| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > m1modge3gt1 | GIF version | ||
| Description: Minus one modulo an integer greater than two is greater than one. (Contributed by AV, 14-Jul-2021.) |
| Ref | Expression |
|---|---|
| m1modge3gt1 | ⊢ (𝑀 ∈ (ℤ≥‘3) → 1 < (-1 mod 𝑀)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1p1e2 9153 | . . . 4 ⊢ (1 + 1) = 2 | |
| 2 | 2p1e3 9170 | . . . . . 6 ⊢ (2 + 1) = 3 | |
| 3 | eluzle 9660 | . . . . . 6 ⊢ (𝑀 ∈ (ℤ≥‘3) → 3 ≤ 𝑀) | |
| 4 | 2, 3 | eqbrtrid 4079 | . . . . 5 ⊢ (𝑀 ∈ (ℤ≥‘3) → (2 + 1) ≤ 𝑀) |
| 5 | 2z 9400 | . . . . . 6 ⊢ 2 ∈ ℤ | |
| 6 | eluzelz 9657 | . . . . . 6 ⊢ (𝑀 ∈ (ℤ≥‘3) → 𝑀 ∈ ℤ) | |
| 7 | zltp1le 9427 | . . . . . 6 ⊢ ((2 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (2 < 𝑀 ↔ (2 + 1) ≤ 𝑀)) | |
| 8 | 5, 6, 7 | sylancr 414 | . . . . 5 ⊢ (𝑀 ∈ (ℤ≥‘3) → (2 < 𝑀 ↔ (2 + 1) ≤ 𝑀)) |
| 9 | 4, 8 | mpbird 167 | . . . 4 ⊢ (𝑀 ∈ (ℤ≥‘3) → 2 < 𝑀) |
| 10 | 1, 9 | eqbrtrid 4079 | . . 3 ⊢ (𝑀 ∈ (ℤ≥‘3) → (1 + 1) < 𝑀) |
| 11 | 1red 8087 | . . . 4 ⊢ (𝑀 ∈ (ℤ≥‘3) → 1 ∈ ℝ) | |
| 12 | eluzelre 9658 | . . . 4 ⊢ (𝑀 ∈ (ℤ≥‘3) → 𝑀 ∈ ℝ) | |
| 13 | 11, 11, 12 | ltaddsub2d 8619 | . . 3 ⊢ (𝑀 ∈ (ℤ≥‘3) → ((1 + 1) < 𝑀 ↔ 1 < (𝑀 − 1))) |
| 14 | 10, 13 | mpbid 147 | . 2 ⊢ (𝑀 ∈ (ℤ≥‘3) → 1 < (𝑀 − 1)) |
| 15 | eluzge3nn 9693 | . . 3 ⊢ (𝑀 ∈ (ℤ≥‘3) → 𝑀 ∈ ℕ) | |
| 16 | m1modnnsub1 10515 | . . 3 ⊢ (𝑀 ∈ ℕ → (-1 mod 𝑀) = (𝑀 − 1)) | |
| 17 | 15, 16 | syl 14 | . 2 ⊢ (𝑀 ∈ (ℤ≥‘3) → (-1 mod 𝑀) = (𝑀 − 1)) |
| 18 | 14, 17 | breqtrrd 4072 | 1 ⊢ (𝑀 ∈ (ℤ≥‘3) → 1 < (-1 mod 𝑀)) |
| Colors of variables: wff set class |
| Syntax hints: → wi 4 ↔ wb 105 = wceq 1373 ∈ wcel 2176 class class class wbr 4044 ‘cfv 5271 (class class class)co 5944 1c1 7926 + caddc 7928 < clt 8107 ≤ cle 8108 − cmin 8243 -cneg 8244 ℕcn 9036 2c2 9087 3c3 9088 ℤcz 9372 ℤ≥cuz 9648 mod cmo 10467 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 711 ax-5 1470 ax-7 1471 ax-gen 1472 ax-ie1 1516 ax-ie2 1517 ax-8 1527 ax-10 1528 ax-11 1529 ax-i12 1530 ax-bndl 1532 ax-4 1533 ax-17 1549 ax-i9 1553 ax-ial 1557 ax-i5r 1558 ax-13 2178 ax-14 2179 ax-ext 2187 ax-sep 4162 ax-pow 4218 ax-pr 4253 ax-un 4480 ax-setind 4585 ax-cnex 8016 ax-resscn 8017 ax-1cn 8018 ax-1re 8019 ax-icn 8020 ax-addcl 8021 ax-addrcl 8022 ax-mulcl 8023 ax-mulrcl 8024 ax-addcom 8025 ax-mulcom 8026 ax-addass 8027 ax-mulass 8028 ax-distr 8029 ax-i2m1 8030 ax-0lt1 8031 ax-1rid 8032 ax-0id 8033 ax-rnegex 8034 ax-precex 8035 ax-cnre 8036 ax-pre-ltirr 8037 ax-pre-ltwlin 8038 ax-pre-lttrn 8039 ax-pre-apti 8040 ax-pre-ltadd 8041 ax-pre-mulgt0 8042 ax-pre-mulext 8043 ax-arch 8044 |
| This theorem depends on definitions: df-bi 117 df-3or 982 df-3an 983 df-tru 1376 df-fal 1379 df-nf 1484 df-sb 1786 df-eu 2057 df-mo 2058 df-clab 2192 df-cleq 2198 df-clel 2201 df-nfc 2337 df-ne 2377 df-nel 2472 df-ral 2489 df-rex 2490 df-reu 2491 df-rmo 2492 df-rab 2493 df-v 2774 df-sbc 2999 df-csb 3094 df-dif 3168 df-un 3170 df-in 3172 df-ss 3179 df-pw 3618 df-sn 3639 df-pr 3640 df-op 3642 df-uni 3851 df-int 3886 df-iun 3929 df-br 4045 df-opab 4106 df-mpt 4107 df-id 4340 df-po 4343 df-iso 4344 df-xp 4681 df-rel 4682 df-cnv 4683 df-co 4684 df-dm 4685 df-rn 4686 df-res 4687 df-ima 4688 df-iota 5232 df-fun 5273 df-fn 5274 df-f 5275 df-fv 5279 df-riota 5899 df-ov 5947 df-oprab 5948 df-mpo 5949 df-1st 6226 df-2nd 6227 df-pnf 8109 df-mnf 8110 df-xr 8111 df-ltxr 8112 df-le 8113 df-sub 8245 df-neg 8246 df-reap 8648 df-ap 8655 df-div 8746 df-inn 9037 df-2 9095 df-3 9096 df-n0 9296 df-z 9373 df-uz 9649 df-q 9741 df-rp 9776 df-fl 10413 df-mod 10468 |
| This theorem is referenced by: gausslemma2dlem0i 15534 |
| Copyright terms: Public domain | W3C validator |