| Intuitionistic Logic Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > ILE Home > Th. List > 0iin | GIF version | ||
| Description: An empty indexed intersection is the universal class. (Contributed by NM, 20-Oct-2005.) | 
| Ref | Expression | 
|---|---|
| 0iin | ⊢ ∩ 𝑥 ∈ ∅ 𝐴 = V | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | df-iin 3919 | . 2 ⊢ ∩ 𝑥 ∈ ∅ 𝐴 = {𝑦 ∣ ∀𝑥 ∈ ∅ 𝑦 ∈ 𝐴} | |
| 2 | vex 2766 | . . . 4 ⊢ 𝑦 ∈ V | |
| 3 | ral0 3552 | . . . 4 ⊢ ∀𝑥 ∈ ∅ 𝑦 ∈ 𝐴 | |
| 4 | 2, 3 | 2th 174 | . . 3 ⊢ (𝑦 ∈ V ↔ ∀𝑥 ∈ ∅ 𝑦 ∈ 𝐴) | 
| 5 | 4 | abbi2i 2311 | . 2 ⊢ V = {𝑦 ∣ ∀𝑥 ∈ ∅ 𝑦 ∈ 𝐴} | 
| 6 | 1, 5 | eqtr4i 2220 | 1 ⊢ ∩ 𝑥 ∈ ∅ 𝐴 = V | 
| Colors of variables: wff set class | 
| Syntax hints: = wceq 1364 ∈ wcel 2167 {cab 2182 ∀wral 2475 Vcvv 2763 ∅c0 3450 ∩ ciin 3917 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-in1 615 ax-in2 616 ax-io 710 ax-5 1461 ax-7 1462 ax-gen 1463 ax-ie1 1507 ax-ie2 1508 ax-8 1518 ax-10 1519 ax-11 1520 ax-i12 1521 ax-bndl 1523 ax-4 1524 ax-17 1540 ax-i9 1544 ax-ial 1548 ax-i5r 1549 ax-ext 2178 | 
| This theorem depends on definitions: df-bi 117 df-tru 1367 df-nf 1475 df-sb 1777 df-clab 2183 df-cleq 2189 df-clel 2192 df-nfc 2328 df-ral 2480 df-v 2765 df-dif 3159 df-nul 3451 df-iin 3919 | 
| This theorem is referenced by: riin0 3988 iin0r 4202 | 
| Copyright terms: Public domain | W3C validator |