ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  pwv GIF version

Theorem pwv 3886
Description: The power class of the universe is the universe. Exercise 4.12(d) of [Mendelson] p. 235. (Contributed by NM, 14-Sep-2003.)
Assertion
Ref Expression
pwv 𝒫 V = V

Proof of Theorem pwv
StepHypRef Expression
1 ssv 3246 . . . 4 𝑥 ⊆ V
2 vex 2802 . . . . 5 𝑥 ∈ V
32elpw 3655 . . . 4 (𝑥 ∈ 𝒫 V ↔ 𝑥 ⊆ V)
41, 3mpbir 146 . . 3 𝑥 ∈ 𝒫 V
54, 22th 174 . 2 (𝑥 ∈ 𝒫 V ↔ 𝑥 ∈ V)
65eqriv 2226 1 𝒫 V = V
Colors of variables: wff set class
Syntax hints:   = wceq 1395  wcel 2200  Vcvv 2799  wss 3197  𝒫 cpw 3649
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 106  ax-ia2 107  ax-ia3 108  ax-io 714  ax-5 1493  ax-7 1494  ax-gen 1495  ax-ie1 1539  ax-ie2 1540  ax-8 1550  ax-10 1551  ax-11 1552  ax-i12 1553  ax-bndl 1555  ax-4 1556  ax-17 1572  ax-i9 1576  ax-ial 1580  ax-i5r 1581  ax-ext 2211
This theorem depends on definitions:  df-bi 117  df-tru 1398  df-nf 1507  df-sb 1809  df-clab 2216  df-cleq 2222  df-clel 2225  df-nfc 2361  df-v 2801  df-in 3203  df-ss 3210  df-pw 3651
This theorem is referenced by:  univ  4566
  Copyright terms: Public domain W3C validator