| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > decbin3 | GIF version | ||
| Description: Decompose base 4 into base 2. (Contributed by Mario Carneiro, 18-Feb-2014.) |
| Ref | Expression |
|---|---|
| decbin.1 | ⊢ 𝐴 ∈ ℕ0 |
| Ref | Expression |
|---|---|
| decbin3 | ⊢ ((4 · 𝐴) + 3) = ((2 · ((2 · 𝐴) + 1)) + 1) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 4nn0 9396 | . . 3 ⊢ 4 ∈ ℕ0 | |
| 2 | decbin.1 | . . 3 ⊢ 𝐴 ∈ ℕ0 | |
| 3 | 2nn0 9394 | . . 3 ⊢ 2 ∈ ℕ0 | |
| 4 | 2p1e3 9252 | . . 3 ⊢ (2 + 1) = 3 | |
| 5 | 2 | decbin2 9726 | . . . 4 ⊢ ((4 · 𝐴) + 2) = (2 · ((2 · 𝐴) + 1)) |
| 6 | 5 | eqcomi 2233 | . . 3 ⊢ (2 · ((2 · 𝐴) + 1)) = ((4 · 𝐴) + 2) |
| 7 | 1, 2, 3, 4, 6 | numsuc 9599 | . 2 ⊢ ((2 · ((2 · 𝐴) + 1)) + 1) = ((4 · 𝐴) + 3) |
| 8 | 7 | eqcomi 2233 | 1 ⊢ ((4 · 𝐴) + 3) = ((2 · ((2 · 𝐴) + 1)) + 1) |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1395 ∈ wcel 2200 (class class class)co 6007 1c1 8008 + caddc 8010 · cmul 8012 2c2 9169 3c3 9170 4c4 9171 ℕ0cn0 9377 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 714 ax-5 1493 ax-7 1494 ax-gen 1495 ax-ie1 1539 ax-ie2 1540 ax-8 1550 ax-10 1551 ax-11 1552 ax-i12 1553 ax-bndl 1555 ax-4 1556 ax-17 1572 ax-i9 1576 ax-ial 1580 ax-i5r 1581 ax-14 2203 ax-ext 2211 ax-sep 4202 ax-pow 4258 ax-pr 4293 ax-setind 4629 ax-cnex 8098 ax-resscn 8099 ax-1cn 8100 ax-1re 8101 ax-icn 8102 ax-addcl 8103 ax-addrcl 8104 ax-mulcl 8105 ax-addcom 8107 ax-mulcom 8108 ax-addass 8109 ax-mulass 8110 ax-distr 8111 ax-i2m1 8112 ax-1rid 8114 ax-0id 8115 ax-rnegex 8116 ax-cnre 8118 |
| This theorem depends on definitions: df-bi 117 df-3an 1004 df-tru 1398 df-fal 1401 df-nf 1507 df-sb 1809 df-eu 2080 df-mo 2081 df-clab 2216 df-cleq 2222 df-clel 2225 df-nfc 2361 df-ne 2401 df-ral 2513 df-rex 2514 df-reu 2515 df-rab 2517 df-v 2801 df-sbc 3029 df-dif 3199 df-un 3201 df-in 3203 df-ss 3210 df-pw 3651 df-sn 3672 df-pr 3673 df-op 3675 df-uni 3889 df-int 3924 df-br 4084 df-opab 4146 df-id 4384 df-xp 4725 df-rel 4726 df-cnv 4727 df-co 4728 df-dm 4729 df-iota 5278 df-fun 5320 df-fv 5326 df-riota 5960 df-ov 6010 df-oprab 6011 df-mpo 6012 df-sub 8327 df-inn 9119 df-2 9177 df-3 9178 df-4 9179 df-n0 9378 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |