ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pwv GIF version

Theorem pwv 3674
Description: The power class of the universe is the universe. Exercise 4.12(d) of [Mendelson] p. 235. (Contributed by NM, 14-Sep-2003.)
Assertion
Ref Expression
pwv 𝒫 V = V

Proof of Theorem pwv
StepHypRef Expression
1 ssv 3061 . . . 4 𝑥 ⊆ V
2 vex 2636 . . . . 5 𝑥 ∈ V
32elpw 3455 . . . 4 (𝑥 ∈ 𝒫 V ↔ 𝑥 ⊆ V)
41, 3mpbir 145 . . 3 𝑥 ∈ 𝒫 V
54, 22th 173 . 2 (𝑥 ∈ 𝒫 V ↔ 𝑥 ∈ V)
65eqriv 2092 1 𝒫 V = V
Colors of variables: wff set class
Syntax hints:   = wceq 1296  wcel 1445  Vcvv 2633  wss 3013  𝒫 cpw 3449
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 668  ax-5 1388  ax-7 1389  ax-gen 1390  ax-ie1 1434  ax-ie2 1435  ax-8 1447  ax-10 1448  ax-11 1449  ax-i12 1450  ax-bndl 1451  ax-4 1452  ax-17 1471  ax-i9 1475  ax-ial 1479  ax-i5r 1480  ax-ext 2077
This theorem depends on definitions:  df-bi 116  df-tru 1299  df-nf 1402  df-sb 1700  df-clab 2082  df-cleq 2088  df-clel 2091  df-nfc 2224  df-v 2635  df-in 3019  df-ss 3026  df-pw 3451
This theorem is referenced by:  univ  4326
  Copyright terms: Public domain W3C validator