ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  m1modge3gt1 GIF version

Theorem m1modge3gt1 10516
Description: Minus one modulo an integer greater than two is greater than one. (Contributed by AV, 14-Jul-2021.)
Assertion
Ref Expression
m1modge3gt1 (𝑀 ∈ (ℤ‘3) → 1 < (-1 mod 𝑀))

Proof of Theorem m1modge3gt1
StepHypRef Expression
1 1p1e2 9153 . . . 4 (1 + 1) = 2
2 2p1e3 9170 . . . . . 6 (2 + 1) = 3
3 eluzle 9660 . . . . . 6 (𝑀 ∈ (ℤ‘3) → 3 ≤ 𝑀)
42, 3eqbrtrid 4079 . . . . 5 (𝑀 ∈ (ℤ‘3) → (2 + 1) ≤ 𝑀)
5 2z 9400 . . . . . 6 2 ∈ ℤ
6 eluzelz 9657 . . . . . 6 (𝑀 ∈ (ℤ‘3) → 𝑀 ∈ ℤ)
7 zltp1le 9427 . . . . . 6 ((2 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (2 < 𝑀 ↔ (2 + 1) ≤ 𝑀))
85, 6, 7sylancr 414 . . . . 5 (𝑀 ∈ (ℤ‘3) → (2 < 𝑀 ↔ (2 + 1) ≤ 𝑀))
94, 8mpbird 167 . . . 4 (𝑀 ∈ (ℤ‘3) → 2 < 𝑀)
101, 9eqbrtrid 4079 . . 3 (𝑀 ∈ (ℤ‘3) → (1 + 1) < 𝑀)
11 1red 8087 . . . 4 (𝑀 ∈ (ℤ‘3) → 1 ∈ ℝ)
12 eluzelre 9658 . . . 4 (𝑀 ∈ (ℤ‘3) → 𝑀 ∈ ℝ)
1311, 11, 12ltaddsub2d 8619 . . 3 (𝑀 ∈ (ℤ‘3) → ((1 + 1) < 𝑀 ↔ 1 < (𝑀 − 1)))
1410, 13mpbid 147 . 2 (𝑀 ∈ (ℤ‘3) → 1 < (𝑀 − 1))
15 eluzge3nn 9693 . . 3 (𝑀 ∈ (ℤ‘3) → 𝑀 ∈ ℕ)
16 m1modnnsub1 10515 . . 3 (𝑀 ∈ ℕ → (-1 mod 𝑀) = (𝑀 − 1))
1715, 16syl 14 . 2 (𝑀 ∈ (ℤ‘3) → (-1 mod 𝑀) = (𝑀 − 1))
1814, 17breqtrrd 4072 1 (𝑀 ∈ (ℤ‘3) → 1 < (-1 mod 𝑀))
Colors of variables: wff set class
Syntax hints:  wi 4  wb 105   = wceq 1373  wcel 2176   class class class wbr 4044  cfv 5271  (class class class)co 5944  1c1 7926   + caddc 7928   < clt 8107  cle 8108  cmin 8243  -cneg 8244  cn 9036  2c2 9087  3c3 9088  cz 9372  cuz 9648   mod cmo 10467
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 711  ax-5 1470  ax-7 1471  ax-gen 1472  ax-ie1 1516  ax-ie2 1517  ax-8 1527  ax-10 1528  ax-11 1529  ax-i12 1530  ax-bndl 1532  ax-4 1533  ax-17 1549  ax-i9 1553  ax-ial 1557  ax-i5r 1558  ax-13 2178  ax-14 2179  ax-ext 2187  ax-sep 4162  ax-pow 4218  ax-pr 4253  ax-un 4480  ax-setind 4585  ax-cnex 8016  ax-resscn 8017  ax-1cn 8018  ax-1re 8019  ax-icn 8020  ax-addcl 8021  ax-addrcl 8022  ax-mulcl 8023  ax-mulrcl 8024  ax-addcom 8025  ax-mulcom 8026  ax-addass 8027  ax-mulass 8028  ax-distr 8029  ax-i2m1 8030  ax-0lt1 8031  ax-1rid 8032  ax-0id 8033  ax-rnegex 8034  ax-precex 8035  ax-cnre 8036  ax-pre-ltirr 8037  ax-pre-ltwlin 8038  ax-pre-lttrn 8039  ax-pre-apti 8040  ax-pre-ltadd 8041  ax-pre-mulgt0 8042  ax-pre-mulext 8043  ax-arch 8044
This theorem depends on definitions:  df-bi 117  df-3or 982  df-3an 983  df-tru 1376  df-fal 1379  df-nf 1484  df-sb 1786  df-eu 2057  df-mo 2058  df-clab 2192  df-cleq 2198  df-clel 2201  df-nfc 2337  df-ne 2377  df-nel 2472  df-ral 2489  df-rex 2490  df-reu 2491  df-rmo 2492  df-rab 2493  df-v 2774  df-sbc 2999  df-csb 3094  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-pw 3618  df-sn 3639  df-pr 3640  df-op 3642  df-uni 3851  df-int 3886  df-iun 3929  df-br 4045  df-opab 4106  df-mpt 4107  df-id 4340  df-po 4343  df-iso 4344  df-xp 4681  df-rel 4682  df-cnv 4683  df-co 4684  df-dm 4685  df-rn 4686  df-res 4687  df-ima 4688  df-iota 5232  df-fun 5273  df-fn 5274  df-f 5275  df-fv 5279  df-riota 5899  df-ov 5947  df-oprab 5948  df-mpo 5949  df-1st 6226  df-2nd 6227  df-pnf 8109  df-mnf 8110  df-xr 8111  df-ltxr 8112  df-le 8113  df-sub 8245  df-neg 8246  df-reap 8648  df-ap 8655  df-div 8746  df-inn 9037  df-2 9095  df-3 9096  df-n0 9296  df-z 9373  df-uz 9649  df-q 9741  df-rp 9776  df-fl 10413  df-mod 10468
This theorem is referenced by:  gausslemma2dlem0i  15534
  Copyright terms: Public domain W3C validator