| Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > ILE Home > Th. List > pwv | GIF version | ||
| Description: The power class of the universe is the universe. Exercise 4.12(d) of [Mendelson] p. 235. (Contributed by NM, 14-Sep-2003.) |
| Ref | Expression |
|---|---|
| pwv | ⊢ 𝒫 V = V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssv 3214 | . . . 4 ⊢ 𝑥 ⊆ V | |
| 2 | vex 2774 | . . . . 5 ⊢ 𝑥 ∈ V | |
| 3 | 2 | elpw 3621 | . . . 4 ⊢ (𝑥 ∈ 𝒫 V ↔ 𝑥 ⊆ V) |
| 4 | 1, 3 | mpbir 146 | . . 3 ⊢ 𝑥 ∈ 𝒫 V |
| 5 | 4, 2 | 2th 174 | . 2 ⊢ (𝑥 ∈ 𝒫 V ↔ 𝑥 ∈ V) |
| 6 | 5 | eqriv 2201 | 1 ⊢ 𝒫 V = V |
| Colors of variables: wff set class |
| Syntax hints: = wceq 1372 ∈ wcel 2175 Vcvv 2771 ⊆ wss 3165 𝒫 cpw 3615 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-ia1 106 ax-ia2 107 ax-ia3 108 ax-io 710 ax-5 1469 ax-7 1470 ax-gen 1471 ax-ie1 1515 ax-ie2 1516 ax-8 1526 ax-10 1527 ax-11 1528 ax-i12 1529 ax-bndl 1531 ax-4 1532 ax-17 1548 ax-i9 1552 ax-ial 1556 ax-i5r 1557 ax-ext 2186 |
| This theorem depends on definitions: df-bi 117 df-tru 1375 df-nf 1483 df-sb 1785 df-clab 2191 df-cleq 2197 df-clel 2200 df-nfc 2336 df-v 2773 df-in 3171 df-ss 3178 df-pw 3617 |
| This theorem is referenced by: univ 4521 |
| Copyright terms: Public domain | W3C validator |