| Step | Hyp | Ref
 | Expression | 
| 1 |   | vprc 4165 | 
. . . 4
⊢  ¬ V
∈ V | 
| 2 |   | vsnid 3654 | 
. . . . . . . . 9
⊢ 𝑧 ∈ {𝑧} | 
| 3 |   | a9ev 1711 | 
. . . . . . . . . 10
⊢
∃𝑦 𝑦 = 𝑧 | 
| 4 |   | sneq 3633 | 
. . . . . . . . . . 11
⊢ (𝑧 = 𝑦 → {𝑧} = {𝑦}) | 
| 5 | 4 | equcoms 1722 | 
. . . . . . . . . 10
⊢ (𝑦 = 𝑧 → {𝑧} = {𝑦}) | 
| 6 | 3, 5 | eximii 1616 | 
. . . . . . . . 9
⊢
∃𝑦{𝑧} = {𝑦} | 
| 7 |   | vex 2766 | 
. . . . . . . . . . 11
⊢ 𝑧 ∈ V | 
| 8 | 7 | snex 4218 | 
. . . . . . . . . 10
⊢ {𝑧} ∈ V | 
| 9 |   | eleq2 2260 | 
. . . . . . . . . . 11
⊢ (𝑥 = {𝑧} → (𝑧 ∈ 𝑥 ↔ 𝑧 ∈ {𝑧})) | 
| 10 |   | eqeq1 2203 | 
. . . . . . . . . . . 12
⊢ (𝑥 = {𝑧} → (𝑥 = {𝑦} ↔ {𝑧} = {𝑦})) | 
| 11 | 10 | exbidv 1839 | 
. . . . . . . . . . 11
⊢ (𝑥 = {𝑧} → (∃𝑦 𝑥 = {𝑦} ↔ ∃𝑦{𝑧} = {𝑦})) | 
| 12 | 9, 11 | anbi12d 473 | 
. . . . . . . . . 10
⊢ (𝑥 = {𝑧} → ((𝑧 ∈ 𝑥 ∧ ∃𝑦 𝑥 = {𝑦}) ↔ (𝑧 ∈ {𝑧} ∧ ∃𝑦{𝑧} = {𝑦}))) | 
| 13 | 8, 12 | spcev 2859 | 
. . . . . . . . 9
⊢ ((𝑧 ∈ {𝑧} ∧ ∃𝑦{𝑧} = {𝑦}) → ∃𝑥(𝑧 ∈ 𝑥 ∧ ∃𝑦 𝑥 = {𝑦})) | 
| 14 | 2, 6, 13 | mp2an 426 | 
. . . . . . . 8
⊢
∃𝑥(𝑧 ∈ 𝑥 ∧ ∃𝑦 𝑥 = {𝑦}) | 
| 15 |   | eluniab 3851 | 
. . . . . . . 8
⊢ (𝑧 ∈ ∪ {𝑥
∣ ∃𝑦 𝑥 = {𝑦}} ↔ ∃𝑥(𝑧 ∈ 𝑥 ∧ ∃𝑦 𝑥 = {𝑦})) | 
| 16 | 14, 15 | mpbir 146 | 
. . . . . . 7
⊢ 𝑧 ∈ ∪ {𝑥
∣ ∃𝑦 𝑥 = {𝑦}} | 
| 17 | 16, 7 | 2th 174 | 
. . . . . 6
⊢ (𝑧 ∈ ∪ {𝑥
∣ ∃𝑦 𝑥 = {𝑦}} ↔ 𝑧 ∈ V) | 
| 18 | 17 | eqriv 2193 | 
. . . . 5
⊢ ∪ {𝑥
∣ ∃𝑦 𝑥 = {𝑦}} = V | 
| 19 | 18 | eleq1i 2262 | 
. . . 4
⊢ (∪ {𝑥
∣ ∃𝑦 𝑥 = {𝑦}} ∈ V ↔ V ∈
V) | 
| 20 | 1, 19 | mtbir 672 | 
. . 3
⊢  ¬
∪ {𝑥 ∣ ∃𝑦 𝑥 = {𝑦}} ∈ V | 
| 21 |   | uniexg 4474 | 
. . 3
⊢ ({𝑥 ∣ ∃𝑦 𝑥 = {𝑦}} ∈ V → ∪ {𝑥
∣ ∃𝑦 𝑥 = {𝑦}} ∈ V) | 
| 22 | 20, 21 | mto 663 | 
. 2
⊢  ¬
{𝑥 ∣ ∃𝑦 𝑥 = {𝑦}} ∈ V | 
| 23 | 22 | nelir 2465 | 
1
⊢ {𝑥 ∣ ∃𝑦 𝑥 = {𝑦}} ∉ V |