| Step | Hyp | Ref
| Expression |
| 1 | | vprc 4166 |
. . . 4
⊢ ¬ V
∈ V |
| 2 | | vsnid 3655 |
. . . . . . . . 9
⊢ 𝑧 ∈ {𝑧} |
| 3 | | a9ev 1711 |
. . . . . . . . . 10
⊢
∃𝑦 𝑦 = 𝑧 |
| 4 | | sneq 3634 |
. . . . . . . . . . 11
⊢ (𝑧 = 𝑦 → {𝑧} = {𝑦}) |
| 5 | 4 | equcoms 1722 |
. . . . . . . . . 10
⊢ (𝑦 = 𝑧 → {𝑧} = {𝑦}) |
| 6 | 3, 5 | eximii 1616 |
. . . . . . . . 9
⊢
∃𝑦{𝑧} = {𝑦} |
| 7 | | vex 2766 |
. . . . . . . . . . 11
⊢ 𝑧 ∈ V |
| 8 | 7 | snex 4219 |
. . . . . . . . . 10
⊢ {𝑧} ∈ V |
| 9 | | eleq2 2260 |
. . . . . . . . . . 11
⊢ (𝑥 = {𝑧} → (𝑧 ∈ 𝑥 ↔ 𝑧 ∈ {𝑧})) |
| 10 | | eqeq1 2203 |
. . . . . . . . . . . 12
⊢ (𝑥 = {𝑧} → (𝑥 = {𝑦} ↔ {𝑧} = {𝑦})) |
| 11 | 10 | exbidv 1839 |
. . . . . . . . . . 11
⊢ (𝑥 = {𝑧} → (∃𝑦 𝑥 = {𝑦} ↔ ∃𝑦{𝑧} = {𝑦})) |
| 12 | 9, 11 | anbi12d 473 |
. . . . . . . . . 10
⊢ (𝑥 = {𝑧} → ((𝑧 ∈ 𝑥 ∧ ∃𝑦 𝑥 = {𝑦}) ↔ (𝑧 ∈ {𝑧} ∧ ∃𝑦{𝑧} = {𝑦}))) |
| 13 | 8, 12 | spcev 2859 |
. . . . . . . . 9
⊢ ((𝑧 ∈ {𝑧} ∧ ∃𝑦{𝑧} = {𝑦}) → ∃𝑥(𝑧 ∈ 𝑥 ∧ ∃𝑦 𝑥 = {𝑦})) |
| 14 | 2, 6, 13 | mp2an 426 |
. . . . . . . 8
⊢
∃𝑥(𝑧 ∈ 𝑥 ∧ ∃𝑦 𝑥 = {𝑦}) |
| 15 | | eluniab 3852 |
. . . . . . . 8
⊢ (𝑧 ∈ ∪ {𝑥
∣ ∃𝑦 𝑥 = {𝑦}} ↔ ∃𝑥(𝑧 ∈ 𝑥 ∧ ∃𝑦 𝑥 = {𝑦})) |
| 16 | 14, 15 | mpbir 146 |
. . . . . . 7
⊢ 𝑧 ∈ ∪ {𝑥
∣ ∃𝑦 𝑥 = {𝑦}} |
| 17 | 16, 7 | 2th 174 |
. . . . . 6
⊢ (𝑧 ∈ ∪ {𝑥
∣ ∃𝑦 𝑥 = {𝑦}} ↔ 𝑧 ∈ V) |
| 18 | 17 | eqriv 2193 |
. . . . 5
⊢ ∪ {𝑥
∣ ∃𝑦 𝑥 = {𝑦}} = V |
| 19 | 18 | eleq1i 2262 |
. . . 4
⊢ (∪ {𝑥
∣ ∃𝑦 𝑥 = {𝑦}} ∈ V ↔ V ∈
V) |
| 20 | 1, 19 | mtbir 672 |
. . 3
⊢ ¬
∪ {𝑥 ∣ ∃𝑦 𝑥 = {𝑦}} ∈ V |
| 21 | | uniexg 4475 |
. . 3
⊢ ({𝑥 ∣ ∃𝑦 𝑥 = {𝑦}} ∈ V → ∪ {𝑥
∣ ∃𝑦 𝑥 = {𝑦}} ∈ V) |
| 22 | 20, 21 | mto 663 |
. 2
⊢ ¬
{𝑥 ∣ ∃𝑦 𝑥 = {𝑦}} ∈ V |
| 23 | 22 | nelir 2465 |
1
⊢ {𝑥 ∣ ∃𝑦 𝑥 = {𝑦}} ∉ V |