![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > m1modge3gt1 | GIF version |
Description: Minus one modulo an integer greater than two is greater than one. (Contributed by AV, 14-Jul-2021.) |
Ref | Expression |
---|---|
m1modge3gt1 | ⊢ (𝑀 ∈ (ℤ≥‘3) → 1 < (-1 mod 𝑀)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 1p1e2 9099 | . . . 4 ⊢ (1 + 1) = 2 | |
2 | 2p1e3 9115 | . . . . . 6 ⊢ (2 + 1) = 3 | |
3 | eluzle 9604 | . . . . . 6 ⊢ (𝑀 ∈ (ℤ≥‘3) → 3 ≤ 𝑀) | |
4 | 2, 3 | eqbrtrid 4064 | . . . . 5 ⊢ (𝑀 ∈ (ℤ≥‘3) → (2 + 1) ≤ 𝑀) |
5 | 2z 9345 | . . . . . 6 ⊢ 2 ∈ ℤ | |
6 | eluzelz 9601 | . . . . . 6 ⊢ (𝑀 ∈ (ℤ≥‘3) → 𝑀 ∈ ℤ) | |
7 | zltp1le 9371 | . . . . . 6 ⊢ ((2 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (2 < 𝑀 ↔ (2 + 1) ≤ 𝑀)) | |
8 | 5, 6, 7 | sylancr 414 | . . . . 5 ⊢ (𝑀 ∈ (ℤ≥‘3) → (2 < 𝑀 ↔ (2 + 1) ≤ 𝑀)) |
9 | 4, 8 | mpbird 167 | . . . 4 ⊢ (𝑀 ∈ (ℤ≥‘3) → 2 < 𝑀) |
10 | 1, 9 | eqbrtrid 4064 | . . 3 ⊢ (𝑀 ∈ (ℤ≥‘3) → (1 + 1) < 𝑀) |
11 | 1red 8034 | . . . 4 ⊢ (𝑀 ∈ (ℤ≥‘3) → 1 ∈ ℝ) | |
12 | eluzelre 9602 | . . . 4 ⊢ (𝑀 ∈ (ℤ≥‘3) → 𝑀 ∈ ℝ) | |
13 | 11, 11, 12 | ltaddsub2d 8565 | . . 3 ⊢ (𝑀 ∈ (ℤ≥‘3) → ((1 + 1) < 𝑀 ↔ 1 < (𝑀 − 1))) |
14 | 10, 13 | mpbid 147 | . 2 ⊢ (𝑀 ∈ (ℤ≥‘3) → 1 < (𝑀 − 1)) |
15 | eluzge3nn 9637 | . . 3 ⊢ (𝑀 ∈ (ℤ≥‘3) → 𝑀 ∈ ℕ) | |
16 | m1modnnsub1 10441 | . . 3 ⊢ (𝑀 ∈ ℕ → (-1 mod 𝑀) = (𝑀 − 1)) | |
17 | 15, 16 | syl 14 | . 2 ⊢ (𝑀 ∈ (ℤ≥‘3) → (-1 mod 𝑀) = (𝑀 − 1)) |
18 | 14, 17 | breqtrrd 4057 | 1 ⊢ (𝑀 ∈ (ℤ≥‘3) → 1 < (-1 mod 𝑀)) |
Colors of variables: wff set class |
Syntax hints: → wi 4 ↔ wb 105 = wceq 1364 ∈ wcel 2164 class class class wbr 4029 ‘cfv 5254 (class class class)co 5918 1c1 7873 + caddc 7875 < clt 8054 ≤ cle 8055 − cmin 8190 -cneg 8191 ℕcn 8982 2c2 9033 3c3 9034 ℤcz 9317 ℤ≥cuz 9592 mod cmo 10393 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1458 ax-7 1459 ax-gen 1460 ax-ie1 1504 ax-ie2 1505 ax-8 1515 ax-10 1516 ax-11 1517 ax-i12 1518 ax-bndl 1520 ax-4 1521 ax-17 1537 ax-i9 1541 ax-ial 1545 ax-i5r 1546 ax-13 2166 ax-14 2167 ax-ext 2175 ax-sep 4147 ax-pow 4203 ax-pr 4238 ax-un 4464 ax-setind 4569 ax-cnex 7963 ax-resscn 7964 ax-1cn 7965 ax-1re 7966 ax-icn 7967 ax-addcl 7968 ax-addrcl 7969 ax-mulcl 7970 ax-mulrcl 7971 ax-addcom 7972 ax-mulcom 7973 ax-addass 7974 ax-mulass 7975 ax-distr 7976 ax-i2m1 7977 ax-0lt1 7978 ax-1rid 7979 ax-0id 7980 ax-rnegex 7981 ax-precex 7982 ax-cnre 7983 ax-pre-ltirr 7984 ax-pre-ltwlin 7985 ax-pre-lttrn 7986 ax-pre-apti 7987 ax-pre-ltadd 7988 ax-pre-mulgt0 7989 ax-pre-mulext 7990 ax-arch 7991 |
This theorem depends on definitions: df-bi 117 df-3or 981 df-3an 982 df-tru 1367 df-fal 1370 df-nf 1472 df-sb 1774 df-eu 2045 df-mo 2046 df-clab 2180 df-cleq 2186 df-clel 2189 df-nfc 2325 df-ne 2365 df-nel 2460 df-ral 2477 df-rex 2478 df-reu 2479 df-rmo 2480 df-rab 2481 df-v 2762 df-sbc 2986 df-csb 3081 df-dif 3155 df-un 3157 df-in 3159 df-ss 3166 df-pw 3603 df-sn 3624 df-pr 3625 df-op 3627 df-uni 3836 df-int 3871 df-iun 3914 df-br 4030 df-opab 4091 df-mpt 4092 df-id 4324 df-po 4327 df-iso 4328 df-xp 4665 df-rel 4666 df-cnv 4667 df-co 4668 df-dm 4669 df-rn 4670 df-res 4671 df-ima 4672 df-iota 5215 df-fun 5256 df-fn 5257 df-f 5258 df-fv 5262 df-riota 5873 df-ov 5921 df-oprab 5922 df-mpo 5923 df-1st 6193 df-2nd 6194 df-pnf 8056 df-mnf 8057 df-xr 8058 df-ltxr 8059 df-le 8060 df-sub 8192 df-neg 8193 df-reap 8594 df-ap 8601 df-div 8692 df-inn 8983 df-2 9041 df-3 9042 df-n0 9241 df-z 9318 df-uz 9593 df-q 9685 df-rp 9720 df-fl 10339 df-mod 10394 |
This theorem is referenced by: gausslemma2dlem0i 15173 |
Copyright terms: Public domain | W3C validator |