| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > decbin3 | GIF version | ||
| Description: Decompose base 4 into base 2. (Contributed by Mario Carneiro, 18-Feb-2014.) |
| Ref | Expression |
|---|---|
| decbin.1 | ⊢ 𝐴 ∈ ℕ0 |
| Ref | Expression |
|---|---|
| decbin3 | ⊢ ((4 · 𝐴) + 3) = ((2 · ((2 · 𝐴) + 1)) + 1) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 4nn0 9356 | . . 3 ⊢ 4 ∈ ℕ0 | |
| 2 | decbin.1 | . . 3 ⊢ 𝐴 ∈ ℕ0 | |
| 3 | 2nn0 9354 | . . 3 ⊢ 2 ∈ ℕ0 | |
| 4 | 2p1e3 9212 | . . 3 ⊢ (2 + 1) = 3 | |
| 5 | 2 | decbin2 9686 | . . . 4 ⊢ ((4 · 𝐴) + 2) = (2 · ((2 · 𝐴) + 1)) |
| 6 | 5 | eqcomi 2213 | . . 3 ⊢ (2 · ((2 · 𝐴) + 1)) = ((4 · 𝐴) + 2) |
| 7 | 1, 2, 3, 4, 6 | numsuc 9559 | . 2 ⊢ ((2 · ((2 · 𝐴) + 1)) + 1) = ((4 · 𝐴) + 3) |
| 8 | 7 | eqcomi 2213 | 1 ⊢ ((4 · 𝐴) + 3) = ((2 · ((2 · 𝐴) + 1)) + 1) |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1375 ∈ wcel 2180 (class class class)co 5974 1c1 7968 + caddc 7970 · cmul 7972 2c2 9129 3c3 9130 4c4 9131 ℕ0cn0 9337 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 617 ax-in2 618 ax-io 713 ax-5 1473 ax-7 1474 ax-gen 1475 ax-ie1 1519 ax-ie2 1520 ax-8 1530 ax-10 1531 ax-11 1532 ax-i12 1533 ax-bndl 1535 ax-4 1536 ax-17 1552 ax-i9 1556 ax-ial 1560 ax-i5r 1561 ax-14 2183 ax-ext 2191 ax-sep 4181 ax-pow 4237 ax-pr 4272 ax-setind 4606 ax-cnex 8058 ax-resscn 8059 ax-1cn 8060 ax-1re 8061 ax-icn 8062 ax-addcl 8063 ax-addrcl 8064 ax-mulcl 8065 ax-addcom 8067 ax-mulcom 8068 ax-addass 8069 ax-mulass 8070 ax-distr 8071 ax-i2m1 8072 ax-1rid 8074 ax-0id 8075 ax-rnegex 8076 ax-cnre 8078 |
| This theorem depends on definitions: df-bi 117 df-3an 985 df-tru 1378 df-fal 1381 df-nf 1487 df-sb 1789 df-eu 2060 df-mo 2061 df-clab 2196 df-cleq 2202 df-clel 2205 df-nfc 2341 df-ne 2381 df-ral 2493 df-rex 2494 df-reu 2495 df-rab 2497 df-v 2781 df-sbc 3009 df-dif 3179 df-un 3181 df-in 3183 df-ss 3190 df-pw 3631 df-sn 3652 df-pr 3653 df-op 3655 df-uni 3868 df-int 3903 df-br 4063 df-opab 4125 df-id 4361 df-xp 4702 df-rel 4703 df-cnv 4704 df-co 4705 df-dm 4706 df-iota 5254 df-fun 5296 df-fv 5302 df-riota 5927 df-ov 5977 df-oprab 5978 df-mpo 5979 df-sub 8287 df-inn 9079 df-2 9137 df-3 9138 df-4 9139 df-n0 9338 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |