ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  0iin GIF version

Theorem 0iin 4023
Description: An empty indexed intersection is the universal class. (Contributed by NM, 20-Oct-2005.)
Assertion
Ref Expression
0iin 𝑥 ∈ ∅ 𝐴 = V

Proof of Theorem 0iin
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 df-iin 3967 . 2 𝑥 ∈ ∅ 𝐴 = {𝑦 ∣ ∀𝑥 ∈ ∅ 𝑦𝐴}
2 vex 2802 . . . 4 𝑦 ∈ V
3 ral0 3593 . . . 4 𝑥 ∈ ∅ 𝑦𝐴
42, 32th 174 . . 3 (𝑦 ∈ V ↔ ∀𝑥 ∈ ∅ 𝑦𝐴)
54abbi2i 2344 . 2 V = {𝑦 ∣ ∀𝑥 ∈ ∅ 𝑦𝐴}
61, 5eqtr4i 2253 1 𝑥 ∈ ∅ 𝐴 = V
Colors of variables: wff set class
Syntax hints:   = wceq 1395  wcel 2200  {cab 2215  wral 2508  Vcvv 2799  c0 3491   ciin 3965
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 617  ax-in2 618  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-ral 2513  df-v 2801  df-dif 3199  df-nul 3492  df-iin 3967
This theorem is referenced by:  riin0  4036  iin0r  4252
  Copyright terms: Public domain W3C validator