![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > pwv | GIF version |
Description: The power class of the universe is the universe. Exercise 4.12(d) of [Mendelson] p. 235. (Contributed by NM, 14-Sep-2003.) |
Ref | Expression |
---|---|
pwv | ⊢ 𝒫 V = V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssv 3061 | . . . 4 ⊢ 𝑥 ⊆ V | |
2 | vex 2636 | . . . . 5 ⊢ 𝑥 ∈ V | |
3 | 2 | elpw 3455 | . . . 4 ⊢ (𝑥 ∈ 𝒫 V ↔ 𝑥 ⊆ V) |
4 | 1, 3 | mpbir 145 | . . 3 ⊢ 𝑥 ∈ 𝒫 V |
5 | 4, 2 | 2th 173 | . 2 ⊢ (𝑥 ∈ 𝒫 V ↔ 𝑥 ∈ V) |
6 | 5 | eqriv 2092 | 1 ⊢ 𝒫 V = V |
Colors of variables: wff set class |
Syntax hints: = wceq 1296 ∈ wcel 1445 Vcvv 2633 ⊆ wss 3013 𝒫 cpw 3449 |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 105 ax-ia2 106 ax-ia3 107 ax-io 668 ax-5 1388 ax-7 1389 ax-gen 1390 ax-ie1 1434 ax-ie2 1435 ax-8 1447 ax-10 1448 ax-11 1449 ax-i12 1450 ax-bndl 1451 ax-4 1452 ax-17 1471 ax-i9 1475 ax-ial 1479 ax-i5r 1480 ax-ext 2077 |
This theorem depends on definitions: df-bi 116 df-tru 1299 df-nf 1402 df-sb 1700 df-clab 2082 df-cleq 2088 df-clel 2091 df-nfc 2224 df-v 2635 df-in 3019 df-ss 3026 df-pw 3451 |
This theorem is referenced by: univ 4326 |
Copyright terms: Public domain | W3C validator |