| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > 0iin | GIF version | ||
| Description: An empty indexed intersection is the universal class. (Contributed by NM, 20-Oct-2005.) |
| Ref | Expression |
|---|---|
| 0iin | ⊢ ∩ 𝑥 ∈ ∅ 𝐴 = V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-iin 3929 | . 2 ⊢ ∩ 𝑥 ∈ ∅ 𝐴 = {𝑦 ∣ ∀𝑥 ∈ ∅ 𝑦 ∈ 𝐴} | |
| 2 | vex 2774 | . . . 4 ⊢ 𝑦 ∈ V | |
| 3 | ral0 3561 | . . . 4 ⊢ ∀𝑥 ∈ ∅ 𝑦 ∈ 𝐴 | |
| 4 | 2, 3 | 2th 174 | . . 3 ⊢ (𝑦 ∈ V ↔ ∀𝑥 ∈ ∅ 𝑦 ∈ 𝐴) |
| 5 | 4 | abbi2i 2319 | . 2 ⊢ V = {𝑦 ∣ ∀𝑥 ∈ ∅ 𝑦 ∈ 𝐴} |
| 6 | 1, 5 | eqtr4i 2228 | 1 ⊢ ∩ 𝑥 ∈ ∅ 𝐴 = V |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1372 ∈ wcel 2175 {cab 2190 ∀wral 2483 Vcvv 2771 ∅c0 3459 ∩ ciin 3927 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-ral 2488 df-v 2773 df-dif 3167 df-nul 3460 df-iin 3929 |
| This theorem is referenced by: riin0 3998 iin0r 4212 |
| Copyright terms: Public domain | W3C validator |