ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  snnex GIF version

Theorem snnex 4247
Description: The class of all singletons is a proper class. (Contributed by NM, 10-Oct-2008.) (Proof shortened by Eric Schmidt, 7-Dec-2008.)
Assertion
Ref Expression
snnex {𝑥 ∣ ∃𝑦 𝑥 = {𝑦}} ∉ V
Distinct variable group:   𝑥,𝑦

Proof of Theorem snnex
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 vprc 3948 . . . 4 ¬ V ∈ V
2 vsnid 3461 . . . . . . . . 9 𝑧 ∈ {𝑧}
3 a9ev 1630 . . . . . . . . . 10 𝑦 𝑦 = 𝑧
4 sneq 3442 . . . . . . . . . . 11 (𝑧 = 𝑦 → {𝑧} = {𝑦})
54equcoms 1638 . . . . . . . . . 10 (𝑦 = 𝑧 → {𝑧} = {𝑦})
63, 5eximii 1536 . . . . . . . . 9 𝑦{𝑧} = {𝑦}
7 vex 2618 . . . . . . . . . . 11 𝑧 ∈ V
87snex 3996 . . . . . . . . . 10 {𝑧} ∈ V
9 eleq2 2148 . . . . . . . . . . 11 (𝑥 = {𝑧} → (𝑧𝑥𝑧 ∈ {𝑧}))
10 eqeq1 2091 . . . . . . . . . . . 12 (𝑥 = {𝑧} → (𝑥 = {𝑦} ↔ {𝑧} = {𝑦}))
1110exbidv 1750 . . . . . . . . . . 11 (𝑥 = {𝑧} → (∃𝑦 𝑥 = {𝑦} ↔ ∃𝑦{𝑧} = {𝑦}))
129, 11anbi12d 457 . . . . . . . . . 10 (𝑥 = {𝑧} → ((𝑧𝑥 ∧ ∃𝑦 𝑥 = {𝑦}) ↔ (𝑧 ∈ {𝑧} ∧ ∃𝑦{𝑧} = {𝑦})))
138, 12spcev 2706 . . . . . . . . 9 ((𝑧 ∈ {𝑧} ∧ ∃𝑦{𝑧} = {𝑦}) → ∃𝑥(𝑧𝑥 ∧ ∃𝑦 𝑥 = {𝑦}))
142, 6, 13mp2an 417 . . . . . . . 8 𝑥(𝑧𝑥 ∧ ∃𝑦 𝑥 = {𝑦})
15 eluniab 3650 . . . . . . . 8 (𝑧 {𝑥 ∣ ∃𝑦 𝑥 = {𝑦}} ↔ ∃𝑥(𝑧𝑥 ∧ ∃𝑦 𝑥 = {𝑦}))
1614, 15mpbir 144 . . . . . . 7 𝑧 {𝑥 ∣ ∃𝑦 𝑥 = {𝑦}}
1716, 72th 172 . . . . . 6 (𝑧 {𝑥 ∣ ∃𝑦 𝑥 = {𝑦}} ↔ 𝑧 ∈ V)
1817eqriv 2082 . . . . 5 {𝑥 ∣ ∃𝑦 𝑥 = {𝑦}} = V
1918eleq1i 2150 . . . 4 ( {𝑥 ∣ ∃𝑦 𝑥 = {𝑦}} ∈ V ↔ V ∈ V)
201, 19mtbir 629 . . 3 ¬ {𝑥 ∣ ∃𝑦 𝑥 = {𝑦}} ∈ V
21 uniexg 4241 . . 3 ({𝑥 ∣ ∃𝑦 𝑥 = {𝑦}} ∈ V → {𝑥 ∣ ∃𝑦 𝑥 = {𝑦}} ∈ V)
2220, 21mto 621 . 2 ¬ {𝑥 ∣ ∃𝑦 𝑥 = {𝑦}} ∈ V
2322nelir 2349 1 {𝑥 ∣ ∃𝑦 𝑥 = {𝑦}} ∉ V
Colors of variables: wff set class
Syntax hints:  wa 102   = wceq 1287  wex 1424  wcel 1436  {cab 2071  wnel 2346  Vcvv 2615  {csn 3431   cuni 3638
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1379  ax-7 1380  ax-gen 1381  ax-ie1 1425  ax-ie2 1426  ax-8 1438  ax-10 1439  ax-11 1440  ax-i12 1441  ax-bndl 1442  ax-4 1443  ax-13 1447  ax-14 1448  ax-17 1462  ax-i9 1466  ax-ial 1470  ax-i5r 1471  ax-ext 2067  ax-sep 3934  ax-pow 3986  ax-un 4236
This theorem depends on definitions:  df-bi 115  df-tru 1290  df-fal 1293  df-nf 1393  df-sb 1690  df-clab 2072  df-cleq 2078  df-clel 2081  df-nfc 2214  df-nel 2347  df-rex 2361  df-v 2617  df-in 2994  df-ss 3001  df-pw 3417  df-sn 3437  df-uni 3639
This theorem is referenced by:  fiprc  6486
  Copyright terms: Public domain W3C validator