ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  snnex GIF version

Theorem snnex 4479
Description: The class of all singletons is a proper class. (Contributed by NM, 10-Oct-2008.) (Proof shortened by Eric Schmidt, 7-Dec-2008.)
Assertion
Ref Expression
snnex {𝑥 ∣ ∃𝑦 𝑥 = {𝑦}} ∉ V
Distinct variable group:   𝑥,𝑦

Proof of Theorem snnex
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 vprc 4161 . . . 4 ¬ V ∈ V
2 vsnid 3650 . . . . . . . . 9 𝑧 ∈ {𝑧}
3 a9ev 1708 . . . . . . . . . 10 𝑦 𝑦 = 𝑧
4 sneq 3629 . . . . . . . . . . 11 (𝑧 = 𝑦 → {𝑧} = {𝑦})
54equcoms 1719 . . . . . . . . . 10 (𝑦 = 𝑧 → {𝑧} = {𝑦})
63, 5eximii 1613 . . . . . . . . 9 𝑦{𝑧} = {𝑦}
7 vex 2763 . . . . . . . . . . 11 𝑧 ∈ V
87snex 4214 . . . . . . . . . 10 {𝑧} ∈ V
9 eleq2 2257 . . . . . . . . . . 11 (𝑥 = {𝑧} → (𝑧𝑥𝑧 ∈ {𝑧}))
10 eqeq1 2200 . . . . . . . . . . . 12 (𝑥 = {𝑧} → (𝑥 = {𝑦} ↔ {𝑧} = {𝑦}))
1110exbidv 1836 . . . . . . . . . . 11 (𝑥 = {𝑧} → (∃𝑦 𝑥 = {𝑦} ↔ ∃𝑦{𝑧} = {𝑦}))
129, 11anbi12d 473 . . . . . . . . . 10 (𝑥 = {𝑧} → ((𝑧𝑥 ∧ ∃𝑦 𝑥 = {𝑦}) ↔ (𝑧 ∈ {𝑧} ∧ ∃𝑦{𝑧} = {𝑦})))
138, 12spcev 2855 . . . . . . . . 9 ((𝑧 ∈ {𝑧} ∧ ∃𝑦{𝑧} = {𝑦}) → ∃𝑥(𝑧𝑥 ∧ ∃𝑦 𝑥 = {𝑦}))
142, 6, 13mp2an 426 . . . . . . . 8 𝑥(𝑧𝑥 ∧ ∃𝑦 𝑥 = {𝑦})
15 eluniab 3847 . . . . . . . 8 (𝑧 {𝑥 ∣ ∃𝑦 𝑥 = {𝑦}} ↔ ∃𝑥(𝑧𝑥 ∧ ∃𝑦 𝑥 = {𝑦}))
1614, 15mpbir 146 . . . . . . 7 𝑧 {𝑥 ∣ ∃𝑦 𝑥 = {𝑦}}
1716, 72th 174 . . . . . 6 (𝑧 {𝑥 ∣ ∃𝑦 𝑥 = {𝑦}} ↔ 𝑧 ∈ V)
1817eqriv 2190 . . . . 5 {𝑥 ∣ ∃𝑦 𝑥 = {𝑦}} = V
1918eleq1i 2259 . . . 4 ( {𝑥 ∣ ∃𝑦 𝑥 = {𝑦}} ∈ V ↔ V ∈ V)
201, 19mtbir 672 . . 3 ¬ {𝑥 ∣ ∃𝑦 𝑥 = {𝑦}} ∈ V
21 uniexg 4470 . . 3 ({𝑥 ∣ ∃𝑦 𝑥 = {𝑦}} ∈ V → {𝑥 ∣ ∃𝑦 𝑥 = {𝑦}} ∈ V)
2220, 21mto 663 . 2 ¬ {𝑥 ∣ ∃𝑦 𝑥 = {𝑦}} ∈ V
2322nelir 2462 1 {𝑥 ∣ ∃𝑦 𝑥 = {𝑦}} ∉ V
Colors of variables: wff set class
Syntax hints:  wa 104   = wceq 1364  wex 1503  wcel 2164  {cab 2179  wnel 2459  Vcvv 2760  {csn 3618   cuni 3835
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-in1 615  ax-in2 616  ax-io 710  ax-5 1458  ax-7 1459  ax-gen 1460  ax-ie1 1504  ax-ie2 1505  ax-8 1515  ax-10 1516  ax-11 1517  ax-i12 1518  ax-bndl 1520  ax-4 1521  ax-17 1537  ax-i9 1541  ax-ial 1545  ax-i5r 1546  ax-13 2166  ax-14 2167  ax-ext 2175  ax-sep 4147  ax-pow 4203  ax-un 4464
This theorem depends on definitions:  df-bi 117  df-tru 1367  df-fal 1370  df-nf 1472  df-sb 1774  df-clab 2180  df-cleq 2186  df-clel 2189  df-nfc 2325  df-nel 2460  df-rex 2478  df-v 2762  df-in 3159  df-ss 3166  df-pw 3603  df-sn 3624  df-uni 3836
This theorem is referenced by:  fiprc  6869
  Copyright terms: Public domain W3C validator