≥‘3) → ((1 + 1) < 𝑀 ↔ 1 < (𝑀 − 1))) |
| 14 | 10, 13 | mpbid 147 | . 2 ⊢ (𝑀 ∈ (ℤ≥‘3) → 1 < (𝑀 − 1)) |
| 15 | eluzge3nn 9728 | . . 3 ⊢ (𝑀 ∈ (ℤ≥‘3) → 𝑀 ∈ ℕ) | |
| 16 | m1modnnsub1 10552 | . . 3 ⊢ (𝑀 ∈ ℕ → (-1 mod 𝑀) = (𝑀 − 1)) | |
| 17 | 15, 16 | syl 14 | . 2 ⊢ (𝑀 ∈ (ℤ≥‘3) → (-1 mod 𝑀) = (𝑀 − 1)) |
| 18 | 14, 17 | breqtrrd 4087 | 1 ⊢ (𝑀 ∈ (ℤ≥‘3) → 1 < (-1 mod 𝑀)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1373 ∈ wcel 2178 class class class wbr 4059 ‘cfv 5290 (class class class)co 5967 1c1 7961 + caddc 7963 < clt 8142 ≤ cle 8143 − cmin 8278 -cneg 8279 ℕcn 9071 2c2 9122 3c3 9123 ℤcz 9407 ℤ≥cuz 9683 mod cmo 10504 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1471 ax-7 1472 ax-gen 1473 ax-ie1 1517 ax-ie2 1518 ax-8 1528 ax-10 1529 ax-11 1530 ax-i12 1531 ax-bndl 1533 ax-4 1534 ax-17 1550 ax-i9 1554 ax-ial 1558 ax-i5r 1559 ax-13 2180 ax-14 2181 ax-ext 2189 ax-sep 4178 ax-pow 4234 ax-pr 4269 ax-un 4498 ax-setind 4603 ax-cnex 8051 ax-resscn 8052 ax-1cn 8053 ax-1re 8054 ax-icn 8055 ax-addcl 8056 ax-addrcl 8057 ax-mulcl 8058 ax-mulrcl 8059 ax-addcom 8060 ax-mulcom 8061 ax-addass 8062 ax-mulass 8063 ax-distr 8064 ax-i2m1 8065 ax-0lt1 8066 ax-1rid 8067 ax-0id 8068 ax-rnegex 8069 ax-precex 8070 ax-cnre 8071 ax-pre-ltirr 8072 ax-pre-ltwlin 8073 ax-pre-lttrn 8074 ax-pre-apti 8075 ax-pre-ltadd 8076 ax-pre-mulgt0 8077 ax-pre-mulext 8078 ax-arch 8079 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1485 df-sb 1787 df-eu 2058 df-mo 2059 df-clab 2194 df-cleq 2200 df-clel 2203 df-nfc 2339 df-ne 2379 df-nel 2474 df-ral 2491 df-rex 2492 df-reu 2493 df-rmo 2494 df-rab 2495 df-v 2778 df-sbc 3006 df-csb 3102 df-dif 3176 df-un 3178 df-in 3180 df-ss 3187 df-pw 3628 df-sn 3649 df-pr 3650 df-op 3652 df-uni 3865 df-int 3900 df-iun 3943 df-br 4060 df-opab 4122 df-mpt 4123 df-id 4358 df-po 4361 df-iso 4362 df-xp 4699 df-rel 4700 df-cnv 4701 df-co 4702 df-dm 4703 df-rn 4704 df-res 4705 df-ima 4706 df-iota 5251 df-fun 5292 df-fn 5293 df-f 5294 df-fv 5298 df-riota 5922 df-ov 5970 df-oprab 5971 df-mpo 5972 df-1st 6249 df-2nd 6250 df-pnf 8144 df-mnf 8145 df-xr 8146 df-ltxr 8147 df-le 8148 df-sub 8280 df-neg 8281 df-reap 8683 df-ap 8690 df-div 8781 df-inn 9072 df-2 9130 df-3 9131 df-n0 9331 df-z 9408 df-uz 9684 df-q 9776 df-rp 9811 df-fl 10450 df-mod 10505 |
| This theorem is referenced by: gausslemma2dlem0i 15649 |
| Copyright terms: Public domain | W3C validator |