ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pwv GIF version

Theorem pwv 3788
Description: The power class of the universe is the universe. Exercise 4.12(d) of [Mendelson] p. 235. (Contributed by NM, 14-Sep-2003.)
Assertion
Ref Expression
pwv 𝒫 V = V

Proof of Theorem pwv
StepHypRef Expression
1 ssv 3164 . . . 4 𝑥 ⊆ V
2 vex 2729 . . . . 5 𝑥 ∈ V
32elpw 3565 . . . 4 (𝑥 ∈ 𝒫 V ↔ 𝑥 ⊆ V)
41, 3mpbir 145 . . 3 𝑥 ∈ 𝒫 V
54, 22th 173 . 2 (𝑥 ∈ 𝒫 V ↔ 𝑥 ∈ V)
65eqriv 2162 1 𝒫 V = V
Colors of variables: wff set class
Syntax hints:   = wceq 1343  wcel 2136  Vcvv 2726  wss 3116  𝒫 cpw 3559
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 699  ax-5 1435  ax-7 1436  ax-gen 1437  ax-ie1 1481  ax-ie2 1482  ax-8 1492  ax-10 1493  ax-11 1494  ax-i12 1495  ax-bndl 1497  ax-4 1498  ax-17 1514  ax-i9 1518  ax-ial 1522  ax-i5r 1523  ax-ext 2147
This theorem depends on definitions:  df-bi 116  df-tru 1346  df-nf 1449  df-sb 1751  df-clab 2152  df-cleq 2158  df-clel 2161  df-nfc 2297  df-v 2728  df-in 3122  df-ss 3129  df-pw 3561
This theorem is referenced by:  univ  4454
  Copyright terms: Public domain W3C validator