ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  m1modge3gt1 GIF version

Theorem m1modge3gt1 10037
Description: Minus one modulo an integer greater than two is greater than one. (Contributed by AV, 14-Jul-2021.)
Assertion
Ref Expression
m1modge3gt1 (𝑀 ∈ (ℤ‘3) → 1 < (-1 mod 𝑀))

Proof of Theorem m1modge3gt1
StepHypRef Expression
1 1p1e2 8747 . . . 4 (1 + 1) = 2
2 2p1e3 8757 . . . . . 6 (2 + 1) = 3
3 eluzle 9240 . . . . . 6 (𝑀 ∈ (ℤ‘3) → 3 ≤ 𝑀)
42, 3eqbrtrid 3928 . . . . 5 (𝑀 ∈ (ℤ‘3) → (2 + 1) ≤ 𝑀)
5 2z 8986 . . . . . 6 2 ∈ ℤ
6 eluzelz 9237 . . . . . 6 (𝑀 ∈ (ℤ‘3) → 𝑀 ∈ ℤ)
7 zltp1le 9012 . . . . . 6 ((2 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (2 < 𝑀 ↔ (2 + 1) ≤ 𝑀))
85, 6, 7sylancr 408 . . . . 5 (𝑀 ∈ (ℤ‘3) → (2 < 𝑀 ↔ (2 + 1) ≤ 𝑀))
94, 8mpbird 166 . . . 4 (𝑀 ∈ (ℤ‘3) → 2 < 𝑀)
101, 9eqbrtrid 3928 . . 3 (𝑀 ∈ (ℤ‘3) → (1 + 1) < 𝑀)
11 1red 7705 . . . 4 (𝑀 ∈ (ℤ‘3) → 1 ∈ ℝ)
12 eluzelre 9238 . . . 4 (𝑀 ∈ (ℤ‘3) → 𝑀 ∈ ℝ)
1311, 11, 12ltaddsub2d 8226 . . 3 (𝑀 ∈ (ℤ‘3) → ((1 + 1) < 𝑀 ↔ 1 < (𝑀 − 1)))
1410, 13mpbid 146 . 2 (𝑀 ∈ (ℤ‘3) → 1 < (𝑀 − 1))
15 eluzge3nn 9269 . . 3 (𝑀 ∈ (ℤ‘3) → 𝑀 ∈ ℕ)
16 m1modnnsub1 10036 . . 3 (𝑀 ∈ ℕ → (-1 mod 𝑀) = (𝑀 − 1))
1715, 16syl 14 . 2 (𝑀 ∈ (ℤ‘3) → (-1 mod 𝑀) = (𝑀 − 1))
1814, 17breqtrrd 3921 1 (𝑀 ∈ (ℤ‘3) → 1 < (-1 mod 𝑀))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 104   = wceq 1314  wcel 1463   class class class wbr 3895  cfv 5081  (class class class)co 5728  1c1 7548   + caddc 7550   < clt 7724  cle 7725  cmin 7856  -cneg 7857  cn 8630  2c2 8681  3c3 8682  cz 8958  cuz 9228   mod cmo 9988
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 586  ax-in2 587  ax-io 681  ax-5 1406  ax-7 1407  ax-gen 1408  ax-ie1 1452  ax-ie2 1453  ax-8 1465  ax-10 1466  ax-11 1467  ax-i12 1468  ax-bndl 1469  ax-4 1470  ax-13 1474  ax-14 1475  ax-17 1489  ax-i9 1493  ax-ial 1497  ax-i5r 1498  ax-ext 2097  ax-sep 4006  ax-pow 4058  ax-pr 4091  ax-un 4315  ax-setind 4412  ax-cnex 7636  ax-resscn 7637  ax-1cn 7638  ax-1re 7639  ax-icn 7640  ax-addcl 7641  ax-addrcl 7642  ax-mulcl 7643  ax-mulrcl 7644  ax-addcom 7645  ax-mulcom 7646  ax-addass 7647  ax-mulass 7648  ax-distr 7649  ax-i2m1 7650  ax-0lt1 7651  ax-1rid 7652  ax-0id 7653  ax-rnegex 7654  ax-precex 7655  ax-cnre 7656  ax-pre-ltirr 7657  ax-pre-ltwlin 7658  ax-pre-lttrn 7659  ax-pre-apti 7660  ax-pre-ltadd 7661  ax-pre-mulgt0 7662  ax-pre-mulext 7663  ax-arch 7664
This theorem depends on definitions:  df-bi 116  df-3or 946  df-3an 947  df-tru 1317  df-fal 1320  df-nf 1420  df-sb 1719  df-eu 1978  df-mo 1979  df-clab 2102  df-cleq 2108  df-clel 2111  df-nfc 2244  df-ne 2283  df-nel 2378  df-ral 2395  df-rex 2396  df-reu 2397  df-rmo 2398  df-rab 2399  df-v 2659  df-sbc 2879  df-csb 2972  df-dif 3039  df-un 3041  df-in 3043  df-ss 3050  df-pw 3478  df-sn 3499  df-pr 3500  df-op 3502  df-uni 3703  df-int 3738  df-iun 3781  df-br 3896  df-opab 3950  df-mpt 3951  df-id 4175  df-po 4178  df-iso 4179  df-xp 4505  df-rel 4506  df-cnv 4507  df-co 4508  df-dm 4509  df-rn 4510  df-res 4511  df-ima 4512  df-iota 5046  df-fun 5083  df-fn 5084  df-f 5085  df-fv 5089  df-riota 5684  df-ov 5731  df-oprab 5732  df-mpo 5733  df-1st 5992  df-2nd 5993  df-pnf 7726  df-mnf 7727  df-xr 7728  df-ltxr 7729  df-le 7730  df-sub 7858  df-neg 7859  df-reap 8255  df-ap 8262  df-div 8346  df-inn 8631  df-2 8689  df-3 8690  df-n0 8882  df-z 8959  df-uz 9229  df-q 9314  df-rp 9344  df-fl 9936  df-mod 9989
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator